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Background:

Need: Understand surface ablation for
thermal protection system (TPS) design.
Challenging long-duration, high-altitude
(nonequilibrium) flight conditions. Accurate
ablation models are required within CFD
simulations for vehicle design.

Problem: Wind-tunnel ablation experiments
involve coupled gas-phase, gas-surface
physics, which obscures fundamental
processes. Current CFD models have large
uncertainty.

Approach: Molecular Beam experiments
combined with molecular simulation/theory
to construct new gas-surface reaction models
for CFD. Individual reaction mechanisms
revealed and quantified.
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Existing Models: Park Model

Images and rates taken from: Park C., “Effects of atomic oxygen on graphite
ablation”, AIAA Journal, Vol. 14, No. 11, 1976, pp. 1640-1642.
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Existing Models: Zhluktov and Abe (ZA) Model

* Surface coverage model (required for wide temperature/pressure range).
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Existing Models: Zhluktov and Abe (ZA) Model

* Surface coverage model (required for wide temperature/pressure range).
* But how to parameterize all of the rate coefficients? Typical ablation experiments
involved coupled gas-phase and gas-surface processes.
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Existing Models: Zhluktov and Abe (ZA) Model

* Surface coverage model (required for wide temperature/pressure range).

* But how to parameterize all of the rate coefficients? Typical ablation experiments
involved coupled gas-phase and gas-surface processes.

 We propose to use Molecular Beam experiments.

Zhluktov S.V., Abe T.,
“Viscous Shock-Layer
Simulation of Airflow Past
Ablating Blunt Body with
Carbon Surface”, Journal
of Thermophysics and
Heat Transfer, Vol. 13,
No. 1, 1999, pp. 50-59.
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Molecular Beam Experiments (Minton group — Montana State)
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Can we use Molecular Beam data for boundary layer flows?

Two significant results from Molecular Beam (MB) experiments (Minton
group, Montana State) changed our approach:

1) Majority of reaction products were observed to scatter thermally
(despite the high-energy 5eV beam O atom source).

the beam acts as a supply of oxygen to the surface and scattering is primarily
dependent on the surface temperature, not the beam energy
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Can we use Molecular Beam data for boundary layer flows?

Two significant results from Molecular Beam (MB) experiments (Minton
group, Montana State) changed our approach:

1) Majority of reaction products were observed to scatter thermally
(despite the high-energy 5eV beam O atom source).

- the beam acts as a supply of oxygen to the surface and scattering is primarily
dependent on the surface temperature, not the beam energy

2) Despite near-vacuum conditions, the carbon surfaces in MB
experiments have a high surface coverage of O atoms (T<1200K). At
higher surface temperature the surface begins losing O coverage.

- if experimental surfaces had low coverage at all conditions, this would have made its
use for boundary layer flows (high p) questionable

- surface coverage modeling is important for CFD and the fact that a transition from
high-to-low coverage is observable in the experiments is very interesting
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Can we use Molecular Beam data for boundary layer flows?

Two significant results from Molecular Beam (MB) experiments (Minton
group, Montana State) changed our approach:

1) Majority of reaction products were observed to scatter thermally
(despite the high-energy 5eV beam O atom source).

- the beam acts as a supply of oxygen to the surface and scattering is primarily
dependent on the surface temperature, not the beam energy

2) Despite near-vacuum conditions, the carbon surfaces in MB
experiments have a high surface coverage of O atoms (T<1200K). At
higher surface temperature the surface begins losing O coverage.

- if experimental surfaces had low coverage at all conditions, this would have made its
use for boundary layer flows (high p) questionable

- surface coverage modeling is important for CFD and the fact that a transition from
high-to-low coverage is observable in the experiments is very interesting

These two results enable individual reaction rates, for use in CFD-type
ablation models, to be determined using Molecular Beam data.
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Molecular Beam Results: Time-of-Flight (TOF) Distributions

* Beam contains 93% O and 7% O,

* Beam pulse lasts only ~1 us and occurs every 0.5 seconds (2 Hz)

* TOF distributions for various T, .. (Single scattering angle of 15 degrees)
averaged under steady-state operation (~15min of beam operation)
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New CFD Model Based on Molecular Beam Data

Using only the Molecular Beam data, we have constructed a preliminary
oxygen-carbon gas-surface model:
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New CFD Model Based on Molecular Beam Data

Using only the Molecular Beam data, we have constructed a preliminary

oxygen-carbon gas-surface model:
Mechanisms Rate Rate constant (k) Units
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New CFD Model Based on Molecular Beam Data

A finite-rate model accounting for surface coverage (similar to Z-A model) does in fact
fit the MB data accurately (bottom-left figure). Very interesting.

Surface coverage model is based only on MB data, yet it should be applicable to much
higher fluxes (bottom-right figure). Remarkably, these predictions are in reasonable
agreement with existing models/literature for boundary layer (high flux) conditions.
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Validation with Experiment

In fact, a maximum in CO production was observed experimentally!!

Park C., Effects of atomic oxygen on graphite ablation,

AIAA Journal, Vol. 14, No. 11, 1976, pp. 1640-1642.
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Validation with Experiment

In fact, a maximum in CO production was observed experimentally!!

Park C., Effects of atomic oxygen on graphite ablation,
AIAA Journal, Vol. 14, No. 11, 1976, pp. 1640-1642.
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Validation with Experiment

Our new model predicts maximum CO probability at similar T

surface

seen in both

experiments at significantly different pressures (due to surface-coverage modeling).

AFOSR Aerothermodynamics - BRICC (06/29/16)
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CFD solutions for flow over a sharp leading edge

Simulations performed by Graham V. Candler (University of Minnesota)
- Hypersonic flow over 8° cone with 10cm radius leading edge (using the US3D code)

- 5-species reacting air, U = 7km/s, prescribed T, . Variation around geometry
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CFD solutions for flow over a sharp leading edge

05
30 km: Z-A Model
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» Total mass loss is similar between models, species fluxes are completely different.

e ZA-model:

* New-model: All CO at any T with negligible CO

AFOSR Aerothermodynamics - BRICC (06/29/16)

All CO, for T<3000K and all CO for T>3000K

3500

3000

2000

Surface Temperature (K)

1200

1
3 Qaon

[12/14]



CFD solutions for flow over a sharp leading edge

30 km: Z-A Model i 30 km: New Model
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» Total mass loss is similar between models, species fluxes are completely different.
* ZA-model: All CO, for T<3000K and all CO for T>3000K
* New-model: All CO at any T with negligible CO

*  P.o>> P, is consistent with recent CFD/Experimental results of Dr. Chris Alba et al.:

C.R. Alba, R.B. Greendyke, ]. Marschall, Development of a Nonequilibrium Finite-Rate Ablation Model
for Radiating Earth Reentry Flows, Journal of Spacecraft and Rockets, 2016, Vol.53, No. 1, pp. 98-120.
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CFD solutions for flow over a sharp leading edge
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» At higher altitudes (stronger nonequilibrium), the total mass loss is higher with the
new model [solid black line].

* Again, the species fluxes are completely different. Notice how the ZA-model
predicts CO adsorption leading to CO, production.
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Conclusions

1) Clearly, the same macroscopic result (i.e. surface recession) can be obtained with
many different model parameterizations. Too many “knobs” to turn...

2) A new experimental method of creating/validating CFD ablation models is
introduced. Molecular Beam data can uniquely determine individual mechanisms

and rates, in contrast to plasma wind-tunnel measurements where all processes are
coupled.

3) The observations of thermal reaction mechanisms and surface coverage
dependence make Molecular Beam data directly relevant to hypersonic flows.
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New AFOSR Grant (starting in Fall 2016)

“Nonequilibrium Gas-Surface Interactions at Hiech Temperature”

Aerothermodynamics (Dr. Ivett Leyva)

Aerospace Materials for Extreme Environments (Dr. Ali Sayir)
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Brief Overview:
- Further oxygen-carbon molecular beam experiments

- Finalize/validate oxygen-carbon CFD model

- Molecular beam and torch testing of ceramic (SiC-based) TPS
- CFD modeling of ceramic (SiC-based) TPS, validated models

- Fabrication of new TPS materials and coatings for testing in various facilities
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Last Year: A general mechanism for carbon oxidation

» “Etch pits” observed across a range of experimental
facilities and carbon materials (HOPG to Fiber Preform)
» Below the microstructure scale, carbon atoms removed

from graphitic ‘edges’; a general mechanism
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Relevant Length Scales

* Molecular Dynamics domain is the size of ~1 pixel
on image below...

Nicholson, Minton, Sibener, J. Phys.

e (Carbon surfaces used in Molecular Beam Chem. B 2005, 109, 8476-8480
experiments are representative of surface structure .;.‘ - b
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Molecular Beam Results: Time-of-Flight (TOF) Distributions

« TOF distributions are accurately fit with a Maxwell-Boltzmann distribution
corresponding to T, .. (thermal scattering is dominant, especially for CO/CO,)
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Reaction Probabilities from Molecular Beam Data

Molecular Beam scattering occurs under steady-state conditions.

We therefore assume that the amount of oxygen in the beam flux is equal to
the amount of oxygen observed to scatter from the surface (O, O,, CO, CO,).

Thus, we can readily calculate probabilities of forming each reaction product.

Tsurface = 800 K
Event Pgxp-i = Ni/Noy.omm

0/0, T %
Case | Case 1

4001~ @

C(s) + O —= C(s) + O 0.743 0.431

200 -

C(s) + O = CO 0.193 | 0.421

C(s) + O + O — COz| 0.032 | 0.074

Case 1: Keep hyperthermal O
Case 2: Ignore hyperthermal O

Regardless of small assumptions: V
Mainly CO production (little CO,). Vitreous Carbon
Reaction prob. is high ( > 0.1). Reactant flux (N,): thermal component (red),
0, is essentially non-reactive. hyperthermal component (blue), total (yellow).

Vitreous Carbon




