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Abstract

We present a novel tensor interpolation algorithm for the time integration of
nonlinear tensor differential equations (TDEs) on the tensor train and Tucker
tensor low-rank manifolds, which are the building blocks of many tensor network
decompositions. This work builds upon our previous work presented last year
(Donello et al., Proceedings of the Royal Society A, Vol. 479, 2023) on solv-
ing nonlinear matrix differential equations on low-rank matrix manifolds using
CUR decompositions. The methodology we present offers multiple advantages:
(i) It delivers near-optimal computational savings both in terms of memory
and floating-point operations by leveraging cross algorithms based on the dis-
crete empirical interpolation method to strategically sample sparse entries of
the time-discrete TDEs to advance the solution in low-rank form. (ii) Numer-
ical demonstrations show that the time integration is robust in the presence
of small singular values. (iii) High-order explicit Runge-Kutta time integration
schemes are developed. (iv) The algorithm is easy to implement, as it requires
the evaluation of the full-order model at strategically selected entries and does
not use tangent space projections, whose efficient implementation is intrusive.
We demonstrate the efficiency of the presented algorithm for several test cases,
including a nonlinear 100-dimensional TDE for the evolution of a tensor of size
70190 & 3.2 x 10'8* and a stochastic advection-diffusion-reaction equation with
a tensor of size 4.7 x 10°.



Data-Rich Multi-Fidelity Methods for Aerospace Vehicle Design
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Abstract

Two topics are described in this year’s review. First, we further explore acceleration of CFD analysis via
ML initialization, here considering ML-predicted wakes. An improved bluff-body flow initialization is
efficiently obtained through the recursive use of CNN as applied to the wake region, providing over an
order of magnitude speedup, a significant improvement over initializations limited to nearfield ML-
predictions. Second, we compute the low-dimensional latent space associated with a minimum-
compliance optimized structural topology and find latent-space clustering associated with changes in
structural topology. Accuracy of reconstructed topologies is quantified and the variation of topological
coherence on latent space coordinates assessed. The compact latent space is sufficient to identify
unconstrained optima outside the training set and provides a pathway for highly efficient online, physics-
based, stress-constrained optimization. For both topics, generalization of the procedures to appropriate
arrays of design variables needs to be examined.



Interpolating many-electron wave functions
through chemical space
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Abstract

It has been an exciting time in the field of quantum many-body problems,
with new methods emerging for interacting electrons and their potential impact
on fields such materials science or drug discovery — not least because of advances
in the use of quantum computers and machine learning parameterizations. We
have been contributing in this grant to this effort, bringing together the fields of
tensor factorizations and neural network quantum states. However, as we push
to higher accuracy in demanding problems, we have been aware that the field
is increasingly disconnected from problems that take place on the timescales of
atomic (rather than electronic) motion. This is because propagating atoms in
time along with the explicit electronic structure entails a prohibitive number of
electronic structure calculations. We will present our recent work to straddle
this gap, with a surprisingly effective interpolation scheme, allowing efficient
inference of the many-body electronic wave function through chemical space,
and coupling this to the explicit motion of the atoms. We will show how this
has enabled the advances in high-accuracy electronic structure to be coupled
to molecular dynamics with unprecedented accuracy, for the first time enabling
molecules to move on the ezact potential energy surface, as provided by state-of-
the-art tensor network or machine learning inspired many-electron states. This
opens up advances in electronic structure to study realistic chemical reactions
and photochemistry, and we will consider the dynamics of the Zundel cation, and
the evolution of hydrogenic systems as our first investigations in this direction.



Optimal control of conditional processes:
old and new.

René Carmona

Princeton University

Abstract

In this talk, we consider the conditional control problem introduced
by P.L. Lions in his lectures at the College de France in November 2016.
As originally stated, the problem does not fit in the usual categories of
control problems considered in the literature, so its solution requires
new ideas, if not new technology. In his lectures, Lions emphasized
some of the major differences with the analysis of classical stochastic
optimal control problems and in so doing, raised the question of the
possible differences between the value functions resulting from opti-
mization over the class of Markovian controls as opposed to the gen-
eral family of open loop controls. While the equality of these values is
accepted as a ”folk theorem” in the classical theory of stochastic con-
trol, optimizing an objective function whose values strongly depend
upon the past history of the controlled trajectories of the system is a
strong argument in favor of differences between the optimization re-
sults over these two different classes of control processes. The goal of
the talk is to elucidate this quandary and provide elements of response
to Lions’ original conjecture, both in the case of “soft killing” (R.C.
- Lauriere - Lions, Illinois Journal of Math) and in the case of hard
killing for which together with D. Lacker ,we proved a new conditional
mimicking theorem.



Multi-scale invariant models leading to new understanding of ductile damage
Oana Cazacu
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Most of the efforts in modeling ductile damage concern materials for which the matrix irreversible
behavior depends only on J2, the second-invariant of the stress deviator (von Mises-type behavior). On
the other hand, the experimental evidence suggests that for most metallic materials the plastic
deformation depends on both J2, and J3, the third-invariant of the stress deviator. In this talk, we report
results of a theoretical and numerical study that reveal the effects of the matrix sensitivity to J3 on
the void evolution and strength of porous ductile materials. Moreover, we show that this sensitivity
to J3 is tied to macroscopic plastic properties, namely the ratio between the tensile and shear yield
strength, 7, /o, . It is shown that under axisymmetric loadings at fixed triaxiality, irrespective of
the sign of J3, the lower is the 7, /o, ratio the greater is the rate of void growth or collapse, the
rate of softening or compaction, and the change in the inter-void ligament along the direction of
the minimum applied stress. For materials with 7, /o, < 1/ 3 the rate of void growth is faster
for loadings such that J3 > 0 than for loadings where J3 < 0 ; the lower is the ratio 7, /o, , the
more pronounced is the influence of the loading path on void growth. For loadings at fixed
triaxiality such that J3 = 0, it is shown that materials with 7, /o, < 1/ 3 exhibit faster void
growth and respectively collapse than under axisymmetric loadings, the opposite being true for
materials with 7, /o, > 1/ 3. These findings may guide selection of materials such as to either

promote or reduce the rate at which damage accumulates for a given loading.



Ambiguity-aware Artificial Intelligence
via Statistical Inference
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Abstract

In this talk, we will introduce our YIP award titled "Ambiguity-aware Artifi-
cial Intelligence via Statistical Inference". Recent successes of machine learning
(ML) and artificial intelligence (AI) in computer vision and natural language
processing have garnered a great deal of attention. At the same time, ML and Al
systems are built for straightforward prediction tasks by design, and struggle to
handle ambiguity and uncertainty. Empirical evidence shows that such methods
often fail in ambiguous situations. In this project, we aim to develop innovative
mathematical methods and algorithms to help machine learning systems better
deal with ambiguity. We will adapt tools from statistical inference (e.g., cali-
bration, confidence intervals, prediction sets) to modern machine learning and
artificial intelligence scenarios.



Bi-fidelity Optimization and Failure Probability
Estimation
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Abstract

Reduced order, lower-fidelity, or surrogate models have shown great promise
in reducing the cost of uncertainty quantification, reduced order modeling, and
optimization of complex engineering systems, while producing comparable ac-
curacy to high-fidelity models. We present two new developments regarding the
use of lower-fidelity models for optimization and failure probability estimation.
In the first part of the talk, we introduce a novel surrogate-adjusted line search
algorithm that utilizes reduced-order or surrogate models to approximate the
optimal step size in a gradient free optimization scheme. We provide a com-
prehensive theoretical analysis of the surrogate-adjusted line search algorithm,
which includes a rigorous convergence analysis and a discussion on the trade-offs
between the number of iterations and the accuracy of surrogate construction re-
quired for optimal step size adjustment. In the second part of the talk, we intro-
duce an importance-sampling-based estimator, termed the Langevin bi-fidelity
importance sampling (L-BF-IS) estimator for (failure) probability estimation.
This estimator uses score-function-based sampling algorithms to generate new
samples from a newly designed biasing distribution to substantially reduce the
mean square error of the failure probability estimate. We demonstrate that
L-BF-IS exhibits remarkable performance, particularly in situations with ex-
tremely high-dimensional (> 100) input space and limited high-fidelity evalua-
tions. This is based on joint work with Nuojin Cheng and Stephen Becker from
CU Boulder.



A Robust Multi-Physics Design Analysis and Optimization Framework for Hypersonic Systems
Grounded in Rigorous Model Reduction
Charbel Farhat and Juan Alonso, Stanford University
Graham Candler and Maziar Hemati, the University of Minnesota
Matthias Heinkenschloss, Rice University
and Matthew Zahr, the University of Notre Dame

The development of hypersonic systems must overcome many physics, engineering, and computa-
tional challenges, including management of extreme heating; engineering of materials that withstand
the consequences of such heat; design of control laws that enable maneuverability with high level of
precision; and development of design optimization methods based on predictive and yet affordable
numerical simulations. This complex problem is compounded by limited ground test facilities and
segregated design and analysis tools. Its solution requires the right blend of tests and analyses. In this
MURI effort, we proposed to overcome the computational challenges associated with this problem
by developing an innovative, computationally tractable framework for tightly coupled multi-physics
design analysis and optimization (MDAO) of hypersonic systems, under uncertainty.

For the last two years and a half, we have been building on recent advances in computational
engineering sciences of relevance to hypersonic flight. We have achieved tight coupling between in-
teracting physics by connecting the differential equations governing aerodynamics, structural dynam-
ics, heat transfer. and flight control via most-appropriate transmission conditions, then discretizing
these conditions by provably stable and accurate methods. To enable an exploration of the entire
design space that is not possible with subsystem-by-subsystem approaches, we are simultaneously
parameterizing the vehicle’s trajectory, shape, material properties, and control law. We are achieving
computational tractability by grounding our framework for tightly coupled MDAO under model-form
and parametric uncertainties in surrogate modeling; developing methods for adaptive sampling in
active manifolds to overcome the curse of dimensionality associated with training parametric surro-
gate models; and designing numerically stable and highly accurate partitioned analysis procedures for
solving coupled surrogate models. In particular, we are developing novel approaches for reducing the
dimensionality of highly nonlinear, steady and unsteady, multi-physics, multi-scale, computational
models that mitigate if not break the Kolmogorov-width barrier using nonlinear approximation man-
ifolds; can operate on embedded boundary models; can handle mesh adaptation; and are efficient in
the context of MDAO under uncertainty. We are also developing innovative “on-the-fly” adaptive
multi-fidelity approaches for MDAO under uncertainty that are synthesized from high-fidelity multi-
physics models. We are developing rigorous and yet practical trust-region methods to manage the
inexact objective and gradient evaluations produced by the framework to guarantee convergence.

In this lecture, we will focus on the recent achievements — that is, those accomplished so far during
FY 2024.

At the highest fidelity level of numerical modeling, the research team at the University of Min-
nesota led by Candler has performed a series of trajectory optimization studies. To this end, they
have parameterized a generic boost-glide vehicle geometry and computed a sequence of trajectories
to obtain a reference geometry that maximizes range subject to specified constraints. For this purpose,
they have relied on the flow solver US3D coupled with a one-dimensional conjugate heat transfer an-
alyzer to represent the response of the thermal protection system. They have optimized two different
types of trajectories: one characterized by a specified angle-of-attack; and another characterized by



a guided trajectory with pull-up and constant dynamic pressure glide. Their followup work will in-
clude the incorporation of moving control surfaces in the parametric high-dimensional model (HDM));
and a controller in the numerical prediction of the trajectory. For this effort, they will rely on grid
morphing approaches that they have recently developed to represent the control surface deflections
and their effects on the body-fitted CFD mesh; and on the two-body (main system-control surface)
representation of the dynamical vehicle system and the exact formulation of its governing equations
that the Stanford University research team led by Farhat has derived and numerically studied during
this reporting period.

Additionally, the Stanford University research team led by Farhat has completed during FY 2024
the development of a novel nonlinear projection-based model order reduction (PMOR) method and its
tailoring to hypersonic flow problems. Unlike all other PMOR methods available in the literature, this
method incorporates a model, formulated in its latent space, of the closure error associated with the
traditional affine approximation. Furthermore, this closure model is constructed using a deep artifi-
cial neural network (ANN), which effectively blends PMOR at the high-dimensional fidelity level and
deep learning at the latent space level. Using a Mach-parameteric version of the benchmark double
cone hypersonic flow problem, where the Mach number is varied between 8 and 13, the Stanford re-
search team has shown that the resulting CFD-based and ANN-augmented projection-based reduced-
order model (PROM-ANN): can have a dimension that is almost as small as the intrinsic dimension of
the solution manifold; its ANN component requires less than 2.7 minutes to train on a simple latptop;
can be hyperreduced in less than 0.6 second on the same laptop to achieve computational efficiency in
additional to low dimensionality; and most importantly, can solve the steady-state benchmark double
cone hypersonic flow problem in less than 3 seconds on the aforementioned laptop, while delivering
an accuracy level in the neighborhood of 99%. The followup research of this Stanford team will
include the training of the PROM-ANN in the higher-dimensional parameter domain of hypersonic
dive-pull-up-glide trajectories and their initial conditions — rather than the lower-dimensional Mach
number parameter domain — to enable its application along the trajectories computed by the University
of Minnesota.

The research team at the University of Notre Dame led by Zahr has made progress on three fron-
tiers. First, they have extended their trust-region approach, which utilizes PROMs to accelerate hyper-
sonic design problems, to handle problems with constraints that depend on the CFD solution. Their
new approach integrates their existing trust-region method for unconstrained optimization problems
into an augmented Lagrangian framework with necessary modifications to ensure global convergence.
Second, they have improved their implicit shock tracking method that simultaneously determines op-
timal node locations and the corresponding flow solution to minimize an error metric. In particular,
they have extended their method from inviscid flow problems to laminar and turbulent viscous flow
problems, and have demonstrated its ability to produce accurate solutions on coarse grids. They have
also developed a method for mesh-based parameterization of complex surfaces to ensure that nodes
slide along complex vehicle geometries while fitting shocks near or on the surface. Finally, they
have made similar improvements to their implicit feature tracking method, an approach to PMOR that
concurrently determines an optimal domain mapping and generalized coordinates that minimize the
approximation error. In particular, they have extended their original inviscid formulation to viscous
hypersonic flow problems.

Led by Hemati, the second research team at the University of Minnesota has developed during
FY 2024 a numerical framework for computing, for a given vehicle geometry, steady-state operating
points at given altitudes and speeds, using a nonlinear model of the longitudinal motion of the vehicle
and Newtonian aerodynamics. In this framework, a linear time-invariant model is extracted by lin-
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earization about one such operating point; and a controller is designed based on the linear model and
the principles of model predictive control (MPC) to stabilize the vehicle at that operating point. They
have implemented the MPC controller and shown for a given vehicle geometry that it can stabilize
the system when the open-loop counterpart is unstable, without violating the hard constraints on the
magnitude of the control input (elevator/elevon deflections). They have also shown that in contrast,
a controller based on the linear quadratic regulator violates the constraints for the same task. Fur-
thermore, they have extended their numerical framework such that the vehicle operates at or close to
the maximum lift-to-drag ratio for a set of pre-specified altitudes. They are currently implementing
the MPC framework to design local controllers at each altitude corresponding to the latest steady-
state computations. Future work will include the development of a scheduling scheme for the local
MPC controllers so that the vehicle can fly through a segment of the trajectory obtained via joining
the discrete altitude points utilized for the local controllers; and the extension of the framework to
CFD-based PROMs for modeling the aerodynamics of the vehicle.

Led by Alonso, the second research team at Stanford University has developed SHARPE, a novel
low-fidelity modeling framework for rapid, integrated analysis and design optimization of parametric
boost-glide hypersonic vehicles. They have integrated this framework in an aero-thermal-structural-
trajectory optimization procedure and used it to study multiple variations of problem setup; and to
understand the importance of higher-fidelity modeling at different points along the vehicle’s trajectory.
To overcome the curse of dimensionality associated with training parametric PROMs or multi-fidelity
models, they have derived adjoint-based sensitivity equations to optimally guide adaptive sampling at
low computational cost. They have also combined both achievements to implement a framework for
multi-fidelity and multi-disciplinary optimization of hypersonic boost-glide vehicles, and arbitrary
trajectory-based objectives. They have demonstrated this framework, which is based on recursive
Gaussian process regression, for multi-fidelity aero-thermal analysis using combinations of the low-
fidelity analyzer SHARPE and the high-fidelity flow solver SU2.

At Rice University, the research team led by Heinkenschloss has developed complementary ap-
proaches for optimization using PROMs or more general surrogate models. Specifically, they have
developed line-search based optimization algorithms using function approximations with tunable ac-
curacy, to address the issue raised by the inexactness of the objective and/or constraint functions when
approximated by PROMs or other surrogate models. In every iteration of their algorithms, the model
must satisfy function error and relative gradient error tolerances that are automatically determined.
Moreover, a bound for the model error is used to explore regions where the model is sufficiently ac-
curate and use a current model as much as possible. The algorithms only use the models and error
bounds: they never access directly the original objective function. The research team has proved
first-order global convergence to a (local) solution of the original problem. In a complementary line
of work, they have developed new algorithms for the refinement of the use of surrogate models in
optimal control problems, including trajectory optimization problems for hypersonic vehicles. They
have developed a new sensitivity analysis of the solution of optimal control problems with respect
to component functions that are computationally intensive at the HDM level and thus are approx-
imated by PROMs or other surrogate models (for example, lift and drag coefficients). They have
also devised an initial approach for combining this sensitivity analysis with point-wise error estimates
for the surrogate models, to determine whether the current parametric surrogate model is sufficiently
accurate, or if not, determine where to refine it. This reduces the overall training cost of a surro-
gate model. They have demonstrated their approach on ODE-based trajectory optimization problems.
Future work will include developing this approach for the optimal control problem governed by the
two-body dynamical system developed at Stanford University.
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Most importantly, we are committed to a paradigm shift in MDAO that will enable the fast, ac-
curate, and robust design and optimization of hypersonic systems; the assessment of their stability,
structural integrity, and maneuverability throughout their flight phases; and the guidance of ground
and flight tests. We are training a new cadre of computational scientists both in the classroom and by
reaching out and collaborating with researchers at AFRL and NRL, among others.



Koopman Operator Theoretic Methods for Efficient
Training and Analysis of Deep Neural Networks
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Abstract

Our work concentrated on continuing to develop Koopman operator theo-
retical methods to provided theoretical foundations for neural network archi-
tectures, as well as developing prediction algorithms using Koopman operator
theory. Our prediction algorithms have shown capability to beat state-of-the-art
time-series prediction methods in complex biomedical time series and enabled
performance-enhancing robotic prosthetics.

On the neural network analysis side, we continued to build an approach for
identifying when the dynamics associated with training multiple deep neural
network (DNN) models are topologically conjugate, via Koopman operator the-
ory. We developed a rigorously founded theoretical approach to identify equiv-
alence of algorithms in a data-driven manner. To validate our approach, we
demonstrated that it can correctly identify a known equivalence between online
mirror descent and online gradient descent. We then utilized it to study a vari-
ety of DNN architectures. First, we identified non-conjugate training dynamics
between shallow and wide fully connected neural networks. Second, we charac-
terized the early phase of training dynamics in convolutional neural networks,
finding that ResNet-20 and LeNet have distinct dynamical regimes, but simi-
larly transitions between regimes. Finally, we uncovered non-conjugate training
dynamics in Transformers that do and do not undergo grokking. Our results,
across a range of DNN architectures, illustrate the flexibility of our framework
and highlight its potential for shedding new light on DNN training dynamics.
Our approach is presenting a promising theoretical foundation for the design of
AT architectures that can perform with small amount of data, enabling edge Al

Our theoretical work on Koopman operator-based prediction concentrated
on the observed shifts in prediction curves in complex noisy data. The source of
the error was associated with hidden variables and initial condition phase shift.
To facilitate such analyses in the Koopman operator framework, we continued
to develop PyKMD, a data-driven scientific tool with a graphical user interface
based on Koopman Operator Theory. It includes modules for advanced data
preprocessing, dynamic mode decomposition, mode reduction, and Koopman
modeling and prediction. To address the challenge of selecting an appropri-
ate subspace of functions in Koopman Operator Theory, we also enhanced the



toolkit to enable experimentation with various observables, including monomi-
als, trigonometric functions, and user-defined functions. We began development
of PyGoSumD, a Python-based data analysis tool. PyGoSumD currently in-
cludes the DSample sampling algorithm and a sensitivity analysis module with
state-of-the-art methods. We tested the framework in complex time series that
are the source of prediction challenge benchmarks, and are at the same time
of importance to the Air Force mission. Biomedical time series obtained from
sensors that measure body functions are of such type. In absence of pilot perfor-
mance data, we utilized PyKMD to predict blood glucose levels in patients with
type 1 and type 2 diabetes and contrasted our predictions against the state-of-
the-art prediction methodologies that included neural network based time series
prediction methods. Our algorithms accurately predicted blood glucose levels
30 minutes ahead, and beat state-of-the-art algorithms by a substantial mar-
gin. Additionally, we used the PyKMD framework in the context of data-driven
methods for robotic neurorehabilitation for people with impaired hand-grasping
abilities. The developed real-time surface electromyography (sSEMG) signal pro-
cessing framework, based on the most influential parameters obtained through
PyGoSumD sensitivity analysis, accurately assesses and predicts grip strength
using a limited number of sSEMG sensors. The predictive models of this type can
be used to prototype advanced robotic rehabilitation devices by using them in
concert with the Robotic Operating System. These types of approaches can be
used in future Al-enabled pilot support methodologies, where pilot performance
is enhanced using (e.g. soft robotic) prosthetics.

We are utilizing these methods in a cross section of problems of interest to
the Air Force, including transitions such as participation in the DARPA AIR
program.



Developments for Design under Uncertainty of Transient Systems
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Abstract

Challenges associated with uncertainty quantification of transient, time-dependent systems share
similar limitations to gradient-based design under uncertainty (GbDuU) due to the need for large
samples spaces and higher-order / higher-fidelity models. The additional computational costs
associated with uncertainty quantification (UQ) must demonstrate benefits in robust and reliable
design, as well as inform decision-making by identifying critical interdisciplinary couplings due to
uncertainty. These challenges are being addressed by in-house efforts to incorporate UQ within the
MSTC digital engineering enterprise, as well as leveraging several external foundational efforts,
including: embedded emulator neural networks for design exploration; gradient-enhanced robust
design optimization; stability and control of uncertainty aeroelastic systems; and, uncertainty
quantification of transient thermal management. An update is provided for progress on the
stochastic characterization of a dynamic system where the coefficients of the state variables are
considered to be uncertain, and the resultant non-deterministic behavior of the time-dependent
state variables must be calculated through simulation. For even the simple case of a linear time-
invariant system in state-space form, the propagation of mean and variance over time becomes a
linear time-varying system. This system is unstable for normal/gaussian coefficients, but may be
characterized over specified time intervals, and may be stable for bounded distributions. Future
directions in thermal management and aeroelasticity under uncertainty are considered.
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Towards large-scale quantum accuracy materials simulations
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Abstract

Electronic structure calculations, especially those using density functional
theory (DFT), have been very useful in understanding and predicting a wide
range of materials properties. The importance of DFT calculations to engineer-
ing and physical sciences is evident from the fact that 20% of computational
resources on some of the world’s largest public supercomputers are devoted to
DFT calculations. Despite the wide adoption of DFT, and the tremendous
progress in theory and numerical methods over the decades, the following chal-
lenges remain. Firstly, the state-of-the-art implementations of DF'T suffer from
system-size and geometry limitations, with the widely used codes in solid state
physics being limited to periodic geometries and typical simulation domains con-
taining a few hundred atoms. This limits the complexity of materials systems
that can be treated using DFT calculations. Secondly, there are many mate-
rials systems (such as strongly-correlated systems) for which the widely used
model exchange-correlation functionals in DFT, which account for the many-
body quantum mechanical interactions between electrons, are not satisfactory.
Addressing these challenges will enable large-scale quantum-accuracy DFT cal-
culations, and can significantly advance our ab initio modeling capabilities to
treat complex materials systems.

This talk will focus on our recent advances in tackling these challenges. I
will present the the progress in developing systematically convergent real-space
methods based on higher-order adaptive finite element discretization, develop-
ment of algorithms for large-scale eigenvalue problems that are at the heart
of enabling large-scale DF'T calculations, and efficient scalable numerical im-
plementation of the methods (including mixed precision algorithms) that can
take advantage of exascale computing architectures. 1 will also present on the
progress in improving the model accuracy of DFT.



Schrodinger’s control and estimation paradigm
with spatio-temporal distributions

Tryphon T. Georgiou
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Abstract

In a 1931 visionary contribution, Erwin Schrédinger, the father of Quantum
Mechanics, laid out the foundations of large deviations’ theory and of likelihood
estimation in his quest to understand how randomness creeps into the descrip-
tion of the quantum world. In recent years, almost a century later, Scrodinger’s
paradigm has served as the blue print of novel stochastic control methods to
regulate uncertainty by enforcing soft-probabilistic constraints on stochastic dy-
namics, and furthermore, the serendipitous confluence of stochastic control with
the theory of Monge-Kantorovich optimal mass transport has renewed interest
and provided new impetus to Schrodinger’s original program [1].

We herein report theoretical and computational advances on a novel type of
control and estimation problems [2-4|, in the same vein as that of Scrodinger
bridges, where control design allows regulation of spatio-temporal marginals for
stochastic dynamics. The new formalism addresses practical stochastic control
problems where the duration of an experiment is itself random. Such problems
are typified by the landing of a module about a specified target, following a
spacial distribution that depends on the time of landing. Examples of practical
interest also include inverse problems to identify underlying stochastic dynamics
for diffusive particles from observed absorption or deposition rates.
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Abstract

The success and survival of autonomous systems greatly depends on the
systems’ ability to quantify and reason about incomplete and uncertain infor-
mation in actionable ways. Optimal Uncertainty Quantification (OUQ) provides
a rigorous theoretical framework to this end by tractably bounding statistical
measures of quantities of interest. Although OUQ is rigorous in theory, the rigor
is lost in practice due to numerical solution approaches. This issue is further
amplified when the quantities of interest are induced by dynamical systems.
This works seeks to account for these issues and develop an end-to-end rigorous
0UQ framework to support system, control, and mission design and optimiza-
tion under uncertain and incomplete information by leveraging advancements
in global optimization and validated numerics. In this talk we outline end-to-
end rigorous OUQ), its core technology gaps, preliminary results, and potential
applications.
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Multiscale Stochastic Modeling, Conditioning, and Simulation
of Rare Events

Roger Ghanem

In the first two years of this effort we constructed switching diffusion models that encode the
interaction between fine scale damage accumulation and coarse scale behavior of composite and
polycrystalline material systems. We also constructed estimators of the joint model that can be
informed from only coarse-scale observations.

In the last year of this project, we leverage this multiscale stochastic construction to efficiently
characterize the extremes of the behavior of associated material systems. Specifically, we charac-
terize the first passage of coarse-scale stress, coarse-scale strain, and fine scale damage indicator
beyond their respective critical values. We develop both computational tools for exploring these
extremes as well as analytical connections to extreme-value theory.



Real Time Bayesian Inference and Prediction for
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Abstract

Digital twins often demand real-time inference and prediction under uncer-
tainty. We consider a class of such problems that are governed by linear time-
invariant PDE systems, with inferred parameter fields representing boundary
or volumetric forcing. This class includes transport or wave propagation source
inversion problems from sensor data. We show that the discrete parameter-
to-observable map has block Toeplitz structure, and that this structure can be
exploited to design real-time FFT-based algorithms for computing the Bayesian
posterior and posterior predictive, using the full high fidelity forward model.
This is accomplished via offline precomputations that involve a modest number
of full PDEs solutions (equal to the number of sensors), and an online real-
time inference component that maps well onto GPU clusters. We demonstrate
the algorithms on a problem of megathrust tsunami inference from near-field
seafloor pressure sensors, governed by coupled acoustic—gravity waves. Despite
the fact that a single forward wave propagation requires over 30 minutes on
1,792 CPU cores, and that there are O(10®%) inversion parameters representing
the seafloor motion, the Bayesian inverse problem can be solved exactly (up
to discretization error) given real-time data in a fraction of a second of online
time on a modest GPU cluster (24 Nvidia A100s). This represents a 100,000 x
speedup over a classical inverse solver.



From Many-Body Quantum Systems to Classical
Turbulence: Novel Horizons of Tensor Networks
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Abstract

The objective of this research is to move towards quantum computing for modeling
& simulation of turbulence and combustion systems. The essential idea is based on
the use of a novel quantum-inspired tensor network (TN) algorithm, to be utilized for
deterministic and stochastic description of such systems. Belonging to the class of TN
algorithms, the matrix product state (MPS) was originally developed for approximat-
ing the state of quantum many-body systems, exploiting their correlation structure
to accurately capture the underlying physics in a low-rank form (i.e., in a massively
reduced state space). Here, the TN /MPS is invoked to simulate several reactive flow
systems in scenarios where DNS, LES and RANS are the reference methods. Related
to DNS, the governing equations of turbulent reacting flows are recast in the context
of MPS, and their time evolution is simulated for various degrees of truncations. For
LES and RANS, the TN/MPS is utilized for solving the PDF-FDF transport equa-
tions of chemically reactive turbulent flows. Due to their inherent capabilities, these
equations are high dimensional. This curse of dimensionality can be managed via TN
and is employed to tackle the Fokker-Planck form of the PDF/FDF under several
conditions, instead of the modelled Langevin form as is typically done via Monte
Carlo methodologies. Work is also in progress in using trotterization and variational
(real or imaginary) time evolution for solving the linear convection-diffusion equation.
The ansatz is implemented on the IBM Torino quantum computer, showing that the
circuit depth is suitable for adequate hardware.



Versatile Mathematical Tools for Directed Energy Simulations
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Abstract

Achieving targeted specifications for fieldable fiber high-power laser systems
remains challenging, despite progress in recent years. Roadblocks have persisted
partly due to the complex trade-space of fiber parameters and nonlinearities
in laser systems operating at high-power. This project aims to mitigate such
difficulties by developing versatile mathematical tools, based on rigorous and
foundational mathematics, to improve reliability, accuracy, and efficiency of
state-of-the-art methodologies for analysis of optical fibers and amplifiers.

This year’s report from Portland focuses on a new adaptive algorithm for
computing eigenmodes and propagation constants of optical fibers with complex
microstructure. It is motivated by last years’ findings on the high sensitivity
of the computed mode losses to modeling choices for certain fibers and their
relation to fine-scale modal features we unearthed. To address the challenge of
creating a general purpose mode computation tool for any fiber, we construct
an adaptive eigenvalue algorithm, based on a dual-weighted residual error esti-
mator. We show that the algorithm captures fine scale features arising in varied
locations in various microstructures without any expert input and provides con-
verged confinement loss values.

This year’s report from Austin focuses on three subjects: 1) Quantitative
comparison of two distinct fiber amplifier models (a high-fidelity Maxwell model
developed in Austin, and a lower-fidelity coupled-mode-theory model developed
in Portland); 2) Stability result for a model acoustic waveguide problem with
impedance BC, leading to the theory of non-self-adjoint operators, which is
the first step towards analyzing the bent fiber problem (an open problem thus
far); and 3) Analysis of pulsed lasers using a novel formulation generalizing the
classical nonlinear Schrédinger equation. We shall present a complete analysis
and numerical results for the linearized problem in the space-time domain. De-
pending upon material constants, the problem is either hyperbolic or elliptic in
space-time.



Abstract: Tensor networks: structure learning, uncertainty quantification, and PDE solutions
Alex Gorodetsky

In this talk we introduce a project seeking to develop automated computational techniques with
quantified uncertainty for using tensor networks to exploit low-dimensional structure in solutions for
high dimensional forward and inverse problems. We investigate tensor-network approaches to discover
this structure and seek to answer some fundamental computational questions. For example, we seek to
understand how do we choose an optimal tensor network structure? How do we adapt structures to
specific data and problem settings? How do we leverage the unique multi-linear nature of tensor
networks to perform rapid inference? How do we embed these methods to enable fast forward and
inverse uncertainty quantification?

To address these questions, we develop probabilistic computational mathematical tools. Specifically,
we will develop fast computation routines for tensor networks with arbitrary structure through
randomized numerical linear algebra; investigate the performance of probabilistic ensembles of tensor
network structures — as opposed to deterministic or probabilistic representations of fixed structures;
discover and investigate randomized graph construction strategies to progressively build a network that
balances edge growth and rank growth; and develop probabilistic tensor network approaches to the
solution of high-dimensional PDEs and high-dimensional data problems (tensors with more than
billions of elements) with quantified uncertainty for both forward and inverse problems.

Our approach is based on the following algorithmic development activities. We will develop core
algorithms that leverage randomization for tensor network computing. These include new sampling
techniques for inference of tensor networks, the application of graph learning approaches to tensor
network learning, and embedding randomized linear algebra into the multi-linear setting.

The outcomes of this project will include new algorithms for computing with tensor networks and
demonstrations of their effectiveness on challenging high-dimensional PDE problems. We aim to show
that this technology enables general and adaptable scalability that is applicable to wide ranging systems
of interest.



GPT-PINN and TGPT-PINN:
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Abstract

Efficient multi-precision training of machine learning algorithms for param-
eter to solution maps promise significant gains, in both accuracy and efficiency,
over the corresponding single-level machine learning algorithms, while providing
a reduced carbon footprint.

In this talk, we present the recently proposed Generative Pre-Trained PINN
(GPT-PINN). It mitigates both challenges in the setting of parametric PDEs.
GPT-PINN represents a brand-new meta-learning paradigm for parametric sys-
tems. As a network of networks, its outer-/meta-network is hyper-reduced with
only one hidden layer having significantly reduced number of neurons. More-
over, its activation function at each hidden neuron is a (full) PINN pre-trained
at a judiciously selected system configuration. The meta-network adaptively
“learns” the parametric dependence of the system and “grows” this hidden layer
one neuron at a time. In the end, by encompassing a very small number of
networks trained at this set of adaptively-selected parameter values, the meta-
network is capable of generating surrogate solutions for the parametric system
across the entire parameter domain accurately and efficiently. Time permit-
ting, we will discuss the Transformed GPT-PINN, TGPT-PINN, which achieves
nonlinear model reduction via the addition of a transformation layer before the
pre-trained PINN layer.
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Abstract

I will discuss the role of involutions in the approximation of Maxwell’s equa-
tions written in first-order form and with non-homogeneous magnetic perme-
ability and electric permittivity. Although the Sobolev smoothness index of the
solution may be smaller than %, it is shown that the approximation is spectrally
correct. The convergence proof is based on a duality argument. One essential
idea is that the smoothness index of the dual solution is always larger than %
irrespective of the regularity of the material properties, whereas the smoothness
of the solution may be smaller than %

Discrete involutions play a key role in the analysis. The take home result
from this work is that the discontinuous Galerkin approximation of Maxwell’s
equation naturally enforces Gauss’s law. No extra stabilization has to be added.
This result holds true for the discontinuous Galerkin approximation of the ideal

MHD equations.



Multi-Scale Approaches for Physics Understanding
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Abstract

Data Assimilation (DA) is needed to systematically bridge the gap between
available experimental data and high-fidelity numerical simulations. The DA
problem in combustion faces challenges from nonlinearity, extremely sparse, in-
direct, and incomplete data, multi-scale nature of the flow, and the presence of
shocks and other features with sharp gradients. Recently, we have investigated
the performance of three filtering-based sequential data assimilation (DA) meth-
ods applied to compressible flows. The three methods that are considered are
the Ensemble Kalman Filter (EnKF), the Extended Kalman Filter (EKF), and
the Particle Filter (PF). Their suitability at handling a combination of strongly
nonlinear discontinuities and non-Gaussian statistics is of interest. Initial im-
plementation of the DA is focused on the one-dimensional Euler equations of
gas dynamics. The ability of the methods to handle sparse data as well as large
deviations between prior data and truth solutions is evaluated.

Initial results show that the realizability of the solutions during the DA pro-
cess is a challenge. To address this, we have implemented and evaluated several
positivity-enforcing variable transformations. For the non-reacting flow, these
transformations show that such a procedure is capable of maintaining thermo-
dynamic realizability, yielding higher quality state estimates than before. For
the one-dimensional detonation tube, the variable transformation approach is
able to avoid the non-physical thermodynamic states. The current implementa-
tion however did not prevent the generation of new local extrema in the solution
which is an area of future work.
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Abstract

Even with the rapid advancement in high performance computing, direct
numerical simulations (DNS) remain restricted to small-scale turbulent combus-
tion physics. While large-eddy simulations (LES) are well suited to model large-
scale physics, the effects of small-scale physics must be incorporated through
closure models, most of which are assumption-based and cannot represent the
true physics, especially at practical conditions in aerospace systems. Against
this landscape, the present work focuses on developing a data-driven reduced-
order modeling framework to: 1) formulate appropriate model reduction tech-
niques to inform effective reduced-order models (ROMs) from representative
turbulent reacting flow DNS to represent subgrid-scale (SGS) or subfilter-scale
(SE'S) physics (referred to as DNS-ROM); and 2) enhance LES by incorporating
DNS-ROM for SGS/SFS physics to enable efficient and accurate turbulent com-
bustion simulations in aerospace systems (referred to as hybrid LES/DNS-ROM
framework). In this talk, we examine the framework in two aspects. First, we
investigate the use of POD basis to representative SE'S physics (e.g., stresses,
scalar fluxes, and reaction rates) based on the DNS data of premixed turbulent
flames at high Karlovitz number conditions. We show that with reasonable
number of POD modes, the SFS physics can be well represented. Second, we
study the LES/DNS-ROM coupling using a 1D burgers’ equation with pre-
scribed initial spectrum to mimic the isotropic homogeneous turbulence decays.
We show that the hybrid LES/DNS-ROM framework can accurately match the
filtered DNS solutions.



Structure-preserving particle method for the
Landau equation modeling plasma collisions
— some extensions
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Abstract

In the past two years, we have developed a collisional particle-in-cell (CPIC)
method for plasma dynamics which can account for the collisional effects mod-
eled by the Landau operator. The method is derived from the gradient-flow
formulation of the Landau equation, thereby preserving the collision invariants
and entropy structure at the semi-discrete level. In this talk, we will discuss
extensions of this method we explored last year in two directions: 1) We in-
troduce a particle method for the multi-species Landau equation which is the
more realistic setting for plasma applications. 2) We introduce a fully discrete
entropy-dissipative and energy-conservative particle method by employing the
discrete gradient integrator.



Inference of Forcing Kernels in
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Gustaaf Jacobs and Qi Wang
gjacobs@sdsu.edu
Department of Aerospace Engineering
San Diego State University

San Diego, CA

Abstract

The multi-physics dynamics of high-speed, shocked, droplet-laden flows are
intricate. The accurate theoretical and experimental prediction of these dynam-
ics in technologies relevant to the Air Force, such as rotating detonation engines
and the erosion of missile cones by condensed droplets, has proven tremendously
challenging. Central to modeling and observation challenges are (1) the extreme
dynamical and thermodynamical scales, and (2) a marginal general understand-
ing of the non-linear, stochastic and intermolecular, inter-phase forcing. Fast
processes limit the observable data to snapshots of shadowgraphs of the droplet
shape, while a reduced fidelity of process-scale models for droplet deformation
and shock dynamics prevents a reliable engineering analysis. We discuss efforts
towards the development of a method that infers forcing kernels of systems
of computational, multi-physics, and particle clouds from limited, high-fidelity
data with confidence intervals. Firstly, we present a method derived to replace
a Wiener process in general Langevin models with a set of random forcing vari-
ables, whose distributions are tuned to match the observed statistics. We show
that this gives rise to an exact deterministic, first-order, hyperbolic Liouville
equation. Analytical PDF solutions for canonical models of particle-laden flows
serve to establish a relationship between the Langevin and Liouville approaches.
Secondly, we discuss a generalized variational formulation for a cloud moment
dynamics system of ODEs, which minimizes the cost function based on sparse,
limited data of the cloud moments to obtain information about the cloud’s forc-
ing function through adjoint operators. This adjoint-based inverse formulation
is tested for a one-dimensional, two-way coupled shock-cloud interaction.



New shock mathematics: Humans, machinery and Al
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Abstract

What large-scale cohesive behaviors — desirable or dangerous — could sud-
denly emerge from systems with interacting humans, machinery and software
including AI? When will they emerge? How will they evolve and be controlled?
Here we offer some initial thoughts on these urgent questions by introducing
new empirically-grounded shock formation mathematics that accounts for en-
tity diversity — akin to encoding tokens in high-dimensional vector spaces in
machine learning/Al. We discuss some preliminary solutions for the time-to-
cohesion and growth-of-cohesion for two species, and some generalizations for
an arbitrary number of species. These solutions reproduce — and offer a mi-
croscopic explanation for — an anomalous nonlinear growth feature observed in
related real-world systems, including Al itself (e.g. so-called Al grokking in a
a modular addition test case). Our theory suggests good and bad ‘surprises’
(extreme events) will appear sooner and more strongly as humans-machinery-
AT etc. interact more — but it also offers a rigorous approach for understanding
and controlling this.



Learning and Meta-Learning of Partial Differential
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At Brown University, we have developed a novel neural network architecture to address
high—dimensional optimal control problems with linear and nonlinear dynamics. It allows us
to solve path planning problems involving many agents in real time. Our approach relies on
introducing a time-dependent symplectic network into the architecture that allows us to send
the original optimal control problem into the solution of a Hamilton-Jacobi partial differential
equation. In addition, we propose a general latent representation of the symplectic map,
which greatly improves model expressivity based on the universal approximation theorem.
We have successfully demonstrated the efficacy of our novel architecture for path planning
problems with obstacle and collision avoidance, including systems with Newtonian dynamics
and non-convex environments, up to dimension 512. Our method shows significant promise
in handling efficiently both complex dynamics and constraints.

In addition, we have developed a new version of physics-informed networks based on the
Kolmogorov-Arnold Metworks (KANs), the so-called PIKANs. We have performed a fair
comparison with PINNs and published a paper https://arxiv.org/abs/2406.02917. Moreover,
we have tackled many linear and nonlinear PDEs in high dimensions using PINNs (over
100,000 dimensions) and demonstrated that PINNs can beat the curse-of-dimensionality
(https://arxiv.org/pdf/2402.07465, https://arxiv.org/pdf/2404.05615).

At Caltech, the initial focus of the group was on GP-based solutions of forward and
inverse problems. Among several advantages, our formulation leads to a perspective on
PINNs-like methodologies which, in addition to allowing practical computations, is also
amenable to analysis and deeper theoretical understanding than afforded by neural network-
based approaches. This approach leads to new methods and a deeper understanding of
existing methods. In a follow-up work, we are currently generalizing the proposed approach
to rough nonlinear PDEs (SPDEs) while maintaining theoretical and computational guaran-
tees. This generalization has the potential to be extended to singular PDEs (e.g., KPZ) and
lead to a natural framework for analyzing such PDEs that might be simpler than regularity
structures/rough paths.



Under this broad umbrella, the work of co-PI Stuart has focused on two questions: (i)
the development of uncertainty quantification through a Bayesian interpretation of the GP-
based methodology; (ii) a study of inverse problems and the implied novel priors that follow
from adopting a GP-based approach. A paper in area (i) has been submitted for publication
and may be found on the arXiv (https://arxiv.org/abs/2405.13149), and work in area (ii) is
ongoing.

The proposed GP-based approach also fits into a broader GP-based framework (Com-
putational Graph Completion) enabling the completion of computational graphs (in which
nodes and edges represent possibly unknown variables and functions) with known connectiv-
ity. Under this umbrella, the work of CoPI Owhadi in collaboration with Bamdad Hosseini
has focused on applications towards learning generative models with rigorous a priori error
estimates (https://arxiv.org/abs/2402.08077) and towards the learning of arbitrary nonlin-
ear differential equations (with rigorous a priori error estimates) in the presence of scarce
data. The work of CoPI Owhadi has also been focused on a generalization of the Com-
putational Graph Completion framework towards the setting where the connectivity of the
graph may be unknown. This generalization enables the co-discovery of graphical structures
and functional dependencies within data. While causal inference methods suffer from their
super-exponential complexity with respect to the number of underlying variables, the pro-
posed approach has polynomial complexity, and it, therefore, opens potential applications to
the discovery of very large graphs/hypergraphs. A paper has been accepted for publication
in PNAS (https://arxiv.org/abs/2311.17007).

At the University of Utah, we have completed two projects covering our collaborative
MURI work on PINNs and Operator Learning. In the first project, we analyze, benchmark,
and generally compare one PINN approach to another. Using Kolmogorov n-widths as a
measure of effectiveness of approximating functions, we judiciously apply this metric in the
comparison of various multitask PIML architectures. We compute lower accuracy bounds
and analyze the model’s learned basis functions on various PDE problems. This is the first
objective metric for comparing multitask PIML architectures and helps remove uncertainty
in model validation from selective sampling and overfitting. We also identify avenues of
improvement for model architectures, such as the choice of activation function, which can
drastically affect model generalization to “worst-case’ scenarios, which is not observed when
reporting task-specific errors. We also incorporate this metric into the optimization process
through regularization, which improves the models’ generalizability over the multitask PDE
problem. In our second project, we examine the Fourier Neural Operators (FNOs), a popular
operator learning framework. In our experience, collecting training data for the FNO can
be a costly bottleneck in practice because it often demands expensive physical simulations.
To alleviate this challenge, we have developed Multi-Resolution Active learning of FNO
(MRA-FNO), which can dynamically select the input functions and resolutions to lower the
data cost as much as possible while optimizing the learning efficiency. We first propose
a probabilistic multi-resolution FNO and develop an effective Bayesian training algorithm
with Monte-Carlo ensembles. To conduct active learning, we maximize a utility-cost ratio
as the acquisition function to acquire new examples and resolutions at each step. We use
moment matching and the matrix determinant lemma to enable tractable, efficient utility
computation. Furthermore, we develop a cost annealing framework to avoid over-penalizing
high-resolution queries at the early stage. We have shown the advantage of our method in



several benchmark operator learning tasks.

At Stanford University, the research team has made significant advances on three dif-
ferent fronts: the acceleration of projection-based model order reduction (PMOR) by model-
ing the closure error in the latent space using deep learning; the design of a multi-modal loss
function for regularizing the nonparametric probabilistic method (NPM) for modeling and
quantifying model-form uncertainty and performing digital twinning; and the expansion of
the scope of their physics-based machine learning (PBML) framework for multiscale material
modeling. In the first arena, the team has demonstrated the ability of their PMOR-deep
learning framework to solve in real-time challenging, parametric, hypersonic flow problems
using projection-based reduced-order models of dimensions as low as the intrinsic dimension
of the solution manifold. In the second front, they have developed a parameter-free regular-
ization approach for NPMs loss function and demonstrated the potential of the regularized
NPM for constructing a digital twin of the instance type for the structural health monitoring
of a fighter aircraft. In the third area, the team has expanded the scope of their PBML frame-
work for data-driven constitutive modeling to guarantee not only dynamic stability, material
stability, internal variable stability, objectivity, and consistency, but also fading memory, the
recovery of elasticity, material non-inversion, and the second law of thermodynamics. Most
importantly, they demonstrated the ability of this PBML framework to genuinely discover
the constitutive law of the multiscale soft good used in Perseverances parachute canopy,
rather than simply regress its stress-strain data.



SDDC Solutions of Kinematic Dynamo Problems

Chunlei Liang
cliang@clarkson.edu
Department of Mechanical and Aerospace Engineering

Clarkson Universitys
Potsdam, NY

Abstract

The Spectral Difference with Divergence Cleaning (SDDC) method has been
used to successfully model a number of nonlinear MHD problems [1, 2|. The
spectral difference method is a versatile high order method that can be used
for unstructured grids and can be massively parallelized. In this study, the
SDDC method is applied for solving two kinematic dynamo problems. The first
kinematic dynamo problem was solved in a cubic box with all periodic bound-
ary conditions. The SDDC method is verified to capture the ‘Cigar’ structures
published in the literature [3]. The second kinematic dynamo problem adopts
a spherical shell geometry and non-penetrative and stress-free boundary condi-
tions [4]. The SDDC method will be employed to predict Sunspot cycles [5].
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Abstract

We provide a numerical analysis and computation of neural network pro-
jected schemes for approximating one-dimensional Wasserstein gradient flows.
We approximate the Lagrangian mapping functions of gradient flows by the class
of two-layer neural network functions with ReLU (rectified linear unit) activa-
tion functions. The numerical scheme is based on a projected gradient method,
namely the Wasserstein natural gradient, where the projection is constructed
from the L? mapping spaces onto the neural network parameterized mapping
space. We establish theoretical guarantees for the performance of the neural
projected dynamics. We derive a closed-form update for the scheme with well-
posedness and explicit consistency guarantee for a particular choice of network
structure. General truncation error analysis is also established on the basis of
the projective nature of the dynamics. Numerical examples, including gradi-
ent drift Fokker-Planck equations, porous medium equations, and Keller-Segel
models, verify the accuracy and effectiveness of the proposed neural projected
algorithm.

If time allows, I will also discuss some updates on other developments in
2023-2024, such as deep JKO methods, high-order computations of mean field
control problems, regularized Wasserstein proximal sampling methods, and con-
vergence analysis in stochastic differential equations.
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Abstract

We report on new linear and nonlinear model reduction methods applied to
differential equations. For linear reduction of linear (time-invariant) dynamical
systems, we present a greedy-type algorithm that builds a reduced order model
through progressive enrichment of a linear low-dimensional subspace approxi-
mation in the frequency domain. A significant feature of our procedure is that
it is directly applicable to parametric differential equations and comes with «a
posteriori error bounds, and in particular that through sectorial properties of
the differential equation operator yields a priori error estimates and rates of
convergence. We demonstrate that in practice our procedure produces reduced
order models whose accuracy on particular parameter values is comparable to
gold-standard non-parametric methods such as balanced truncation. We also
discuss recent work on nonlinear model reduction leveraging deep learning-based
snapshot transformations that can effectively learn low-dimensional latent ap-
proximations to solutions of transport-type and -dominated differential equa-
tions.
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Abstract

In the year 2023-2024, the MURI team continue developing fundamental
breakthroughs on mean field games (MFG) theory, fast and scalable numerical
schemes based on Al and high order computational methods, and modeling
in social science and engineering applications. Selected results are presented
below.

AT and Sampling algorithm:

e Wagserstein proximal operators describe score-based generative models
and resolve memorization.

e Numerical analysis of a first-order computational algorithm for reaction-
diffusion equations via the primal-dual hybrid gradient method.

e Tensor train based sampling algorithms for approximating regularized
Wasserstein proximal operators.

e A deep learning algorithm for computing mean field control problems via
forward-backward score dynamics.

Theoretical result:

e We propose a way to discretize the common noise operator, in random
optimal control problems. This allows us to study new types of quantum
games, which rely on a time discrete family of semi-circle possesses.

In-context learning:

e PDE generalization of in-context operator networks: A study on 1d scalar
nonlinear conservation laws.

e In-context operator learning with data prompts for differential equation
problems.

e Prompting in-context operator learning with sensor data, equations, and
natural language.

Primal-dual damping algorithms:

e Numerical analysis of a first-order computational algorithm for reaction-
diffusion equations via the primal-dual hybrid gradient method.

e Primal-dual hybrid gradient algorithms for computing time-implicit Hamilton-
Jacobi equations.



e A Primal-dual hybrid gradient method for solving optimal control prob-
lems and the corresponding Hamilton-Jacobi PDEs.

Engineering applications:

e Research on game theory meets data augmentation, federated learning,
edge computing, LEO satellite networks.

Mean field modeling for spatial evolutionary games:
o Agent-based EGT Model of the Emergence of Symbolic Norms.

e An Approximation Framework for Large-scale Spatial Systems.
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Abstract

The aim of this work is to learn models of population dynamics of physical
systems featuring stochastic effects and a dependence on physics parameters.
The learned models can act as surrogates of classical numerical models to ef-
ficiently predict the system behavior. By population dynamics we refer to the
evolution of the ensemble of samples (particles) that represent the system as
opposed to the trajectories of individual samples. Crucially, different sample
dynamics can collectively give rise to the same population dynamics. We aim
to exploit this redundancy to achieve a reduction of complexity in the model.
Building on the Benamou-Brenier formula from optimal transport, we use a
variational problem to infer parameter- and time-dependent gradient fields that
represent approximations of the population dynamics. The inferred gradient
fields can then be used to rapidly generate sample trajectories that mimic the
dynamics of the physical system on a population level over varying physics pa-
rameters. We show that combining Monte Carlo sampling with higher-order
quadrature rules is critical for accurately estimating the training objective from
sample data and for stabilizing the training process. We demonstrate on Vlasov-
Poisson instabilities as well as on high-dimensional particle and chaotic systems
that our approach accurately predicts population dynamics over a wide range
of parameters.
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Abstract

We consider the Bayesian smoothing problem of inferring the unknown initial
condition of a linear dynamical system from noisy linear measurements taken
after the initial time. When endowed with a Gaussian prior and Gaussian noise
model, this defines a linear-Gaussian Bayesian inverse problem whose posterior
statistics can be optimally approximated in a low-rank subspace defined by the
dominant generalized eigenvalues of the matrix pencil consisting of the Hessian
of the log-likelihood and the prior precision. We use this subspace to define
an inference-oriented projection-based reduced model via Petrov-Galerkin pro-
jection of the full system operators onto this inference-oriented subspace. We
exploit connections between this new procedure and balanced truncation, a sys-
tem theoretic control method, to prove that the new reduced model recovers
the optimal posterior approximation in certain limits. Numerical experiments
demonstrate that the reduced model can be used to accelerate an ensemble-
based inference algorithm by orders of magnitude while high accuracy in the
posterior approximation.



Title. A Semi-Lagrangian Adaptive-Rank Method (SLAR) for Linear Trans-
port and Nonlinear Vlasov-Poisson Systems.

PI. Jingmei Qiu, University of Delaware, FA9550-22-1-0390.

Abstract. High order semi-Lagrangian methods for kinetic equations has
been well-developed in the past few decades. In this work, we propose a semi-
Lagrangian finite difference method that explore the adaptive-rank structure
of the Vlasov-Poisson solution to further improve computational efficiency.
Besides using extra large time stepping sizes via the semi-Lagrangian set-
ting, the proposed method explores the low rank structure of the Vlasov
solution by the cross approximation of matrices, which is also known as the
CUR decomposition or pseudo-skeleton approximation. Such approximation
could be obtained by selecting the columns and rows that best represent
the solution matrix via a randomized pivoting strategy. Following the semi-
Lagrangian update of the Vlasov solution via cross approximation, we apply
a singular value truncation, as well as a mass conservative projection, of the
Vlasov solution, for numerical stability and local mass conservation. The
computational complexity scales linearly with respect to the mesh size N
per dimension, in contrast to a N2 for traditional full rank schemes, in each
time step. A wide range of benchmark tests are performed, to demonstrate
the efficiency and effectiveness of the proposed scheme.



Kernel Methods with Machine Learning and Adaptivity

Jonah A. Reeger
jonah.reeger.20@us.af.mil
Department of Mathematics and Statistics

Air Force Institute of Technology
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Abstract

Kernel methods, which include the more well known Radial Basis Function
(RBF) based methods, have grown in popularity over the last three decades for
the purposes of interpolation, numerical differentiation, quadrature/cubature
and the solution of partial differential equations (PDE). These methods are
straightforward to implement—analogous to polynomial based methods—and can
be highly accurate even in the presence of scattered data and on complex do-
mains. Due to these recent successes we investigate new computational tools
that

e combine the benefits of kernel methods with advances in machine learning
to overcome issues of stability in the numerical integration of semi-discrete

PDEs.

e automatically adapt local kernel methods to achieve a prescribed tolerance
on the accuracy of the approximation.

These computational tools will inform improved numerical simulations of the
interaction between lasers operating at high power and the medium that the
laser is propagating through.



A Machine Learning Framework for
High-Dimensional Mean Field Games and Optimal
Control

Lars Ruthotto
lruthotto@emory.edu
Department of Mathematics

Emory University
Atlanta, Georgia, USA

Abstract

This project develops a machine learning framework for the numerical solu-
tion of high-dimensional mean field games and optimal control problems, e.g.,
problems in which the state space dimension is in the tens or hundreds. The
framework targets applications where optimal controls can be obtained from
the value function, and the latter satisfies high-dimensional Hamilton-Jacobi-
Bellman (HJB) equations. We combine the approximation power of neural
networks with the scalability of Lagrangian PDE solvers to mitigate the curse
of dimensionality (CoD) that limits the use of traditional numerical solvers.
Specifically, we parameterize the value function with a neural network and train
its weights using a tailored objective function that includes penalty terms en-
forcing the HJB equations. A key benefit of our framework is that no training
data is needed, e.g., no numerical solutions to the problem must be computed
before training.

In this talk, I will summarize the outcomes of the project, highlight oppor-
tunities for practical applications, and present open challenges.



Deep Learning applied to Graph Problems
Amin Saberi
Stanford University

Abstract: Geometric deep learning aims to generalize neural models to non-Euclidean
domains such as graphs and manifolds. The field has made promising advances and
remarkable performance improvements over the last few years. The goal of this project is to
develop a foundational understanding of this new and exciting area.

The focus of today's talk is on MAGNOLIA, a Graph Neural Network (GNN) based algorithm
for solving graph matching problems. We are studying Online Bayesian bipartite matching and
introduce a graph neural network (GNN) approach that emulates the problem's
combinatorially-complex optimal online algorithm, which selects actions (e.g., which nodes to
match) by computing each action's value-to-go (VTG) -- the expected weight of the final
matching if the algorithm takes that action, then acts optimally in the future. We train a GNN
to estimate VTG and show empirically that this GNN returns high-weight matchings across a
variety of tasks. Moreover, we identify a common family of graph distributions under which
VTG can be efficiently approximated by aggregating information within local neighborhoods in
the graphs. This structure matches the local behavior of GNNs, providing theoretical
justification for our approach.



Information Geometric Regularization of the
Barotropic Euler Equation

Florian Schafer
fts@gatech.edu
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Atlanta, USA

Abstract

A key numerical difficulty in compressible fluid dynamics is the formation
of shock waves. Shock waves feature jump discontinuities in the velocity and
density of the fluid and thus preclude the existence of classical solutions to the
compressible Euler equations. Weak “entropy” solutions are commonly defined
by viscous regularization, but even small amounts of viscosity can substantially
change the long-term behavior of the solution. In this work, we propose the first
inviscid regularization of the multidimensional Euler equation based on ideas
from semidefinite programming, information geometry, geometric hydrodynam-
ics, and nonlinear elasticity. From a Lagrangian perspective, shock formation
in entropy solutions amounts to inelastic collisions of fluid particles. Their
trajectories are akin to that of projected gradient descent on a feasible set of
non-intersecting paths. We regularize these trajectories by replacing them with
solution paths of interior point methods based on logarithmic barrier functions.
These paths are geodesic curves according to the information geometry induced
by the barrier function. Thus, our regularization amounts to replacing the Eu-
clidean geometry of configuration space with a suitable information geometry.
We extend this idea to infinite families of paths by viewing Euler’s equations as
a dynamical system on a diffeomorphism manifold. Our regularization embeds
this manifold into an information geometric ambient space, equipping it with a
geodesically complete geometry. Expressing the resulting Lagrangian equations
in Eulerian form, we derive a regularized Euler equation in conservation form.
Numerical experiments on one and two-dimensional problems show its promise
as a numerical tool. While we focus on the barotropic Euler equations for con-
creteness and simplicity of exposition, our regularization easily extends to more
general Euler and Navier-Stokes-type equations.



A Scientific Foundation Model for PDEs:
Multi-Operator Learning and Extrapolation

Hayden Schaefter
hayden@math.ucla.edu
Department of Mathematics

University of California, Los Angeles
Los Angeles, California, USA

Abstract

Foundation models have been successful in addressing various language and
image processing tasks. In this talk, we introduce a multi-modal scientific foun-
dation model for predicting and discovering partial differential equations, named
PROSE-PDE. Our model, designed for bi-modality to bi-modality learning, is a
multi-operator learning approach which can predict future states of spatiotem-
poral systems while simultaneously learning the underlying governing equations
of the physical system. We will discuss extrapolation tests, generalization of
physical features, and other computational studies.



ABSTRACT
Title: Machine Learned Turbulence Modeling (MLTM)
Investigators: Christopher Schrock (Pl)

Organization: Air Force Research Laboratory, Aerospace Systems Directorate (WPAFB, OH)
Presenter: Christopher Schrock

This effort seeks to improve Reynolds Averaged Navier Stokes (RANS) models and predictive
capabilities for aerospace systems design and analysis. The task is exploring machine learning
(ML) approaches to increase accuracy of RANS solvers. Over the past several years, this effort
has examined acceleration of RANS solvers using ML initialization, the development of an
elliptic input feature (EIF) input space and output basis, and development of turbulence
modeling approaches employing Graph Neural Networks. Results will be presented to highlight
developments which have occurred during the first year of this renewal lab task. Over the past
year, work has focused on the incremental implementation of MLTMs within a CFD solver,
model feature importance studies, turbulence realizability encoding within network
architecture.



Data-Driven Discovery of Optimized
Multifunctional Material Systems Center of

Excellence (RX, AFOSR, CMU)

Jeft Simmons, Megna Shah
jeff.simmons.3@us.af.mil megna.shah.1@us.af.mil

Metals Branch, Materials and Manufacturing Directorate; WPAFB, OH
Carnegie Mellon Unviersity; Pittsburgh, PA

Abstract

This center of excellence has been focused on engineering and scientific ques-
tions at the intersection of materials science and machine learning/artificial
intelligence and developing the workforce in these areas.

For this review, two students from the center will be presenting some of their
work.

Zach Varley (zvarley@andrew.cmu.edu) will present on: In the context of
multimodal image registration, we derive generalized non-standard 3rd and 4th
order Edgeworth series expansions of mutual information. We then join this
formulation with fast Fourier transforms for dense computation of mutual in-
formation over discrete image shifts, conventionally called the cross mutual
information function. Traditional binning based approaches to its calculation,
although straightforward to implement and faster than brute force methods,
require a number of cross correlations that grows quadratically with the num-
ber of bins. Edgeworth series expansions effectively reduce this computational
burden to 10 cross correlations for a 3rd order expansion, and 15 for a 4th order
expansion. We benchmark the accuracy and run-time performance of several
variants of our method and compare the results with those of the binned cross
mutual information function.

Alex Gourley (agourley@andrew.cmu.edu) will present on: Binder jetting
technology is capable of producing ceramic and metallic parts, but low green
densities and spreading anomalies reduce the predictability and processability of
resulting geometries. In-situ feedback presents a method for robust evaluation
of spreading anomalies. Developing models to process images trained on small
quantities of data reduces the number of required builds to refine processing
parameters in a multivariate space. In this study, we generated and compared
U-Net semantic segmentation models for visually different powders using single
builds for training data, identifying the challenges of extending existing seg-
mentation methods to visually lighter oxide powders. Leveraging preexisting
analysis tools allowed for rapid analysis of oxide powder by providing an acces-
sible framework for implementing neural networks. Robust analysis techniques
and the demonstration of correcting anomalies with processing parameters show
promise for the development of automation with in-situ feedback.



Navigating the mapping between process and microstructure

Jeff Simmons, Megna Shah, and Veera Sundararaghavan
jeff.simmons.30us.af .mil megna.shah.1@us.af.mil
Metals Branch
Materials and Manufacturing Directorate AFRL; WPAFB, OH
University of Michigan, Ann Arbor, MI

Abstract

Microstructure sensitive design rests on two assumptions: (1) that the map-
ping between process and microstructure are continuous and (2) that this map-
ping is continuously invertible. These assumptions are made for convenience,
since they allow for an incremental approach to materials design, but designers
are not cognizant of the larger mathematical implications of these assumptions.
A homeomorphism is a very specific functional mapping in topology defined
precisely as above, and for which a considerable number of behaviors have been
shown to be true. Typically, designers and materials engineers work together in
very narrow regions of design space where they intuit these might be satisfied.
This has the disadvantage that it makes the design strategy needlessly restricted
and that, if the intuition is wrong, a considerable uncertainty as to ‘what went
wrong’ is generated.

We propose to investigate the mapping between process and microstructure
with phase field modeling as a random process to generate microstructure sam-
ples under controlled processing conditions. These will be used to develop neural
networks that will map these microstructures into a latent space, i.e. the low di-
mensional manifold on which, by hypothesis, the microstructure samples would
lie. The topological properties of this mapping between the process variables
and the microstructure manifold could then be investigated independently. As
an example, dimensionality, a topological property, can estimated from these
samples alone to characterize the microstructure latent space.

From here, other hypotheses may be tested in order to validate (or reject)
the claim that process is homeomorphic to microstructure. Examples may be
homology, the number of connected regions, the number of ‘holes,” the number
of ‘tunnels,” etc. which must be the same between the domains if the mapping
were homeomorphic. With some exploration, this could give some estimate of
the bounds of the region of homeomorphism.

The potential implications of studying the microstructure manifold in the
latent space, are (1) being able to understand the result of process limitations on
microstructure, (2) finding rare events, (3) navigating along independent dimen-
sions in microstructure space, which are directly related to necessary changes in
processing space, and (4) developing a methodology for identifying the extent



Mesh Generation and Al-enhanced Algorithms
for Modeling Complex Materials Systems

Soheil Soghrati
soghrati.1l@osu.edu
Professor
Department of Mechanical and Aerospace Engineering
Department of Materials Science and Engineering
The Ohio State University

Abstract

This presentation will focus on the latest updates in developing the Deep
Learning-Driven Domain Decomposition (DLD?) algorithm and its application
for modeling linear elastic problems. DLD? is a novel, generalizable Al-driven
modeling framework capable of approximating the field in problems with ar-
bitrary geometries, boundary conditions (BCs), and material properties. This
method combines a set of pre-trained Fourier Neural Operator (FNO) models
with the Schwarz Domain Decomposition (DDM) technique to approximate the
field. A partitioning algorithm is employed to break down a given domain into
several subdomains with 50% overlap, where the FNO model can predict the
response during DDM iterations. The FNO model needs to be trained using a
dataset with millions of entries consisting of subdomains with various shapes,
BCs, and material properties. This training dataset is constructed using an
automated finite element (FE) modeling framework involving virtual geometry
reconstruction and meshing algorithms, which are developed through prior sup-
port from the Comp Math program. Despite the high cost of constructing the
training dataset and subsequently training the FNO models, the generalizability
of DLD? sets it apart from other scientific AI/ML algorithms. In this work, we
show the excellent accuracy of DLD? for modeling plane strain linear elasticity
problems with various geometries and BCs. Compared to an FE simulation,
this technique can significantly reduce the operation cost (no mesh generation
is required) and computational cost (does not involve solving a linear system of
equations) of the simulation. We also discuss plans for further expanding DLD?
and its future applications for modeling nonlinear problems.



of homeomorphic regions in latent space where incremental changes may be
safely made. Additionally, since homeomorphism is transitive, if a sub-region of
a processing-microstructure region were homeomorphic to a region in property
space, this would give a direct homeomorphic mapping between process and
property, a longstanding dream of materials design. If this were true, mate-
rials characterization could be separated from materials design, at least over
that region, and processes could be directly modified to produce desired prop-
erties. All of these would enable true autonomous materials development with
microstructure design. We will present on plans for work beginning in the fall,
some seedling work on dimensionality estimation and some work on developing
criterion for microstructure descriptors.



Feature-Informed Data Assimilation: Making Sense
of Binary-Sensor Observations

Daniel Tartakovsky
tartakovsky@stanford.edu
Stanford University

Abstract

Abstract: Many sensors report feature data, e.g., shock locations and level
curves, in a binary form. In doing so, a sensor converts a continuous state
variable into a positive or negative reading. Estimation of the state and pa-
rameters of the system from binary observations is challenging due to at least
two reasons. First, information content of binary observations is lower than
that of their continuous counterparts, which hinders the system’s observability
and identifiability. Second, the discrete nature of binary observations poses
a challenge to variational data assimilation methods. We show that a dy-
namical system with continuous forward model and observation operators is
almost surely non-identifiable under binary observations and establish a met-
ric to quantify the degree of non-identifiability of the system. We supplement
this theoretical result with numerical experiments, which demonstrate that bi-
nary observations contain valuable information for parameter estimation. We
propose two variational approaches to parameter estimation from binary ob-
servations: a constrained optimization and a constraint-free optimization. We
apply our algorithms to analyze in-host virus dynamics and immune response
to COVID-19.



Title. MURI: Tensor Approaches for Simulating Kinetic Systems

PIs

Andrew Christlieb, Michigan State University

Jingwei Hu, University of Washington

Jingmei Qiu, University of Delaware

Edgar Solomonik, University of Illinois Urbana-Champaign
Daniele Venturi, University of California, Santa Cruz
Lexing Ying, Stanford University

Dates: 2024-2029

Abstract. Our team proposes to systematically develop an interlocking
research framework to advance tensor network methods for simulating high-
dimensional kinetic models. Our research efforts are organized as three core
thrusts. These include a direct multi-scale time integration of tensor network
solutions on a low-rank manifold with preservation of solution structures
and modeling hierarchy (Thrust 1 and part of Thrust 2), and a data-driven
learning approach in discovering tensor network decomposition and model
reduction for extremely high-dimensional probability density functions for
quantification of uncertainties and optimal control (Thrust 2). The core
technical challenges in tensor network computations arise from previous two
thrust, lead to a focused discussion on robust tensor decomposition and op-
timization tools in Thrust 3, covering the topic of tensor network topology
optimization, low-rank tensor network representation of high-dimensional
functions and operators, and data-driven learning of tensor network rep-
resentations. While the proposal is inspired by nonequilibrium plasmas
simulations and control of plasma instabilities, the underlying methodol-
ogy promises wide-ranging applications, extending to multiple areas critical
to the DoD’s interests.



Heterogeneous Data Fusion by Graph-based
Stochastic Models to Achieve Combinatorial
Generalization of New Insights into Powder-based
Fabrication

Hui Wang
hwangl10@eng.famu.fasu.edu
Florida A&M University
Tallahassee, FL

Abstract

During the development of new manufacturing processes, it is essential to
discover defect mechanisms and thereby establish process control. However,
many relationships between the defects and potential process variables are un-
known yet due to limited or even absent historical measurements. As such, tra-
ditional methods, including state-of-the-art multi-physics simulations and ma-
chine learning, struggle to effectively obtain the relationships without directly
observed data. This project will establish a theoretical framework to achieve
the capability of combinatorial generalization (CG) that can empower Al to
make inferences on new scenarios given piecewise knowledge learned by fusing
multiple data sources, such as multi-physics simulation and experimental data.
The research will develop theories and algorithms based on physics-informed
Graphnets and generative Al to solve CG problems, helping discover unmea-
surable defect mechanisms in powder-based fabrication. The research includes
three thrust areas including the (1) development of physics-informed machine
learning algorithms to integrate multi-modal data from low-cost measurements
and multi-scale simulations to generalize insights into anomalies that are diffi-
cult to measure, (2) generation of piecewise information from low-cost measure-
ments by experiments and machine learning, and (3) extraction of informative
data from computational fluid dynamics simulation and computer experiment.
Through close collaboration with HP Inc., use cases will be developed to ex-
plore the concept of CG and its applications in accelerating discoveries of defect
mechanisms in powder-based fabrication. The proposed research can benefit a
wide range of manufacturing processes, leading to new discoveries in defect for-
mation for manufacturing engineering and material sciences. This project also
features a strong educational aspect involving the interaction of all teams with
graduate students from FAMU, a historically black college/university (HBCU).
Their graduate students will have opportunities to conduct experiments and
simulations for their research during their internships at HP.



HBCU-led Center for scientific machine learning for the
materials sciences

PI: Yunjiao Wang (Texas Southern University)
co-PIs: Daniel Vrinceanu (Texas Southern University),
Noushin Ghaffari (Prairie View A&M University)
Lin Li (Prairie View A&M University)
Mohsen Taheri Andani (Texas A&M University)
Veera Sundararahgavan (University of Michigan)

Abstract

The proposed Center for Scientific Machine Learning for Material Sciences brings
together a multidisciplinary team of experts in applied mathematics, physics, statis-
tics, optimization, and machine learning, in collaboration with materials scientists.
The primary objective of the center is to develop a foundational SciML framework
that will drive advancements in materials design and discovery. This comprehensive
framework will encompass uncertainty quantification, predictive simulation, and op-
timization tools. By focusing on the Electron beam powder bed fusion (EBPBF)
platform, the center will leverage the inherent equivalence between electron beam pro-
cessing and scanning electron microscopy, utilizing sensor data to facilitate data-driven
and principle-guided scientific exploration. The center places a strong emphasis on
knowledge development and building diversity in the scientific community, fostering
the growth of SciML and Data Science programs in Historically Black Colleges and
Universities (HBCUs). A background on Electron beam powder bed fusion (EBPBF)
platform, sensor data collection and control of microstructure will be provided, as well
as the current work on topographical analysis using multisensor data integration.



Enhanced Entropy Filtering and Online Bayesian

Optimisation of Polynomial-Multigrid Cycles for
High-Order Methods

Freddie D. Witherden
fdw@tamu.edu

Department of Ocean Engineering
Texas A&M University
College Station, Texas, USA

Abstract

In the first part of this talk we will present an enhanced variant of our
positivity-preserving entropy filtering approach. Through the incorporation of a
range of algorithmic enhancements this new approach is around ~2.4 times more
efficient with third order solution polynomials and ~6.4 times faster with fourth
order solution polynomials. With these enhancements we will show how entropy
can serve as a cost-effective alternative to quadrature based anti-aliasing. Re-
sults will be presented for a NACA 0021 aerofoil in deep stall at Re = 270000
demonstrating how this approach results in a twofold decrease in run-time com-
pared with over-integration.

In the second part of the talk we will outline how Bayesian optimisation can
be used to learn polynomial multigrid cycles at run-time. This is accomplished
through a combination of cycle parameterisation along with a novel application
of stochastic rounding. It will be shown how this technique can identify cycles for
a turbulent cylinder flow problem at Re = 3900 which outperform hand-tuned
cycles in time-to-solution by a factor of two.



Modeling Unknown Stochastic Systems via
Generative Models

Dongbin Xiu
xiu.16Qosu.edu
Department of Mathematics
The Ohio State University
Columbus, OH, USA

Abstract

We present a numerical framework for modeling unknown stochastic sys-
tems by using observation data. The framework is based on flow map learning
(FML), which utilizes the data to approximate the flow map operator of the
unknown system. Once the flow map is approximated, FML creates an iter-
ative time marching scheme that can produce long-term system predictions.
For unknown stochastic systems, since the noises can not be directly observed,
we utilize generative models in FML to approximate the unknown stochastic
flow map in distribution. Various generative models such as GANs, normalizing
flow, diffusion map, autoencoder-decoder can be incorporated in the framework.
Extensive numerical examples demonstrate the effectiveness of the proposed ap-
proach, particularly for producing very long-term system predicions using only
short bursts of data.



Nonlocal Attention Operator:
Towards an Interpretable Foundation Model

Yue Yu
yuy214@lehigh.edu
Department of Mathematics

Lehigh University
Bethlehem, PA, USA

Abstract

Despite recent popularity of attention-based neural architectures in core Al
fields like natural language processing (NLP) and computer vision (CV), their
potential in modeling complex physical systems remains under-explored. Learn-
ing problems in physical systems are often characterized as discovering operators
that map between function spaces based on a few instances of function pairs.
This task frequently presents a severely ill-posed PDE inverse problem.

In this work, we propose a novel neural operator architecture based on the
attention mechanism, which we coin Nonlocal Attention Operator (NAO), and
explore its capability towards developing a foundation physical model. In par-
ticular, we show that the attention mechanism is equivalent to a double integral
operator that enables nonlocal interactions among spatial tokens, with a data-
dependent kernel characterizing the inverse mapping from data to the hidden
parameter field of the underlying operator. As such, the attention mechanism
extracts global prior information from training data generated by multiple sys-
tems, and suggests the exploratory space in the form of a nonlinear kermnel
map. Consequently, NAO can address ill-posedness and rank deficiency in in-
verse PDE problems by encoding regularization and achieving generalizability.
Lastly, we empirically demonstrate the advantages of NAO over baseline neural
models in terms of the generalizability to unseen data resolutions and system
states. Our work not only suggests a novel neural operator architecture for
learning an interpretable foundation model of physical systems, but also offers
a new perspective towards understanding the attention mechanism.



Adaptive, data-driven model reduction for
shock-dominated flows to enable many-query
computational physics

Matthew J. Zahr
mzahrOnd. edu
Department of Aerospace and Mechanical Engineering

University of Notre Dame
Notre Dame, IN, USA

Abstract

We introduce a series of model reduction methods to reduce the cost of shock-
dominated flow simulations that aim to circumvent the well-known Kolmogorov
n-width reducibility limitation. The first approach seeks to align flow features
in the solution with corresponding features in the reduced basis by deform-
ing the underlying domain, which effectively removes the convection-dominated
nature of the solution. We also introduce two forms of online adaption to im-
prove the robustness and prediction potential of reduced-order models, one of
which injects high-fidelity information from previous time steps into the reduced
basis, and the other enriches the global basis functions with piecewise polyno-
mials. We use the proposed methods to solve a number of relevant two- and
three-dimensional compressible flows with complex discontinuity surfaces and
demonstrate the potential of the method to provide accurate approximations
with very few degrees of freedom.



DeepONet for fast data assimilation
in transitional high-speed flows

Tamer Zaki', Pierluigi Morra, Charles Meneveau
ft.zaki@jhu.edu
Department of Mechanical Engineering
Department of Applied Mathematics & Statistics
Johns Hopkins University
Baltimore, MD, USA

Abstract

Deep operator networks (DeepONet) are an efficient model for learning func-
tionals. However, a key challenge is the availability and computational cost of
training data in high dimensions. The specific problem of interest in his work
is transition to turbulence in hypersonic boundary layers, and in particular the
estimation of the oncoming instability waves from wall-pressure data. This in-
verse problem is nonlinear, ill-conditioned, and may have non-unique solutions.
While use of DeepONet has the potential to significantly accelerate the data-
assimilation loop by replacing the high-fidelity Navier-Stokes solution, model
errors can appreciably compromise the accuracy of the estimated state. The
sampling of the training data must therefore minimize the epistemic uncer-
tainty of the trained DeepONet model, while also minimizing the number of
training data in order to reduce the computational cost. These objectives are
achieved by optimally sampling the space of possible solutions, preferentially
along the most uncertain directions and with aid of a physics-based model.
Our DeeONet-based algorithm successfully assimilates wind-tunnel measure-
ments of a Mach 6, transitional, boundary layer over a 7-degree half-angle cone.
The estimated state compares favorably to the only known solution form an
ensemble-variational approach.



Universal Approximation of Dynamical Systems by Semi-Autonomous Neural
ODEs and Applications

Enrique Zuazua

Friedrich-Alexander-Universitat Erlangen-Nurnberg (FAU)
Erlangen, Germany

This presentation reports on the recent collaborative efforts of our team at the
intersection of control theory and machine learning.

We will primarily address the challenge of modeling dynamical systems using neural
network architectures. Our focus lies in the introduction of semi-autonomous neural
ordinary differential equations (SA-NODEs), a refined version of the conventional
vanilla NODEs, designed with a reduced parameter footprint. We explore the universal
approximation capabilities of SA-NODEs for dynamical systems, supported by both
theoretical analysis and computational experiments that showcase the proficiency of
SA-NODEs in capturing the behaviors of diverse ODE systems and transport
equations. Furthermore, we conduct a comparative analysis between SA-NODEs and
vanilla NODEs, showing the superior performance of our approach.

This presentation is inspired on our ongoing collaboration with Zigian Li, Kang Liu, and
Lorenzo Liverani.
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