Measurements and Modeling in Nonequilibrium Shock/Boundary Layer Interaction

Joanna M. Austin and Andrew Knisely
Department of Aerospace, Caltech

Deborah A. Levin
Department of Aerospace Engineering, University of Illinois

AFOSR Aerothermodynamics and Turbulence Portfolio Review
University of Tennessee Space Institute, TN, 13-16 July 2015
FA 9550-15-1-
Hallmark of hypervelocity flight: Nonlinear coupling of fluid & thermochemistry

Hypervelocity freestream

\(h_t \sim 9 \text{ MJ/kg} \)
\(U \sim \text{km/s} \)
\(T \sim 800\text{K} \)

Gas phase reactions

Laminar inflow boundary layer

Gas surface reactions

Shock-dominated turbulent flow

Difference in peak heating
Shock distortion of hypervelocity boundary layer

- Shock-boundary layer interactions:
 - Unsteady, potentially extreme, aerodynamic loads
 - Flow separation with loss of control authority
 - Severe heating rates
- Correct prediction of the peak heat transfer rates is critical to vehicle survival, however a recent NATO workshop revealed severe underprediction of the transient thermal loads by state-of-the-art simulations in the high enthalpy, air flows of interest to the Air Force.

Our approach is unique in several ways:
1) Experiments in two high-enthalpy facilities.
 - Range of test conditions with undissociated freestream (Hypervelocity Expansion Tube)
 - Up to 25 MJ/kg with 1ms test times (T5 Free Piston Shock Tunnel)
 - Examine facility independence
2) Diagnostics beyond mean flow measurements: Spectroscopy and High-Speed Imaging.
 - Direct measurement of naturally-occurring species and temperatures
 - Overlay with flow structure visualizations
 - Dissect the interplay between real gas effects and flow processes
3) Close collaboration with high-fidelity simulations for hypersonic, reacting flows.
Previous results: Quantifying response to changing chemistry

Edge tracking extracts shock surfaces from high speed images.

Freestream oxygen percentage compared to air.

“Transition” possible at 80%. Supported by temperature measurements.

Further investigation of correlation with heat transfer.
To resolve existing discrepancies in heat flux prediction for hypervelocity shock/boundary layer interaction, we need:

Experimental data that are more than mean flow, surface measurements.
- Direct NO emission measurements (known sensitivity to thermochemistry).
- Time-resolved imaging and surface fluctuations.
- Assessment of facility effects

Simulations that are more than 2D, steady-state calculations.
- Reaction must be included at enthalpies greater than ~ 5 MJ/kg.
- Direct comparison of time-slices during flow evolution.
- Assessment of 3D effects (even for conical flow).
State-of-the-art CFD simulations and experiments show:

• Poor agreement in high enthalpy air flows (≥ 5 MJ/kg)
• Good agreement at lower enthalpies and N$_2$ flows (Olejniczak et al. (1999); Wright et al. (2000); Nompelis et al (2003, 2005, 2010))

Outstanding questions remain: freestream conditions, flow steadiness, and thermochemistry

Experiments in two, complementary, high enthalpy facilities

• Range of test conditions with undissociated freestream (Hypervelocity Expansion Tube)
• Up to 25 MJ/kg with 1ms test times (T5 Free Piston Shock Tunnel)
• Examine facility independence

Quantify viscous and inviscid flow features:
Direct spectroscopic measurements, High-speed Imaging
High enthalpy facilities: Hypervelocity Expansion Tube (HET)

- 152 mm ID, 9.14m length impulse facility
- Mach Numbers from 3-7.5
- Stagnation enthalpies from 2-9 MJ/kg
- Test times from 100 μs to 500 μs

(Dufrene, Sharma, Austin, JPP 2007)

Diagnostic capabilities
- Pressure Measurements
- Schlieren (single frame & high speed)
- Heat transfer measurements
 - Coaxial thermocouple
 - Platinum thin film gauges
- Emission spectroscopy
- Pressure Sensitive Paint
High enthalpy facilities:
T5 Free Piston Reflected Shock Tunnel

- Mach 6
- Stagnation enthalpies up to 25 MJ/kg
- Test times ~ 1ms
Test conditions and models

Test conditions: N₂, air, varying O₂ content

<table>
<thead>
<tr>
<th>Test Condition</th>
<th>M</th>
<th>ht</th>
<th>T, K</th>
<th>P, kPa</th>
<th>ρ<sub>t</sub>, kg/m<sup>3</sup></th>
<th>u, km/s</th>
<th>Re/m *10<sup>-6</sup></th>
</tr>
</thead>
<tbody>
<tr>
<td>M7_8</td>
<td>7.14</td>
<td>8.0</td>
<td>710</td>
<td>0.78</td>
<td>0.0038</td>
<td>3.81</td>
<td>0.44</td>
</tr>
<tr>
<td>M5_4</td>
<td>5.12</td>
<td>4.2</td>
<td>676</td>
<td>8.2</td>
<td>0.042</td>
<td>2.67</td>
<td>3.47</td>
</tr>
<tr>
<td>M4_3.6</td>
<td>3.95</td>
<td>3.6</td>
<td>862</td>
<td>19</td>
<td>0.077</td>
<td>2.33</td>
<td>4.73</td>
</tr>
<tr>
<td>M7_2.2</td>
<td>7.11</td>
<td>2.1</td>
<td>191</td>
<td>0.39</td>
<td>0.0071</td>
<td>1.97</td>
<td>1.10</td>
</tr>
</tbody>
</table>

25º-55º cone
- RTO studies

30º-55º wedge
- Scale model of Davis & Sturtevant

30-55 Double Wedge L=2”, b=4”

25-55 Double Cone d₁=0.984”, d₂=2.5”
Differences between Air and N2
Comparisons with DSMC simulations

Ozgur Tumuklu and Deborah Levin

2D N₂

3D N₂

Reacting air

Ozgur Tumuklu and Deborah Levin
Spanwise effects: preliminary results

- Designed using $\delta_1/W \sim 10$ from Ball (AIAA J 1971)
- Top down imaging
- Off-center gauges
- Varying model span
Flow timescales: Discrepancies

Experiments
Holden (AIAA J 1971)
- Skin friction, pressure, and heat transfer for separated base and compression ramp flows in a reflected shock tunnel facility with flow enthalpies of 3–20 MJ/kg.
 - Based on quantities reaching 98% of the final steady mean level.
- Times comparable to the estimated propagation time for an acoustic disturbance from the corner.

Substantially greater establishment times have been reported in several numerical studies.
- Gaitonde et al. - minimum of 100 flowtimes required to reach steady solution in N₂
 - based on surface integrated rms pressure & heat transfer over the whole surface reaching a constant value.
- Druguet et al. reported similar results.
 - Simulations of N₂ flow required 150 flow times to steady state based on the separation zone size, as well as numerical residual decrease by five orders of magnitude.
- NATO AVT136 - For low enthalpy/low density case, experiment reported steady, while 6 simulations reported significant time dependence.
Flow evolution in time

- Viscous processes: surface measurements

- Inviscid processes: Shock front tracking using high speed schlieren

Swantek and Austin, AIAA J, 2014
High speed schlieren: N_2 and Air

Double Wedge
M7_8

Top: Air
Bottom: N_2

100,000 fps
7 fps playback
1ms exposure
200 µs test time
Triple point establishment process: moving upstream
Comparison of viscous and inviscid times

M7_2

$t_{\text{test}} = 7.0$

M7_8

$t_{\text{test}} = 11.0$

Boundary layer prediction from Gupta (1972): $t = 3.3 \cdot L/U_\infty$
Testing in two facilities: T5 and HET
Simulations of flow evolution with chemistry

Ozgur Tumuklu and Deborah Levin

N\textsubscript{2}

Reacting air
Comparison of Air, Nitrogen, and Argon

- Smallest shock movement observed in the reacting air flow.
- The translational temperature values decrease at the starting point of the shear layer due to substantial energy dissipation by viscous flow.
- Argon results show that the effects of three-dimensionality on the flowfield parameters may be even stronger compared to nitrogen case.
Comparisons of HET spectral NO data with line-by-line spectral simulations

Assuming a single internal temperature

Significantly improved fit to data with both rotational and vibrational temperatures included

Simulations by Deborah Levin
Conclusions

- Mean heat transfer and shock configuration data available NATO STO 205.
- Quantifying dependence of heat transfer, shock configurations, chemiluminescence, and temperature for high enthalpy N$_2$ through to Air. Indication of transition at 80% O$_2$.

Flow evolution experiments
- Timescales for viscous and inviscid processes are same order of magnitude.
- Normalized establishment times of 2–8 are measured, in reasonable agreement with existing experimental data from surface gauges (6–11).

3D, reacting simulations
- DSMC 2-D and 3-D simulations for N$_2$ flows and experimental heat rates values are in a good agreement with 3-D case, especially in the aft part of wedge.
- For air, 2-D results in qualitative agreement with experiments, but, there may still be smaller 3-D effects which will be verified with 3-D simulations.

Spectroscopic results (ongoing)
Quantification of link between thermochemical activity and flow with schlieren and:
- Chemiluminescence (global, qualitative)
- NO emission temperature measurements: SWBLI & canonical geometries (point, quantitative)
Next steps

• Conical model testing
 – examining effect of geometry on post-reattachment shock
• Continue spanwise measurements
• Spectral measurements (species & temperature)
• Modeling and simulation for interpretation of flow structures and spectroscopy through the use of particle kinetic approaches
Technical challenges remaining

• Measurement of chemical species and vibrational temperature of at high temperature conditions to address inadequacies in NO and N$_2^+$ modeling.

• Using UV spectral emissions from these key radiators to provide clues about associated critical reaction pathways and thermal transitions for the gas and gas-surface reactions at experimental conditions, including the relevant molecular attributes that would suggest similar behavior in other species.

• Examine discrepancies between simulations and experiments of hypervelocity SWBLI investigating:
 – Regions of thermochemical activity as a function of freestream enthalpy and chemical composition
 – Facility dependence/independence of data for same geometries
 – Flowfield evolution and potential unsteadiness coupling with the chemical reactions.

• Possible control of flow separation and peak heating
Publications
(supported by previous award)

• Swantek, A.B. and Austin, J.M. Heat transfer on a double wedge geometry in hypervelocity air and nitrogen flows, 50th AIAA Aerospace Sciences Meeting, Nashville TN, Jan 2012.

Pending:
• Swantek, A.B., Knisely, A. and Austin, J.M., Heat transfer and separation length scaling in hypervelocity air and nitrogen flows over double wedge and cone geometries, to be submitted to AIAA Journal.
Business Update: Austin

• Award anticipated late August 2015, includes support for senior graduate student.

• Lab renovation supported by Caltech startup:
 – New lab completion due end of July.
 – Upgrade of T5 Data Acquisition System completed.
 – Upgrade of T5 laboratory space completed.

• Related programs with other Govt agencies:
 – FY 2014 AFOSR DURIP for spectroscopic measurements
 – NASA testing of MSL geometry