Finite-rate oxidation model for carbon surfaces from molecular beam experiments

Savio Poovathingal, Thomas E. Schwartzentruber, Graham V. Candler Aerospace Engineering & Mechanics University of Minnesota, Minneapolis, MN

Vanessa Murray, Timothy Minton Chemistry and Biochemistry, Montana State University, Bozeman, MT

FA9550-10-1-0563: AFOSR MURI FY2010 Doctoral Dissertation Fellowship, UofMinnesota

Background:

Need: Understand surface ablation for thermal protection system (TPS) design. Challenging long-duration, high-altitude (nonequilibrium) flight conditions. Accurate ablation models are required within CFD simulations for vehicle design.

Problem: Wind-tunnel ablation experiments involve coupled gas-phase, gas-surface physics, which obscures fundamental processes. Current CFD models have large uncertainty.

Approach: Molecular Beam experiments combined with molecular simulation/theory to construct new gas-surface reaction models for CFD. Individual reaction mechanisms revealed and quantified.

Existing Models: Park Model

Images and rates taken from: **Park C.**, "Effects of atomic oxygen on graphite ablation", *AIAA Journal*, Vol. 14, No. 11, 1976, pp. 1640-1642.

Existing Models: Zhluktov and Abe (ZA) Model

• Surface coverage model (required for wide temperature/pressure range).

Zhluktov S.V., Abe T., "Viscous Shock-Layer Simulation of Airflow Past Ablating Blunt Body with Carbon Surface", Journal of Thermophysics and Heat Transfer, Vol. 13, No. 1, 1999, pp. 50-59.

1.
$$O + (C) \Leftrightarrow (C - O)$$

2. $O_2 + 2(C) \Leftrightarrow 2(C - O)$
3. $O_2 + (C) \Leftrightarrow (C - O) + O$
4. $O_2 + (C) \Leftrightarrow (C - O) + CO$
5. $(C - O) \Leftrightarrow CO + (C)$
6. $O + (C - O) \Leftrightarrow CO_2 + (C)$
7. $2(C - O) \Leftrightarrow CO_2 + 2(C)$
8. $(C) \Leftrightarrow C + (C)$
9. $2(C) p \Leftrightarrow C_2 + 2(C)$
10. $3(C) \Leftrightarrow C_3 + 3(C)$
11. $N + (C) \Leftrightarrow (C - N)$
12. $(C - N) + N \Leftrightarrow N_2 + (C)$
 $k_{f1} = \varepsilon_1 f_0$
 $k_{f2} = \varepsilon_1 f_{N_2} e^{-T_{a12}/T}$
 $k_{f1} = \varepsilon_{11} f_N$
 $k_{f1} = \varepsilon_{12} f_{N_2} e^{-T_{a12}/T}$

Existing Models: Zhluktov and Abe (ZA) Model

- **Surface coverage** model (required for wide temperature/pressure range).
- But how to parameterize all of the rate coefficients? Typical ablation experiments involved coupled gas-phase and gas-surface processes.

Zhluktov S.V., Abe T., "Viscous Shock-Layer Simulation of Airflow Past Ablating Blunt Body with Carbon Surface", Journal of Thermophysics and Heat Transfer, Vol. 13, No. 1, 1999, pp. 50-59.

1.	$0 + (C) \Leftrightarrow (C - 0)$	$k_{f1} = \varepsilon_1 f_0$
2.	$O_2 + 2(C) \Leftrightarrow 2(C - O)$	$k_{r^2} = \varepsilon_2 B(kT/h) e^{-T_{a^2}/T}$
3.	$O_2 + (C) \Leftrightarrow (C - O) + O$	$k_{f3} = \varepsilon_3 f_{O_2} e^{-T_{a3}/T}$
4.	$O_2 + (C) \Leftrightarrow (C - O) + CO$	$k_{f4} = \varepsilon_4 f_{\rm CO_2}$
5.	$(C - O) \Leftrightarrow CO + (C)$	$k_{f5} = \varepsilon_5 B(kT/h) e^{-T_{a5}/T}$
6.	$O + (C - O) \Leftrightarrow CO_2 + (C)$	$k_{f6} = \varepsilon_6 f_0 e^{-T_{a6}/T}$
7.	$2(C - O) \Leftrightarrow CO_2 + 2(C)$	$k_{f7} = \varepsilon_7 B(kT/h) e^{-T_{a7}/T}$
8.	$(C) \Leftrightarrow C + (C)$	$k_{r8} = \varepsilon_8 f_{\rm C}$
9.	$2(C) p \Leftrightarrow C_2 + 2(C)$	$k_{r_{2}} = \varepsilon_{2} f_{C_{2}}$
10.	$3(C) \Leftrightarrow C_3 + 3(C)$	$k_{12} = s_{12} f_{-}$
11.	$N + (C) \Leftrightarrow (C - N)$	$k_{r10} = c_{10}/c_3$
12.	$(C - N) + N \Leftrightarrow N_2 + (C)$	$k_{f11} = \varepsilon_{11} f_{\rm N}$
		$k_{r12} = \varepsilon_{12} f_{\rm N_2} e^{-r_{a12}/T}$

Existing Models: Zhluktov and Abe (ZA) Model

- Surface coverage model (required for wide temperature/pressure range).
- But how to parameterize all of the rate coefficients? Typical ablation experiments involved coupled gas-phase and gas-surface processes.
- We propose to use Molecular Beam experiments.

Zhluktov S.V., Abe T., "Viscous Shock-Layer Simulation of Airflow Past Ablating Blunt Body with Carbon Surface", Journal of Thermophysics and Heat Transfer, Vol. 13, No. 1, 1999, pp. 50-59.

1. $O + (C) \Leftrightarrow (C - O)$ $k_{f1} = \varepsilon_1 f_0$ 2. $O_2 + 2(C) \Leftrightarrow 2(C - O)$ $k_{r^2} = \varepsilon_2 B(kT/h) e^{-T_{a^2}/T}$ 3. $O_2 + (C) \Leftrightarrow (C - O) + O$ $k_{f3} = \varepsilon_3 f_{O_2} e^{-T_{a3}/T}$ 4. $O_2 + (C) \Leftrightarrow (C - O) + CO$ $k_{f4} = \varepsilon_4 f_{CO_2}$ 5. $(C - O) \Leftrightarrow CO + (C)$ $k_{f5} = \varepsilon_5 B(kT/h) e^{-T_{a5}/T}$ 6. $O + (C - O) \Leftrightarrow CO_2 + (C)$ $k_{f6} = \varepsilon_6 f_0 e^{-T_{a6}/T}$ 7. $2(C - O) \Leftrightarrow CO_2 + 2(C)$ $k_{f7} = \varepsilon_7 B(kT/h) e^{-T_{a7}/T}$ 8. (C) \Leftrightarrow C + (C) $k_{r8} = \varepsilon_8 f_C$ 9. $2(C) p \Leftrightarrow C_2 + 2(C)$ $k_{r9} = \varepsilon_9 f_{C_2}$ 10. $3(C) \Leftrightarrow C_3 + 3(C)$ $k_{r10} = \varepsilon_{10} f_{\rm C_3}$ 11. $N + (C) \Leftrightarrow (C - N)$ $k_{f11} = \varepsilon_{11} f_{\rm N}$ 12. $(C - N) + N \Leftrightarrow N_2 + (C)$ $k_{r12} = \varepsilon_{12} f_{\mathrm{N}_2} e^{-T_{a12}/T}$

Molecular Beam Experiments (Minton group – Montana State)

Can we use Molecular Beam data for boundary layer flows?

Two significant results from Molecular Beam (MB) experiments (Minton group, Montana State) changed our approach:

- 1) Majority of reaction products were observed to scatter *thermally* (despite the high-energy 5eV beam O atom source).
 - the beam acts as a supply of oxygen to the surface and scattering is primarily dependent on the surface temperature, not the beam energy

Can we use Molecular Beam data for boundary layer flows?

Two significant results from Molecular Beam (MB) experiments (Minton group, Montana State) changed our approach:

- 1) Majority of reaction products were observed to scatter *thermally* (despite the high-energy 5eV beam 0 atom source).
 - the beam acts as a supply of oxygen to the surface and scattering is primarily dependent on the surface temperature, not the beam energy
- 2) Despite near-vacuum conditions, the carbon surfaces in MB experiments have a high surface coverage of O atoms (T<1200K). At higher surface temperature the surface begins losing O coverage.
 - if experimental surfaces had low coverage at all conditions, this would have made its use for boundary layer flows (high p) questionable
 - surface coverage modeling is important for CFD and the fact that a transition from high-to-low coverage is observable in the experiments is very interesting

Can we use Molecular Beam data for boundary layer flows?

Two significant results from Molecular Beam (MB) experiments (Minton group, Montana State) changed our approach:

- 1) Majority of reaction products were observed to scatter *thermally* (despite the high-energy 5eV beam 0 atom source).
 - the beam acts as a supply of oxygen to the surface and scattering is primarily dependent on the surface temperature, not the beam energy
- 2) Despite near-vacuum conditions, the carbon surfaces in MB experiments have a high surface coverage of O atoms (T<1200K). At higher surface temperature the surface begins losing O coverage.
 - if experimental surfaces had low coverage at all conditions, this would have made its use for boundary layer flows (high p) questionable
 - surface coverage modeling is important for CFD and the fact that a transition from high-to-low coverage is observable in the experiments is very interesting

These two results enable individual reaction rates, for use in CFD-type ablation models, to be determined using Molecular Beam data.

Molecular Beam Results: Time-of-Flight (TOF) Distributions

- Beam contains 93% 0 and 7% O_2
- Beam pulse lasts only ${\sim}1~\mu s$ and occurs every 0.5 seconds (2 Hz)
- TOF distributions for various T_{surface} (single scattering angle of 15 degrees) averaged under steady-state operation (~15min of beam operation)

Using *only* the Molecular Beam data, we have constructed a preliminary oxygen-carbon gas-surface model:

Mechanisms	Rate	Rate constant (k)	Units
${ m O}+({ m s}) ightarrow{ m O}({ m s})$	$k_1[O][(s)]$	$\frac{1}{4B}\sqrt{\frac{8k_bT}{\pi m_O}}$	$\frac{m^3}{mol \ s}$
m O(s) ightarrow m O+(s)	$k_2[O(s)]$	$\frac{2\pi m_O k_b^2 T^2}{Bh^3} e^{-\frac{44277}{T}}$	$\frac{1}{s}$
$\mathrm{O} + \mathrm{O}(\mathrm{s}) + \mathrm{C}(\mathrm{b}) \rightarrow \mathrm{CO} + \mathrm{O}(\mathrm{s})$	$k_3[O][O(s)]$	$\frac{1}{4B}\sqrt{\frac{8k_bT}{\pi m_O}}57.37e^{-\frac{4667}{T}}$	$\frac{m^3}{mol \ s}$
$O + O(s) + C(b) \rightarrow CO_2 + (s)$	$k_4[O][O(s)]$	$\frac{1}{4B}\sqrt{\frac{8k_bT}{\pi m_O}} 8.529 \times 10^{-6} e^{-\frac{-6958.0}{T}}$	$\frac{m^3}{mol \ s}$
$\mathrm{O} + \mathrm{C(b)} + \mathrm{(s)} ightarrow \mathrm{CO} + \mathrm{(s)}$	k ₆ [O][(s)]	$\frac{1}{4B}\sqrt{\frac{8k_bT}{\pi m_O}}0.1203e^{-\frac{-2287}{T}}$	$\frac{m^3}{mol \ s}$

Using *only* the Molecular Beam data, we have constructed a preliminary oxygen-carbon gas-surface model:

Using *only* the Molecular Beam data, we have constructed a preliminary oxygen-carbon gas-surface model:

A finite-rate model accounting for surface coverage (similar to Z-A model) does in fact fit the MB data accurately (bottom-left figure). Very interesting.

Surface coverage model is based only on MB data, yet it should be applicable to much higher fluxes (bottom-right figure). Remarkably, these predictions are in reasonable agreement with existing models/literature for boundary layer (high flux) conditions.

AFOSR Aerothermodynamics - BRICC (06/29/16)

In fact, a maximum in CO production was observed experimentally!!

In fact, a maximum in CO production was observed experimentally!!

In fact, a maximum in CO production was observed experimentally!!

Our new model predicts maximum CO probability at similar T_{surface} seen in both experiments at significantly different pressures (due to surface-coverage modeling).


```
[10/14]
```

Simulations performed by Graham V. Candler (University of Minnesota)

- Hypersonic flow over 8⁰ cone with 10cm radius leading edge (using the US3D code)
- 5-species reacting air, U = 7km/s, prescribed $T_{surface}$ variation around geometry

[12/14]

- Total mass loss is similar between models, species fluxes are completely different.
- ZA-model: All CO₂ for T<3000K and all CO for T>3000K
- New-model: All CO at any T with negligible CO

- Total mass loss is similar between models, species fluxes are completely different.
- ZA-model: All CO₂ for T<3000K and all CO for T>3000K
- New-model: All CO at any T with negligible CO
- P_{CO} >> P_{CO2} is consistent with recent CFD/Experimental results of Dr. Chris Alba *et al.*:

C.R. Alba, R.B. Greendyke, J. Marschall, Development of a Nonequilibrium Finite-Rate Ablation Model for Radiating Earth Reentry Flows, Journal of Spacecraft and Rockets, 2016, Vol.53, No. 1, pp. 98-120.

- At higher altitudes (stronger nonequilibrium), the total mass loss is higher with the new model [solid black line].
- Again, the species fluxes are completely different. Notice how the ZA-model predicts CO *adsorption* leading to CO₂ production.

Conclusions

1) Clearly, the same macroscopic result (i.e. surface recession) can be obtained with many different model parameterizations. Too many "knobs" to turn...

2) A new experimental method of creating/validating CFD ablation models is introduced. Molecular Beam data can uniquely determine *individual* mechanisms and rates, in contrast to plasma wind-tunnel measurements where all processes are coupled.

3) The observations of thermal reaction mechanisms and surface coverage dependence make Molecular Beam data directly relevant to hypersonic flows.

Finite-rate oxidation model for carbon surfaces from molecular beam experiments

Savio Poovathingal, Thomas E. Schwartzentruber, Graham V. Candler Aerospace Engineering & Mechanics University of Minnesota, Minneapolis, MN

Vanessa Murray, Timothy Minton Chemistry and Biochemistry, Montana State University, Bozeman, MT

FA9550-10-1-0563: AFOSR MURI FY2010 Doctoral Dissertation Fellowship, UofMinnesota

AFOSR Aerothermodynamics - BRICC (06/29/16)

NITED STATES AIR F

New AFOSR Grant (starting in Fall 2016)

"Nonequilibrium Gas-Surface Interactions at High Temperature"

Aerothermodynamics (Dr. Ivett Leyva)

Aerospace Materials for Extreme Environments (Dr. Ali Sayir)

Tom Schwartzentruber – Minnesota Graham Candler – Minnesota Tim Minton – Montana State Erica Corral – Arizona John Perepezko – Wisconsin

Brief Overview:

- Further oxygen-carbon molecular beam experiments
- Finalize/validate oxygen-carbon CFD model
- Molecular beam and torch testing of ceramic (SiC-based) TPS
- CFD modeling of ceramic (SiC-based) TPS, validated models
- Fabrication of new TPS materials and coatings for testing in various facilities

Last Year: A general mechanism for carbon oxidation

Relevant Length Scales

SEI

5.0kV

X30,000

U of MN

- Molecular Dynamics domain is the size of ~1 pixel on image below...
- Carbon surfaces used in Molecular Beam experiments are representative of surface structure well-above the atomic scale.

SEM Image by Eric Stern (Minnesota) Oxidized Carbon Fiber

100nm

WD 6.1mm

Can Molecular Beam data be used directly?

50 nm

MD Simulations: Poovathingal, Schwartzentruber, Srinivasan, van Duin, J. Phys. Chem. A, 2013.

Nicholson, Minton, Sibener, J. Phys.

Chem. B 2005, 109, 8476-8480

Molecular Beam Results: Time-of-Flight (TOF) Distributions

• TOF distributions are accurately fit with a Maxwell-Boltzmann distribution corresponding to $T_{surface}$ (thermal scattering is dominant, especially for CO/CO₂)

Reaction Probabilities from Molecular Beam Data

Molecular Beam scattering occurs under steady-state conditions.

We therefore assume that the amount of oxygen in the beam flux is equal to the amount of oxygen observed to scatter from the surface $(0, 0_2, CO, CO_2)$. Thus, we can readily calculate probabilities of forming each reaction product.

Event	$P_{\rm Exp-i} = N_i/N_{\rm O_{beam}}$		
	Case I	Case II	
$\mathrm{C(s)} + \mathrm{O} ightarrow \mathrm{C(s)} + \mathrm{O}$	0.743	0.431	
$\mathrm{C(s)} + \mathrm{O} ightarrow \mathrm{CO}$	0.193	0.421	
$\mathrm{C(s)} + \mathrm{O} + \mathrm{O} \rightarrow \mathrm{CO_2}$	0.032	0.074	

Case 1: Keep hyperthermal O Case 2: Ignore hyperthermal O

Regardless of small assumptions: Mainly CO production (little CO_2). Reaction prob. is high (> 0.1). O_2 is essentially non-reactive.

Reactant flux (N_i): thermal component (red), hyperthermal component (blue), total (yellow).