Computational Modeling of Hypersonic Nonequilibrium Gas and Surface Interactions

Iain D. Boyd, Jae Gang Kim, Abhilasha Anna
Nonequilibrium Gas & Plasma Dynamics Laboratory
Department of Aerospace Engineering
University of Michigan
Ann Arbor, Michigan 48109
iainboyd@umich.edu

Grant FA9550-11-1-0309
Hypersonic Vehicle Analysis

Gas Phase
- strong shocks, thermochemical nonequilibrium, boundary layer, etc.
- CFD, relaxation times, Arrhenius rate coefficients with two-temperature model

Surface Processes
- accommodation, ablation (oxidation, sublimation), catalysis, melting, etc.
- coefficients, surface chemistry mechanism and rates

Material Response
- heat conduction, radiative emission, internal chemical reactions (pyrolysis), gas flow through porous media, etc.
- thermal response model, physical properties of complex materials (conductivity, emissivity…)

Material Response
- heat conduction, radiative emission, internal chemical reactions (pyrolysis), gas flow through porous media, etc.
- thermal response model, physical properties of complex materials (conductivity, emissivity…)

Material Response
Project Goals

• Nonequilibrium gas-phase processes:
 – use computational chemistry and Master Equation analysis to perform detailed studies of:
 • thermal relaxation processes (T-R-V)
 • chemical processes (dissociation, exchange)
 – develop reduced order models for use in CFD

• Nonequilibrium gas-surface processes:
 – use coupled CFD-surface chemistry-material response tools to study gas-surface interactions (e.g., catalysis, ablation)
 – assess models using experimental data (flow and surface) generated in high-enthalpy facility (Fletcher, Univ. Vermont)
Gas Phase Studies: Technical Approach

• State-to-state transition cross sections and rate coefficients:
 – compute data for all ro–vibrational states, e.g. using QCT
 – reduce the number of state-to-state transition rates evaluated using a response surface design technique (Kriging)

• Master Equation (ME) analysis of thermochemical relaxation:
 – constructed using complete sets of state-resolved transition rates for bound-bound and bound-free processes
 – compare results with existing measurements
 – use results to develop reduced-order thermochemistry models that can be implemented in CFD
Results:
Bound-Bound H₂ Transitions

State-to-state cross sections obtained using response surface design method.
Results:
Bound-Bound H\(_2\) Transitions

State-to-state cross sections obtained using response surface design method calibrated using a small number of QCT evaluations (1,800 instead of 60,000!)

(a)
(b)
Results: H₂ Thermal Relaxation

- Global relaxation parameters of the rotational and vibrational modes for H₂+H₂
- Rotational and vibrational relaxation times become similar at high temperature
Analysis of N₂-N: Heat Bath Studies

- State-to-state transition cross sections and rate coefficients:
 - use database of cross sections computed by Jaffe et al, NASA ARC
 - ME analysis involves solution of 9,390 equations
 - technical details: Kim & Boyd, AIAA-2012-2991, June 2012

Thermal Relaxation Parameters

Chemical Reaction Rates

Energy Removal Due to Chemistry
Analysis of N$_2$-N: Shock Tube Studies

- One-dimensional flow equations combined with Master Equation:
 - N$_2$-N$_2$ included macroscopically using standard models
 - applied to experiment of AVCO / Sharma
 - technical details: Kim & Boyd, AIAA-2012-2991, June 2012
Gas-Surface Interactions: Assessment of Computations

- Collaboration with Prof. Doug Fletcher (UVM):
 - 30 kW Inductively Coupled Plasma (ICP) Torch Facility
- Samples exposed to high enthalpy gas flows
- Flow quantities measured using two-photon LIF:
 - N-atom number density
 - Translational temperature
- Surface temperature and sample ablation also quantified

Graphite sample in nitrogen flow
(section in box is the portion simulated)
Source: Prof. D.G. Fletcher
Gas-Surface Interactions: Conditions Investigated

Free Stream:

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>0.001</td>
<td>5133</td>
<td>12</td>
<td>1590</td>
</tr>
</tbody>
</table>

Progress: subsonic inlet/outlet BCs added to LeMANS sensitivity to various thermochemistry models

Mach number

Translational temperature
Gas-Surface Interactions: Comparisons with Experiment

Comparisons along the stagnation streamline

Translational temperature

Relative N-atom density
Future Plans

• Nonequilibrium gas-phase processes:
 – develop T-R-V relaxation models for CFD from ME results
 – high fidelity CFD chemical reaction models including rotational mode will also be developed from ME analysis
 – continue analysis for other important air interactions
 – evaluation using existing experimental data sets

• Nonequilibrium gas-surface processes:
 – compare surface chemistry models (catalytic recombination, finite rate chemistry module of MacLean & Marschall)
 – model surface recession (material response code: MOPAR)
 – study sensitivity to gas-thermochemistry rates and models
 – assess modeling using Univ. Vermont experimental measurements of flow field properties and sample mass loss
Technical Challenges

• Nonequilibrium gas-phase processes:
 – large number of different air species interactions (N₂-M, O₂-M, NO-M, etc.)
 – fidelity required from computational chemistry?
 – Master Equation analysis becoming expensive
 – lack of modern, validation quality, experimental data

• Nonequilibrium gas-surface processes:
 – isolating contributions of competing mechanisms to effects observed (e.g. flow processes, catalysis, ablation)
 – uncertainties in facility operation (e.g. ICP exit conditions)
Technical Approach: Computational Tools

• **LeMANS**
 (Scalabrin and Boyd: AIAA-2006-3773)
 - Navier-Stokes CFD code
 - finite volume FVS
 - implicit time integration (point/line)
 - 2D/3D unstructured mesh
 - parallel, domain decomposition
 - finite rate thermo-chemical nonequilibrium effects
 - validated for hypersonic flow using experiments, codes

• **MOPAR**
 (Martin and Boyd: AIAA-2009-3597)
 - material response code
 - control volume finite element (CVFEM)
 - quasi-1D
 - pyrolyzing/non-pyrolyzing ablators
 - momentum conservation through Darcy’s Law (or Forcheimer’s Law)
 - moving boundaries
 - has been coupled to LeMANS
Results: Surface Properties

Total Heat flux = (Translational + Vibrational) convective heat flux + Diffusive heat flux

![Graphs showing Total heat flux and Diffusive heat flux vs Distance from stagnation point]