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Cloud computing  
infrastructure Robust computing  

at low-cost ,  
“pay-as-you-go” 

Analysis 

Integration 

HMI 

Smarter Planet Ecosystem 
Solutions  which are: 
             Cost effective 
            Environment friendly 
            Trustworthy 

Large volume of data 
Phones, Sensors 
Smart cars  

Adaptive Power Grid 
Efficient transportation 
(air, ground, sea) 

New age agriculture 
Preservation of water 

Benefits to individuals  
& society  

Human expertise 
Innovations 
Education 
Research 

Individuals &  
enterprises Modern health care 

Innovative Use of Advances in Computing 

Assuring security and  
safety of the nation  

United States Air Force 
global vigilance, 
reach and power 
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Emerging Concern: Big Data a major bottleneck 

• Big Data Problem 
– Scientific invention 
– Engineering  
– Sensing 
– Computational Genomics 
– Manufacturing 
– Agriculture 
– Politics and strife 

• Needed: Engineering Discipline to process Big Data 
– Application data intensive algorithms and data structures 
– Middleware (Data storage – beyond Hive, Giraffe, 

MapReduce, Storm…) 
– Data intensive architectures 
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Grainger Big Data Initiative 

•$35 million for initative 
•13-15 New senior faculty chairs and 

professorships 
•Backing of University of Illinois 
•Goal – to create effective discipline of 

engineering big data systems 
–What are the disciplines topics? 
–What are the measures of success? 
–Who are the partners? 
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Research Results at Assured Cloud Center 

• Indy Gupta - Real Time Challenges in Clouds 
• Jose Meseguer - Model-checking NoSQL Storage Systems 
• Rakesh Bobba - Group Key Management as a Service 
• Jose Meseguer - VA Admission Control 
• David Nicol - Quantifying Trust in the Cloud 
• Roy Campbell - Monitoring, Failure Scenario as a Service, Data 

Assurance 
• Ravi Iyer - Monitoring Driven Trust: Execution under Probation 
• Zbigniew Kalbarczyk - Building Resilient Virtual Machines 
• Bill Sanders - Hardening the Cloud with User Account Monitoring 
• Gul Agha - Coordination and Probabilistic Consistency 
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Research Results at Center 

• Indy Gupta - Real Time Challenges in Clouds 
• Jose Meseguer - Model-checking NoSQL Storage Systems 
• Rakesh Bobba - Group Key Management as a Service 
• Jose Meseguer - VA Admission Control 
• David Nicol - Quantifying Trust in the Cloud 
• Roy Campbell - Monitoring, Failure Scenario as a Service, Data 

Assurance 
• Ravi Iyer - Monitoring Driven Trust: Execution under Probation 
• Zbigniew Kalbarczyk - Building Resilient Virtual Machines 
• Bill Sanders - Hardening the Cloud with User Account Monitoring 
• Gul Agha - Coordination and Probabilistic Consistency 
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The Challenges 
• Preparedness, Rescue and 

Recovery requires: 
I. Data Transfer to cloud 

• From ocean sensors, UAVs, 
vehicles, humans, social 
networks, etc. 

•  Internet and, under disasters, 
shipping physical disks 

II.  Computation in cloud 
•  Hadoop ($14B by 2017) 
• For command and control 

visualization 
• High priority jobs (e.g., jobs 

dealing with rescue) 
• Lower priority jobs (e.g., 

recovery, other jobs) 

III. Data Storage in cloud 
• Fast ops  NoSQL storage 

systems ($3.4B by 2018) 

 
• Constraints 

• Hard real-time job deadlines 
• $ (Budget) on transfers 
• Overloaded Clusters and Network 
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II. Hadoop Computation 

I. Internet and Shipping Data Transfers 

III. Key-value/NoSQL Storage 
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Contributions 

8 

Our System 
 

Application-
specified 
Constraint 

Also Optimizes Target Scenario 

Natjam Support job 
priorities Job completion time Rescue, Recovery 

Natjam-R Support real-time 
deadlines Job completion time Rescue, Recovery 

Model-checking of 
Cassandra NoSQL 

system 
Data Consistency Fast operations 

(Availability) Preparedness 

Pandora-A Deadline Low $ cost Rescue, Recovery 

Pandora-B $ Budget Short transfer time Preparedness 

I. Internet and Shipping Data Transfers 

II. Hadoop Computation 

III. Key-value/NoSQL storage 

More info? Visit http://dprg.cs.uiuc.edu 
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The Natjam System 
• High priority jobs = Production jobs 

(rescue) 
• Low Priority jobs = Research jobs 

(recovery) 
• All batch jobs only 
• Jobs consist of parallel tasks (e.g., 

Map tasks, Reduce tasks) 
• Today’s Hadoop clusters support job 

priorities by either 
• Having production jobs wait for 

scheduled research tasks to finish  
Prolongs production jobs   

• Killing tasks of research jobs  
Prolongs research jobs   

• Our system – Natjam 
• Built directly into Hadoop YARN 

(0.23) 
• Research tasks can be evicted 

immediately, but they save a fast on-
demand checkpoint 

• Checkpoint contains only Key counter, and 
no other state 

• When restarted, research task can 
resume from checkpoint  9 

HDFS 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Research Task 

Inputs 

Key 
Counter 

tmp/task_att_1 

tmp/task_att_2 

outdir/ 

(Resumed) Task 

Inputs 

Key 
Counter 

(skip) 

(Suspended) 
Container freed, 

Suspend state saved 
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Evictions in Natjam 
Natjam uses Smart eviction policies  
• Job Eviction Policies: Resource-

based (e.g., Most allocated 
resources = MR). 

• Task Eviction Policies: For tasks 
within victim job. Time-based 
(e.g., task with shortest time 
remaining = SRT). 

• Evict only reduces, since reduces 
are longer than maps (231 s vs 19 
s [Facebook]) 
 
 

Natjam-R Extension 
• For jobs with hard real-time 

deadlines 
• Maintain one queue in Hadoop 
• Job Eviction Policies: Evict jobs 

with larger deadline 
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Resource Manager 
Capacity Scheduler 

Node A 

(empty container) 

Node B 
Node Manager 
A 

Application 
Master 1 

Node Manager 
B 

Application 
Master 2 

Task (App2) 

Preemptor 

Releaser 

Task (App2) 

Local 
Suspende
r 

Releaser Local 
Suspende
r 

preempt() 

# containers to release 

release() suspend 

saved state 

ask container 

Task (App1) 

resume() 

More info? Visit http://dprg.cs.uiuc.edu 
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Natjam: Production and Research Jobs 
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More info? Visit http://dprg.cs.uiuc.edu 11 
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Interesting Results, Wrap Up 
• Pandora Planner available live at: http://hillary.cs.uiuc.edu/  
• Natjam proven to work via extensive experiments  on 250-server Yahoo! 

cluster and using Hadoop traces from Yahoo’s commercial clusters 
• Natjam 

– Shortest Remaining Time eviction policy is optimal 
• Counter-intuitive since it is longest task first scheduling policy 

(shortest task first scheduling is optimal in multiprocessor systems) 
• Natjam-R 

– Deadline-based eviction policies better than resource-based policies 
• Latter are more “fair” to jobs, and miss many deadlines; former at 

least meets some deadlines 
 

• Next Steps 
– Support chains and DAGs of Hadoop jobs with deadlines 
– Integrate Pandora transfer system and Natjam computation systems 

 
12 More info? Visit http://dprg.cs.uiuc.edu 

http://hillary.cs.uiuc.edu/
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Research Results at Center 

• Indy Gupta - Real Time Challenges in Clouds 
• Jose Meseguer - Model-checking NoSQL Storage Systems 
• Rakesh Bobba - Group Key Management as a Service 
• Jose Meseguer - VA Admission Control 
• David Nicol - Quantifying Trust in the Cloud 
• Roy Campbell - Monitoring, Failure Scenario as a Service, Data 

Assurance 
• Ravi Iyer - Monitoring Driven Trust: Execution under Probation 
• Zbigniew Kalbarczyk - Building Resilient Virtual Machines 
• Bill Sanders - Hardening the Cloud with User Account Monitoring 
• Gul Agha - Coordination and Probabilistic Consistency 
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Why NoSQL Storage? 

 
• Availability: Fast read and write operations  

– Essential in Rescue and Recovery scenarios 
• NoSQL systems are three orders of magnitude faster than RDBMs like 

MySQL  
• The catch: NoSQL systems offer weaker models of Data Consistency than 

ACID 
– E.g., Eventual Consistency on server side 
– Reads at client might return stale data 
– Staleness affects correctness at clients, esp. in rescue/recovery 

scenarios 
• Why? CAP Theorem: No storage system can achieve both Strong (ACID) 

Consistency and Availability 
• NoSQL systems (includes key-value stores) are growing quickly and 

projected to be a $3.4B industry by 2018 
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Verifying Client-Side Consistency in NoSQL 
• Does a given NoSQL system really meet certain client-side consistency 

models?   
– Do reads return stale data?  
– How stale is this data?  
– Under variable message delays and failures? 

• Important for Preparedness 
 

• Our First Target: Cassandra NoSQL System 
– Open-source, developed by Facebook, widely used 

• The Tool: Maude model-checking system developed by Prof. Meseguer’s 
group 

• Why model checking? 
– Comprehensive coverage of state space 
– Independent of implementation choices (e.g., language) or 

optimizations 
– Can build towards a science of design 

15 
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server 

message 

16 

Cassandra From 30K Feet 

• Cassandra cluster stores key-value  
pairs e.g., key=sensor id, value=reading 
• Each key-value pair replicated at multiple 
servers 
• Clients can read/write key-value pairs 
• Cassandra offers Consistency Levels:  

• Each client individually  
can specify how many servers 
need to answer 

• E.g., All, Quorum, One 

Our Maude model captures each 
server, client, message 
 
Many details of system behavior that need to be captured 
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17 

  Client 

Message 
To Server 

Server Server 

  Client 

Message 
Delivered 

• Rules describe how messages transform recipients 

• Maude explores the state space of all reached global states 
• Verifies consistency violations in each state 

  

  

Intuition: Basic Rule in Maude 
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           Read2 
Write1 

One Quorum All 

One 

Quorum 

All 

Read-Your-Own-Writes Consistency Model: Violations 

Conclusion: Different clients using different  
consistency levels can cause global inconsistency 

Results 

Cassandra’s consistency levels 
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Consistency Violation Discovered During Analysis 
Consistency Levels used: Read=ONE, Write=ONE 

  Client Coord Server1 Server2 

Write 

Read 
Violation occurs 
because read 
reaches server 
before write 

Timeline 
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Next Steps 
 

 
• Modular components for design of NoSQL systems 

– Designers can pick and choose, depending on deployment 
requirements 

• Science of Design for NoSQL systems 
– Independent of implementation choices, e.g., language 

• Characterizing the Consistency-Availability Tradeoff Space 
– How close are today’s systems to the achievable boundary? 
– Can we get closer? 

• Finding Bugs in today’s NoSQL systems 
• Other target NoSQL systems: RIAK, MongoDB, VoltDB 

20 
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Research Results at Center 

• Indy Gupta - Real Time Challenges in Clouds 
• Jose Meseguer - Model-checking NoSQL Storage Systems 
• Rakesh Bobba - Group Key Management as a Service 
• Jose Meseguer - VA Admission Control 
• David Nicol - Quantifying Trust in the Cloud 
• Roy Campbell - Monitoring, Failure Scenario as a Service, Data 

Assurance 
• Ravi Iyer - Monitoring Driven Trust: Execution under Probation 
• Zbigniew Kalbarczyk - Building Resilient Virtual Machines 
• Bill Sanders - Hardening the Cloud with User Account Monitoring 
• Gul Agha - Coordination and Probabilistic Consistency 
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Why Group Key Management as a Service? 
• Many cloud applications involve distributed computation with 

communications among multiple processes 
- joint search and rescue operations may involve collaborative 

processing of sensor data 
 

• High assurance cloud computing demands that these 
communications be protected.  

 
• Key management is an important security function underpinning 

secure communications 
- Group key management supports secure communication among 

groups (e.g., people, processes) 
 

22 
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Problem 
• Group key management systems 

– Distributed/Decentralized: too complex with high overheads 
• e.g., FDLKH, TGDH, DLPKH 

– Centralized: simple but with single point of failure 
• e.g., LKH 

 
• Can we design a simple group key management service reliable and 

scalable enough to meet cloud computing needs? 
 

23 
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Approach 
• Designing a fault-tolerant and distributed service can be error-prone 

• Use commercial-off-the-shelf (COTS) or commonly available 
coordination services as the basis of our distributed framework 

 
• Testing such designs through implementations is expensive 

• Formally model and analyze the design, to quickly test and refine 
it without have to build it 

 
• Specifically: 

• We use the ZooKeeper distributed coordination framework as the 
basis for a group key management service design 

• We use Maude and PVeStA – a parallel statistical model checking 
tool – to model and analyze the reliability and performance of the 
design 
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Approach 
• Our design consists of: 

– A group controller who authenticates clients and generates group 
keys 
 

–  A ZooKeeper instance in the cloud which securely stores and 
broadcasts group keys, and stores the state of the group 
controller 
 

– Clients who wish to receive group keys from the key management 
service 
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Approach 

26 

Design Overview: ZooKeeper-based Group Controller And Joining 
Client 

Group Members 

… 
Key Updates 

ZooKeeper 
Servers 

ZooKeeper Service ZooKeeper 
Leader 

New Member 

Backup 
Controller 
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Backup 
Controller 

Using our Maude and PVeStA based modeling and analysis we 
uncovered a flaw in our design 

Preliminary Results 

29 
Group Members 

… 
Key Updates 

ZooKeeper 
Servers 

ZooKeeper Service ZooKeeper 
Leader 

Second update 
overtakes the 
first one… 

Unable to decrypt 
second key w/out 
first one 
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Backup 
Controller 

With this flaw our experiments showed that only 92% - 96% of key 
updates were reaching clients even when there are no server failures. 

Preliminary Results 

30 
Group Members 

… 
Key Updates 

ZooKeeper 
Servers 

ZooKeeper Service ZooKeeper 
Leader 

Second update 
overtakes the 
first one… 

Unable to decrypt 
second key w/out 
first one 
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Backup 
Controller 

Fix: Need to ensure sufficient time between key updates operations 
(regular, join, leaves) to allow for key propagation – e.g., batching 
 

Preliminary Results 
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Group Members 

… 
Key Updates 

ZooKeeper 
Servers 

ZooKeeper Service ZooKeeper 
Leader 

Second update 
overtakes the 
first one… 

Unable to decrypt 
second key w/out 
first one 
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Backup 
Controller 

With the fixed design 100% of the key updates were received by 
clients.    

Preliminary Results 

32 
Group Members 

… 
Key Updates 

ZooKeeper 
Servers 

ZooKeeper Service ZooKeeper 
Leader 

Second update 
overtakes the 
first one… 

Unable to decrypt 
second key w/out 
first one 
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Next Steps 

• More extensive experiments to better characterize the 
performance and reliability of the design 

 
• Extend failure model to include network failures 
 
• Extend to more sophisticated group and other key 

management schemes 

33 
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Research Results at Center 

• Indy Gupta - Real Time Challenges in Clouds 
• Jose Meseguer - Model-checking NoSQL Storage Systems 
• Rakesh Bobba - Group Key Management as a Service 
• Jose Meseguer - VA Admission Control 
• David Nicol - Quantifying Trust in the Cloud 
• Roy Campbell - Monitoring, Failure Scenario as a Service, Data 

Assurance 
• Ravi Iyer - Monitoring Driven Trust: Execution under Probation 
• Zbigniew Kalbarczyk - Building Resilient Virtual Machines 
• Bill Sanders - Hardening the Cloud with User Account Monitoring 
• Gul Agha - Coordination and Probabilistic Consistency 
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• Cloud Infrastructures 
– Provide flexible and elastic compute power to users 
– Users can instantiate their own application servers with 

tailored software configurations – Virtual Appliances (VAs) 

 
• For High Assurance Cloud Infrastructures (e.g., Air Force 

Private Cloud) 
– Need to ensure the software integrity of VAs to reduce the risk 

to the integrity of the infrastructure 
• In joint search, rescue and recovery operations where VAs may come 

from partners 
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• Ensuring the integrity of VAs - need admission control and 
monitoring of VAs 

– Admission Control (static & offline) 
• Ensure VAs contain what they say they contain (e.g., 

legitimate software) and not something else (e.g., viruses, 
malware)  

– compliance with admission policy 
• Malware or virus scanning is necessary but not sufficient 
 

– Monitoring (run-time & online) 
• Detect when a VA launches unauthorized or  unexpected 

software 
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Problem 
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• Ensuring the integrity of VAs - need admission control and 
monitoring of VAs 

– Admission Control (static & offline) 
• Ensure VAs contain what they say they contain (e.g., 

legitimate software) and not something else (e.g., viruses, 
malware)  

– compliance with admission policy 
• Malware or virus scanning is necessary but not sufficient 

 
– Monitoring (run-time & online)- Ravi and Zbigniew’s group 

• Detect when a VA launches unauthorized or unexpected 
software 
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Problem 



ASSURED CLOUD COMPUTING CENTER - INFORMATION TRUST INSTITUTE – UNIVERSITY OF ILLINOIS AT URBANA-CHAMPAIGN  

• We propose a whitelist-based framework to complement blacklisting 
approach exemplified by virus and malware scanning 

 
• Software in VAs, at the file level, is checked against whitelist of known-good 

hash values 
– hash values can be obtained from software publishers 

 
• Based on the presence of unverified files and missing files, we rate software 

integrity 

– 3 “fully verified” and integrity protected 

– 2 “partially clean” or medium integrity 

– 1 “modified” or low integrity 
 

• Admission policies can then be based on the rating 
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Approach 
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Framework Use Case 

39 

Private Cloud / Data Center 

Admission 
Control 

Admission  
Policy 

Job/Application in a VA 

Data 

Analyst 
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Usefulness of the framework 
 

• Study software integrity of real-world VAs 
– Assessed through a software whitelist-based framework 
– Evaluated 151 Amazon VAs 

 
• Our study shows significant variation in software integrity 

 
• We demonstrate  

– The need for a whitelist-based framework to verify VAs 
– Feasibility and scalability of using whitelists for integrity 

assessment 
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Classification based on the outliers 
• Formed natural clusters based on % of packages given scores 1 and 2. 
• k-means clustering was used to identify two clusters, k=2 

63 
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Characteristics of the low-integrity VA cluster 
 

• Taking a closer look at 14 potentially untrusted VAs, 
– Significant portion of unverified files is common system files like 

/bin/cut and /bin/grep 
– 14 VMs are from different publishers/sources, were built to 

provide different functions 
 

• Virus scanners flagged only 7 of the 14 VAs as malicious  
– What about the other 7? 
– In total, 41 of 111,981 unverified files were infected 

 

None of them mentioned anything about software 
customization efforts! 
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Usefulness of the framework 

• Our findings demonstrate the need for a priori software 
integrity assessment of VAs. 
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Research Results at Center 

• Indy Gupta - Real Time Challenges in Clouds 
• Jose Meseguer - Model-checking NoSQL Storage Systems 
• Rakesh Bobba - Group Key Management as a Service 
• Jose Meseguer - VA Admission Control 
• David Nicol - Quantifying Trust in the Cloud 
• Roy Campbell - Monitoring, Failure Scenario as a Service, Data 

Assurance 
• Ravi Iyer - Monitoring Driven Trust: Execution under Probation 
• Zbigniew Kalbarczyk - Building Resilient Virtual Machines 
• Bill Sanders - Hardening the Cloud with User Account Monitoring 
• Gul Agha - Coordination and Probabilistic Consistency 
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• Hadoop widely deployed in cloud computing to handle big 
data (soon YARN) 

• Hadoop focuses on only performance 
•  “Trust in application has multiple attributes, e.g. 

– Latency  
– Throughput  
– Reliability 
– Integrity 
– Confidentiality 
– Privacy  

• Problem: Develop methodology for estimating trust 
attributes for a given context, as a function of observed 
system behavior that may reflect presence of intrusion / 
insider misbehavior 

 
 

Motivation & Problem 
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• Use Möbius tool to estimate trust attributes based on 
compositional model of  
– Application structure, workflow 
– Cloud middleware 
– Cloud resources 
– Presence / impact of cyber attack 
– “Belief” of system in different attacks, given observations 

• We model uncertain relations among relevant elements of 
the cloud and the uncertainty of autonomous agents, by 
using Bayesian estimation, belief degree interval, and 
simulation.  

Approach 

46 
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• Estimate run-time security attributes (Collaboration with 
Ravi/Zbigniew’s group, and Bill’s group) 
– Assume: a cloud system (Data center) has IDS to generate security alerts 
– Given observed alerts or identified compromised users, infer the 

degrees of belief in downgraded services in the cluster. 
  
• Estimate performance attributes (Collaboration with Roy’s 

group and Indy’s group) 
– Given attributes of a cluster of hosts and a YARN application (workflow), 

and security attributes above, calculate the degree of belief in the 
completion of the workflow within a time limit.  

  
• Estimate privacy attributes (Collaboration with Masooda’s 

group) [We will add in, in recent future] 
– Given a cloud provider’s privacy policy (and ToS), and a user’s 

expectation profile, calculate the degree of satisfaction on privacy 
protection 

Synergies 
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• Overview 
– A MapReduce job (it could be a more complex DAG of tasks) for 

a critical mission, running on Hadoop YARN system in a public or 
community cloud; 
• 128 mappers 
• 64 reducers 
• 1000 nodes of cluster 
• The YARN system uses Capacity Scheduler. 

• Example threat 
– Current YARN system considers only memory, to represent the 

computing resources sharing among cloud users, without 
considering CPU, disk read/write, and network bandwidth; 

– Attackers and/or malicious users can launch DoS attack by 
exhausting computing resources of the hosts running their 
“tasks”. 
 

 

Demo Overview 
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Demo Overview 
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Scenarios 

75 

• S1: no security attacks, with capacity: 5%;  
 at 6, the degree of belief in job done is 99.8% 
• S2: “mild” (50% of CPU) DoS attack by a single user with capacity: 0.5% 
• S3: strong (90% of CPU) DoS attack by a single attack (capacity: 0.5%) 
• S4: “mild” (50% CPU)DoS attack by a single user with capacity: 5% 
• S5: strong (90% CPU) DoS attack by a single user with capacity of 5%; job 

cannot complete after 30 time units (5 times longer than normal) 
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Results 

76 

• Powerful modeling tool allows expression of different 
components of system (application, middleware, 
hardware, attack/response) to estimate coupled 
trust attributes 
 

• Finishing time of a given job is sensitive to relatively 
few number of  legitimate but resource-intensive 
tasks 
– Intruder stealing credentials or insider can upset balance 
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Confidentiality and Integrity 

77 

• In the cases that the nodes in the cluster compromised,  
– Can compromise confidentiality and integrity. 

• Belief Degree of Integrity Compromising (similarly, 
Confidentiality) 

0.00%

10.00%

20.00%

30.00%

40.00%

50.00%

60.00%

70.00%

80.00%

90.00%

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21

Belief Degree of Attack : 1% Belief Degree of Attack : 30%

Belief Degree of Attack : 85%

t 

CDF of Integrity 
Compromising 

Over time  



ASSURED CLOUD COMPUTING CENTER - INFORMATION TRUST INSTITUTE – UNIVERSITY OF ILLINOIS AT URBANA-CHAMPAIGN  

• To model YARN with Möbius with higher resolution, as a basis to 
support innovative system design and validating; 
 

• To improve YARN schedulers for optimizing YARN application 
(workflow), by considering security  and privacy attributes; 
 

• To work on cross-cloud workflow trustworthiness estimation and 
optimization; 
 

• To further formally characterize Hadoop/YARN system’s 
trustworthiness. 

 

Future Work 
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Research Results at Center 

• Indy Gupta - Real Time Challenges in Clouds 
• Jose Meseguer - Model-checking NoSQL Storage Systems 
• Rakesh Bobba - Group Key Management as a Service 
• Jose Meseguer - VA Admission Control 
• David Nicol - Quantifying Trust in the Cloud 
• Roy Campbell - Monitoring, Failure Scenario as a Service, Data 

Assurance 
• Ravi Iyer - Monitoring Driven Trust: Execution under Probation 
• Zbigniew Kalbarczyk - Building Resilient Virtual Machines 
• Bill Sanders - Hardening the Cloud with User Account Monitoring 
• Gul Agha - Coordination and Probabilistic Consistency 
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Motivation: Multi-Domain Monitoring 
 
 
 
 
 

• Modern systems are composed of multiple security domains 
– Cloud Computing 
– Hybrid Clouds 
– Intercloud-Multi-cloud 
– Critical Infrastructure Systems 

• Advantages 
– Economy of scale for cloud computing  
– Ability to select which services to use without binding to a single provider for multi-cloud/inter-

cloud 

83 

EVENT TYPE SOURCE SECURITY DOMAIN DESCRIPTION 

runsCriticalService Deployment software,SNMP agents Cloud user critical services run on a specific instances 

instanceAssigned Openstack Cloud provider instances are assigned to specific physical servers 

badTraffic IDS, Network monitoring Cloud provider malicious traffic detected from specific physical server 

Cloud Provider Private Infrastructure Cloud Provider 
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• How do we know that the system is working correctly as a whole? 
• Integrating events across domains to detect complex security problems and attacks 

– Security Information and Event Management Systems (SIEM) are successful because they are 
capable of integrate monitoring events across multiple sources 

 
 
 
 
 
 
 
 

• However, monitoring provides critical information about systems to external organizations 
which opens the system to attacks 

• Network topology, network traffic, configurations, installed programs, vulnerable programs, user 
bahaviors, services, critical machines 
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Problem: Sharing Only need-to-know Information 

(SIEM) 

Goal: Share only need-to-know information across organizations to detect problems  
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Approach: Policy-based Distributed Monitoring System 

Cloud 
Provider 

• Our Distributed Monitoring System 
– Policy-based 
– Detects violations of global policies  

while limiting event exposure 
– Identifies “need-to-know” events 

and shares only those 

Service 
Provider 

Private 
Infrastructure 

Cloud 
Provider 

Monitoring server 

violation(I, P)   
runsCritService (I, P), instAssigned(I, S), badTraffic(S) 

partial(I)  
  instAssigned(I, S), badTraffic(S) 

Processed by the cloud provider 
when information about physical 
servers are received 

violation(I, P)   
  runsCritService (I, P), partial(I). 

Processed by the cloud user after 
receiving partial(I) from the cloud 
provider 

1. Policy rewritten to identify 
cross-domain sharing 

2. Events shared only if they can 
create a violation 

partial(i) is shared only if 
the rule on the receiving 
side can be satisfied 

Secure Two-Party 
Computation 

runsCritService  
(I, p) 

partial(I) 

Match? 
YES: shared 
NO: not shared 
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Research Results at Center 

• Indy Gupta - Real Time Challenges in Clouds 
• Jose Meseguer - Model-checking NoSQL Storage Systems 
• Rakesh Bobba - Group Key Management as a Service 
• Jose Meseguer - VA Admission Control 
• David Nicol - Quantifying Trust in the Cloud 
• Roy Campbell - Monitoring, Failure Scenario as a Service, Data 

Assurance 
• Ravi Iyer - Monitoring Driven Trust: Execution under Probation 
• Zbigniew Kalbarczyk - Building Resilient Virtual Machines 
• Bill Sanders - Hardening the Cloud with User Account Monitoring 
• Gul Agha - Coordination and Probabilistic Consistency 
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Motivation 
• Consequences of moving to cloud and using commodity hardware 

– Increase in system’s dependability 
– Increase in equipment failure 

 

 
 

• What happens when failure occur?  
– Increase in maintenance costs 
– Increase in applications down-time could cause them to: 

– Miss deadlines 
– Be non-compliant with Service Level Agreements (SLA) 

REQUIREMENT #1:  
Cloud applications normal operating procedures should be prepared for 

different failure scenarios. 

REQUIREMENT #2:  
Identify resources, the failure of which could jeopardize missions 



ASSURED CLOUD COMPUTING CENTER - INFORMATION TRUST INSTITUTE – UNIVERSITY OF ILLINOIS AT URBANA-CHAMPAIGN  

• What can we do to deal with failures? 
– Inject failures using Chaos Monkey (Netflix) or Anarchy Ape (Yahoo!) 
– Observe critical resources 
– Increase resource availability by: 

• Using more robust hardware 
• Increasing redundancy 

• Contributions: 
– We classify Hadoop-type applications based on different types of intensive 

workloads including: 
 I/O – random writer 
 CPU – word count 
 Network – text sort 

– We enable users to chose configurations of Hadoop- type applications to better 
survive failure scenarios 
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Problem: What to do when failures occur? 
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Research Results at Center 

• Indy Gupta - Real Time Challenges in Clouds 
• Jose Meseguer - Model-checking NoSQL Storage Systems 
• Rakesh Bobba - Group Key Management as a Service 
• Jose Meseguer - VA Admission Control 
• David Nicol - Quantifying Trust in the Cloud 
• Roy Campbell - Monitoring, Failure Scenario as a Service, Data 

Assurance 
• Ravi Iyer - Monitoring Driven Trust: Execution under Probation 
• Zbigniew Kalbarczyk - Building Resilient Virtual Machines 
• Bill Sanders - Hardening the Cloud with User Account Monitoring 
• Gul Agha - Coordination and Probabilistic Consistency 
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• Big Data shifts bottleneck from computation to I/O 
 

• Storage layer can suffer from: 
– Hotspots 
– Reduced performance 

 

• Storage layer problems can affect jobs operating on the data 
 
 
 

• Adequate design and performance tuning of storage layer is critical 
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Reduced 
performance 

Missed 
deadlines 

Mission 
failure 

Motivation 
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• Design and tuning must be validated by specific workloads 
– Observed workloads 
– Predicted workloads 

 
• Incorrect workload assumptions  sub-optimal performance 

– Increasing costs 
– Leading to job delays (and ultimately mission failure) 

63 

Problem 
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• Model workload using a combination of: 
• Statistical measurements 

• Empirical distributions from data 
 

• Delayed renewal processes 
• Model temporal locality: short-term temporal 

correlations and file popularity 
 

• Unsupervised statistical clustering 
• Use k-means to find objects with similar behavior 
 Type-aware workload modeling 

 
 

Approach 
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• Model for efficient replica computation for improved 
availability of files based on priority classes 

65 

Motivation 

Files are treated all the same in today’s distributed 
file systems(HDFS, GFS). How can we prioritize the 
availability of files essential to the success of the 

mission?  

Mission 
Data 

Business 
Data 

Development 
Data 

Research 
Data 



ASSURED CLOUD COMPUTING CENTER - INFORMATION TRUST INSTITUTE – UNIVERSITY OF ILLINOIS AT URBANA-CHAMPAIGN  

66 

Given a certain amount of storage space, how should we 
distribute the storage space to different file classes with 

different importance weights, and achieve the highest overall 
weighted availability? 

Problem 
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Since the original optimization problem is NP hard, we 
propose a greedy algorithm called Class and Budget(CaB) 
which always assigns storage space to the file class which 
can improve the overall availability the most. Compared to an 
algorithm which assigns storage naively proportional to file 
weights, CaB utilizes storage spaces more efficiently since it 
does not create unnecessary replicas. 

Approach 
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Research Results at Center 

• Indy Gupta - Real Time Challenges in Clouds 
• Jose Meseguer - Model-checking NoSQL Storage Systems 
• Rakesh Bobba - Group Key Management as a Service 
• Jose Meseguer - VA Admission Control 
• David Nicol - Quantifying Trust in the Cloud 
• Roy Campbell - Monitoring, Failure Scenario as a Service, Data 

Assurance 
• Ravi Iyer - Monitoring Driven Trust: Execution under Probation 
• Zbigniew Kalbarczyk - Building Resilient Virtual Machines 
• Bill Sanders - Hardening the Cloud with User Account Monitoring 
• Gul Agha - Coordination and Probabilistic Consistency 

 
 
 
 
 
 
 
 
 
 

68 



UNIVERSITY OF ILLINOIS AT URBANA-CHAMPAIGN | ENGINEERING AT ILLINOIS 

Jul’08 - Spammers set up mail spamming instances in the 
Amazon’s EC2 cloud. 

Apr’09 - Texas datacenters operations are suspended 
for FBI investigation. 

Nov’09 - Side channel attack of Amazon’s 
EC2 service. 

Dec’09 - Zeus crime-ware using Amazon's EC2 as 
command and control server. 

Sep’10 - Google Engineer Stalked Teens, 
Spied on Chats 

Dec’10 - Microsoft BPOS cloud service hit with 
data breach 

June’11 - Dropbox: Authentication Bug Left Cloud Storage 
Accounts Wide Open 

Dec’10 - Anonymous hacker group failed to 
take down Amazon 

Clouds: Security Problems 
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Analysis of Security Attacks from a  
Large System:  NCSA Case Study 

• Goals:  
– Provide the system-level characterization of incidents and evaluate the 

intricacies of carrying out successful attacks  
– Measure the efficiency of the detection and diagnostic methods 

 

• Challenges 
 

Five-Minute Snapshot of In-and-Out Traffic within NCSA 70 
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Sample Real attack Data: Missed Incidents 
Distribution of Incidents by Type 2004-2011 Severity of Incidents by Monitoring Tools 2004-2011 

25% of incidents 
are missed 

(undetected) 

significant portion of undetected 
incidents have high and very high impact 

(severity) 

Cause of missed incidents Examples # 

Increased sophistication in attacks 
A peer site gets compromised and attacker 
logs-in with stolen credentials; zero-day 

exploits 
6 

Lack of signatures Exploit of VNC null string authentication 
vulnerability 7 

Admin misconfiguration Web share world writable access or root login 
to accept any password 5 

Inability to distinguish traffic 
anomalies in the network 

Web defacement or use of web server to host 
malware; bot command and control traffic  10 

Misconfiguration of security 
monitoring tools 

Routers stop exporting the flows to central 
collector which prevents alerting 1 

Inability to distinguish true 
positives from false positives Human error 2 

Inability to run monitors on all 
hosts and file systems due to cost 

Limited deployment of file integrity monitors 
on non-critical systems 3 
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Observations from Real Attacks 

• Need for Continuous Monitoring to pre-empt an attacker actions 
– potentially let the attacker to progress under probation (or tight scrutiny) until 

the real intentions are clear 

• Need to correlate: 
– data from different monitors  

– system logs  

– human expertise 

• Need to validate benchmark success against real data 
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Execution Under Probation 

operational data 

Attack 
Prediction 

Continuous 
Monitoring 

Probation Environment 

Real-time Analytics 

Learn attackers’ behaviors 

Preempt 
attacks 

Conclude and 
block attacks X 
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Research Results at Center 

• Indy Gupta - Real Time Challenges in Clouds 
• Jose Meseguer - Model-checking NoSQL Storage Systems 
• Rakesh Bobba - Group Key Management as a Service 
• Jose Meseguer - VA Admission Control 
• David Nicol - Quantifying Trust in the Cloud 
• Roy Campbell - Monitoring, Failure Scenario as a Service, Data 

Assurance 
• Ravi Iyer - Monitoring Driven Trust: Execution under Probation 
• Zbigniew Kalbarczyk - Building Resilient Virtual Machines 
• Bill Sanders - Hardening the Cloud with User Account Monitoring 
• Gul Agha - Coordination and Probabilistic Consistency 
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Fundamental Tradeoffs 

Latency 

Accuracy 

Cost 

How much does monitoring cost? 

How early can we identify attackers? 

What is the desired detection accuracy? 
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1021 users 

232 suspicious users 

14 attackers of a total 15 attackers 

42 had more than 3 alerts 

Compute Suspicion Score 

1. Compute Suspicion Score using:  
Past: use ground truth data to compute likelihood 
Present: use alert disorder, alert rate, and decay factor 
2. Select top suspicious users 

Monitor in Probation Environment 
1. Look for users that generate more than three alerts in probation 
environment. They are attackers. 
2. Return other users to normal execution environment. 

Block Suspicious Activities Block suspicious commands, e.g., “sudo” to prevent privilege 
escalation. We use a learned dictionary of suspicious commands. 

That means 90+% detection rate. We miss 6.67% of attacks - 
considerably better than 27% misdetection rate of previous study 
(Sharma et. al., DSN 2011) 

alerts + 

Execution Under Probation Effectiveness 

76 



UNIVERSITY OF ILLINOIS AT URBANA-CHAMPAIGN | ENGINEERING AT ILLINOIS 

Execution Under Probation  
Challenges Going Forward 

• Developing orthogonal views by monitoring at different levels and 
granularities -to fully understand it’s underlying attack/user actions.  

 
•  Robust Methods to  pre-empt malicious actions in a timely manner 

 
• Evaluate effectiveness against classes of attacks  
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 Monitoring and Invariance Driven Trust 

• Goals:  
– Design attack independent  protection strategies: minimize  number of 

missed incidents and false positives 
– Invariance driven trust 
– Demonstrate  techniques in an experimental testbed  

 
• Challenges 

 

Five-Minute Snapshot of In-and-Out Traffic within NCSA 
78 
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Research Results at Center 

• Indy Gupta - Real Time Challenges in Clouds 
• Jose Meseguer - Model-checking NoSQL Storage Systems 
• Rakesh Bobba - Group Key Management as a Service 
• Jose Meseguer - VA Admission Control 
• David Nicol - Quantifying Trust in the Cloud 
• Roy Campbell - Monitoring, Failure Scenario as a Service, Data 

Assurance 
• Ravi Iyer - Monitoring Driven Trust: Execution under Probation 
• Zbigniew Kalbarczyk - Building Resilient Virtual Machines 
• Bill Sanders - Hardening the Cloud with User Account Monitoring 
• Gul Agha - Coordination and Probabilistic Consistency 
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Challenges in VM Monitoring 

• Challenge: Semantic Gap 
• Current solution: VM Introspection 

– Using knowledge on the operating system structures inside the virtual 
machine to interpret the semantic  

– Limitations: 
• Require effort to understand the guest OS 
• Monitoring tools need to be updated as the guest OS updated 
• Share the same view with attacker: can be manipulated 

 

Hypervisor 

VM 

OS 

Semantic Gap 

Strong Isolation 

Our Solutions: 

VM Introspection based on 

the Architectural Invariants of VM environment 
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What Do We Monitor? 
• Guest system’s architectural state  

– VM Events, General Purpose and Control Registers 

• Guest system’s virtual devices 

– Network interfaces, hard disks, memory 

• Advantages: 

– Non-intrusive to the guest system 

– Hypervisor independent 

– Guest system independent 

– Detection based on the system/application behavior 
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Reliability and Security Checkers 
• Guest OS hang detection 

– Infinitive time between two consecutive context switches 

• Hidden rootkit process detection 
– The number of running processes displayed by the guest system (Task 

Manager, PS, TOP) is smaller than the number reported by our 
monitoring tool 

• Hypervisor hang detection 
– Infinitive time between VM Exit and VM Entry events 

• Guest OS boot sequence integrity 
• Process termination detection 
• …. 
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Framework Integration with KVM Architecture 

• Example detection modules: 
– Hypervisor hang detection (HHD) 
– Guest OS hang detection (GOSHD) 
– Hidden Rootkit detection (HRKD) 
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Process Count 

Hidden Rootkit Process Detection 
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Hypervisor Monitoring Core 

VM 
 

VM 
 

in
te

rf
ac

e 

VM Processors 

Dedicated Processor(s) 

VM Enter & Exit 
Hypercall 

. . . PU PU PU PU 

P1 P2 P3 P1 P2 

PTDP1 PTDP2 PTDP3 PTDP1 PTDP2 CR3 Value 

Address Space 

Scheduled Task 

Time 

CR_ACCESS Event 

CR3 values: 
   PTDP1 
   PTDP2 
   PTDP3 

(3 running 
processes) 
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Future Work:  
On-line Attack Containment and Mitigation 

• Employ the proposed framework as a basis for preemptive (i.e., 
before a system misuse) detection of compromised user and 
mitigation of attacks 

– Explore new monitoring/detection techniques to contain an attacker and 
hence, prevent an attack propagation 

• Consider vulnerabilities and malicious attacks against hypervisors 
– Hardening hypervisor against potential attacks 

• Develop methods and tools to experimentally assess the proposed 
solutions 

• Demonstrate the proposed approach in cloud environment while 
running representative applications on our testbed 
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Research Results at Center 

• Indy Gupta - Real Time Challenges in Clouds 
• Jose Meseguer - Model-checking NoSQL Storage Systems 
• Rakesh Bobba - Group Key Management as a Service 
• Jose Meseguer - VA Admission Control 
• David Nicol - Quantifying Trust in the Cloud 
• Roy Campbell - Monitoring, Failure Scenario as a Service, Data 

Assurance 
• Ravi Iyer - Monitoring Driven Trust: Execution under Probation 
• Zbigniew Kalbarczyk - Building Resilient Virtual Machines 
• Bill Sanders - Hardening the Cloud with User Account Monitoring 
• Gul Agha - Coordination and Probabilistic Consistency 
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• If compartmentalized projects use a common, general-

purpose cloud infrastructure, then access-control 
violations may occur 
 

• Consider Bell-LaPadula policy: 
-  Mandatory Access Control (MAC) 
-  To ensure confidentiality: 

- No write down 
- No read up 
- No lateral reads/writes 

 

User Account Monitoring and the Cloud 
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Background 

• In previous work, our University Credential Abuse Auditing 
System (UCAAS) successfully detected and flagged 
compromised accounts 

– Collaborated with CITES and the University of Michigan 
– Used real VPN and Bluestem logs (45,000+ users) 
– Delivered to the Air Force 

 

• We extend UCAAS to monitor Hadoop clusters for security 
policy violations in a private cloud setting 
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Technical Details – UCAAS Architecture 

• We use UCAAS to detect compromised accounts within a 
Hadoop cluster on an organization’s cloud 
 

• We apply security policy rule validation on the logs for the 
compromised account to automatically determine lattice 
policy violations 
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Technical Details - Features 

• Some suspicious behavior features used to detect account 
compromise: 

- IP addresses accessing multiple accounts 
- Large number of failed SSH attempts 
- Access of others’ Hadoop machines 
- Access of other users’ DataNodes 
- Large number of failed MapReduce job attempts 
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Technical Details – Machine Learning 

• UCAAS uses machine learning to determine suspicious activity 
• Logistic regression classifier written in Weka 
- Dependent variable is Boolean (is there a compromise?) 
- Estimated regression model:   
- L is the natural logarithm of the odds that the events represented by the 

dependent variable happens 
 
 

-     is the probability that the characteristic variable is true 
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Technical Details – Policy Validation 

• We apply security policy rule validation on the extracted features for 
the suspicious accounts 

• Rules are specified in a format that allows for execution against the 
extracted features 

• Output is the security policy violations (if any) for the suspicious 
accounts 
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Conclusions 

• UCAAS has successfully been used to detect compromise for 
university VPN accounts. 
 

• We demonstrated UCAAS’ use as a tool to enforce security policy for 
private clouds 

- The cloud’s resource-abstraction may allow for violation of 
traditional Mandatory Access Control policies (e.g., Bell-LaPadula) 

- UCAAS lets us detect account compromise using logs available in 
the cloud 

- We can detect violations of security policy by validating features 
for the compromised accounts against policy-derived rules. 
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Future Work 

Our work improves upon static, rule-based IDS systems 
• Can learn about evolving threats 
• Provides alerts relative to security policies 
Part of a larger project to develop an intrusion response and recovery 
engine 
Goals: 
• Detect intrusions in real-time relative to business objectives 
• Calculate responses that ensure operation within safety bounds 
• Allow administrators to make cost-driven response decisions 
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Research Results at Center 

• Indy Gupta - Real Time Challenges in Clouds 
• Jose Meseguer - Model-checking NoSQL Storage Systems 
• Rakesh Bobba - Group Key Management as a Service 
• Jose Meseguer - VA Admission Control 
• David Nicol - Quantifying Trust in the Cloud 
• Roy Campbell - Monitoring, Failure Scenario as a Service, Data 

Assurance 
• Ravi Iyer - Monitoring Driven Trust: Execution under Probation 
• Zbigniew Kalbarczyk - Building Resilient Virtual Machines 
• Bill Sanders - Hardening the Cloud with User Account Monitoring 
• Gul Agha - Coordination and Probabilistic Consistency 

 
 
 
 
 
 
 
 
 
 

95 



ASSURED CLOUD COMPUTING CENTER - INFORMATION TRUST INSTITUTE – UNIVERSITY OF ILLINOIS AT URBANA-CHAMPAIGN  

Web Applications and Mobile Clouds 
• The Mobile Cloud is a collection of many platforms with different 

capabilities and security constraints… 
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Coordination in Cloud Computing  

• The cloud provides: 
 Computation on nodes 
 Interaction between nodes 

Completing a mission 
requires: 

 Computation on nodes 
 Secure and safe interaction 

of nodes 

97 

Random 
Photons 

Laser 

Coordination 

2. Problem 
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3. Approach 
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•Actors are concurrent, autonomous, interacting agents.  
• New actors have their own address 
•Addresses may be communicated in messages 

The Actor Model  

a cloud 
represents a 
collection of 

actors 
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Abstracting Interaction between Groups of Actors 

• A protocol defines a role for each participating 
actor relative to the protocol 
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Coordination Protocols 

• Specify contracts (protocols) to describe a session between a group 
of actors 

– Session types 
 
 
 
 

• Statically and/or dynamically verify adherence to these contracts 
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Session Types 

• Reject messages not conforming to the type  
• Enforces safety and security properties. 
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Example Session Type 
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• Observing previous patterns 
– In the example before, this is what happened three times in a row: 
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Type Inference 

– The fourth relocation sequence observed an abnormality between 
completion of the movement and sending the “done” message. 
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• From code 
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Type Inference 

Actor UAV 
{ 
   msg loc(Point p) 
   { 
      master ! OK 
      [ physical movement to p ]    
   } 
} 

actor Master 
{ 
   msg move 
   { 
       for(v in UAV) 
         v ! loc(p) 
   } 
   msg done 
   { 
      if(++count == UAV_COUNT) 
         base ! ok 
   } 
} 



United States of America 
Department of the Air Force 
http://www.airforce.com 

University of Illinois at Urbana-Champaign 
http://www.illinois.edu 

Information Trust Institute 
http://www.iti.illinois.edu 

Questions and Answers 
 
 

Thank you for all your attention 
 
 

August 5th 2013 
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