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Motivation

• Systems evolving on closed manifolds (i.e., compact without boundary).
E.g.: Attitude control, control of Spin systems

• Systems evolving on finite-dim. vector bundles on closed manifolds
E.g.: Formation control, UAV control.

⇒ global state feedback stabilization is not possible:

Formal proof: S.P. Bhat and D.S. Bernstein, “A topological obstruction to continuous global stabilization of

rotational motion and the unwinding phenomenon”, in Systems & Control Letters, 2000, vol 39.

Conventions: Maps are continuous. Stabilization is asymptotic. M,U are path-connected.
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Notions of dynamic feedback stabilization

• State-space M: smooth manifold or vector bundle over a smooth manifold
Control space U: smooth manifold.

• Dynamic feedback: arbitrary plant dynamics ẋ = f (x , u) and controller dynamics
u̇ = g(x , u), defined in neighborhood Op(x , u) ⊂ E .

1. strongly stabilizes x∗ if it stabilizes some combination system + controller state.

2. weakly stabilizes x∗ if it stabilizes system state and controller-state is arbitrary.

3. 1-point almost globally weakly/strongly stabilizes x∗ if there exist one point z∗ in
closed-loop space E so that x∗ is weakly/strongly globally stabilized over E − {z∗}.

Lemma

Assume that there exists a dynamic feedback controller (globally) weakly stabilizing x∗. Set
U∗ := p−1(x∗). Then, there exists a deformation retraction of E onto U∗.
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Motivation

This talk: Does there exist a dynamic controller
that globally stabilizes a given state?

• Dynamic feedback evolves on a fibre bundle E with base space M and fibre U:

p : E → M with fibre U or U −→ E
p−→ M.

• From a topological viewpoint: state and dynamic feedback are locally the same, but
globally different. A bundle E is called trivial if E = M × U. Otherwise, we call it
twisted.
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Motivation

Key insights:

Twisting is a design parameter for global
dynamic feedback law.

• Lemma: M is contractible ⇒ all bundles over M are trivial.

We show that the topology of closed-loop system (= system + controller) matters!
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Main results

Theorem (A)

Consider a control system with state-space M and control space U. Then, x∗ ∈ M is
weakly/strongly globally stabilizable by dynamic feedback only if M is contractible.

Theorem (B)

Consider a control system with closed state-space M and control space U. Then, x∗ ∈ M
is weakly/strongly 1-point globally stabilizable by dynamic feedback only if the closed-loop
system has a total space E which is a nontrivial bundle.
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Mathematical Background

• Exact sequence: · · · // Ak+1
ℓk // Ak

ℓk−1 // Ak−1
// · · · with Ak abelian

groups and im ℓk = ker ℓk−1

• Homology groups Hk and homotopy groups πk are associated to a topological space.

• Theorem[Hurewicz] Let M be a path connected space. Then for all k ≥ 1, there exists
a homomorphism h∗ : πk(M) → Hk(M;Z). Furthermore, for k ≥ 2, if πi (M) = 0 for
all 1 ≤ i ≤ k − 1, then h∗ : πk(M) → Hk(M;Z) is an isomorphism.

• A fibre bundle U ↪→ E → M obeys the (Puppe) long exact sequence

· · · −→ πk(U) −→ πk(E ) −→ πk(M) −→ πk−1(U) −→ · · ·

• For A,B ⊆ M so that intA ∪ intB = M, we have the Mayer-Vietoris sequence

· · · → Hk+1(M) → Hk(A ∩ B) → Hk(A)⊕ Hk(B) → Hk(M) → · · ·
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Mathematical background
• Künneth formula describes the homology of a product space: M1 ×M2

0
ℓ1−→

⊕
i+j=k

Hi (M1)⊗ Hj(M2)
ℓ2−→ Hk(M1 ×M2)

ℓ3−→

⊕
i+j=k−1

Tor(Hi (M1),Hj(M2))
ℓ4−→ 0 (1)

• Let x∗ ∈ M; (M, x∗) is a pointed space. PM is the path space of (M, x∗)

PM := {γ : [0, 1] → M with γ(1) = x∗}

equipped with the compact-open topology.
• The loop space ΩM of (M, x∗) is the subspace of PM defined as

ΩM := {γ : [0, 1] → M with γ(0) = γ(1) = x∗}.

It holds that πi (ΩM) = πi+1(M).
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Proof sketch
The main theorems are consequences of the following propositions

Proposition (A)

Let M,U be smooth, finite dimensional manifolds. Let p : E → M be a fibre bundle with
fibre U. Then E deformation retracts onto a point or a fibre only if M is contractible.

Let E ∗ := E\1 point.

Proposition (B)

Let M,U be smooth, finite dimensional manifolds with M closed. Let p : E → M be a
fibre bundle with fibre U. Then, there exists a x∗ ∈ E such that E ∗ := E − {z∗}
deformation retracts onto a point z∗ ∈ E or a fibre p−1(x∗), for some z∗, x∗, only if
p : E → M is a nontrivial bundle.
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Proof sketch of Proposition A
Obstruction to weak stabilization: Prove that if E deformation retracts onto U0, then M
has homotopy type of a point. Then show that M deformation retracts to a point.

Claim: πk(M) = 0 for all k ≥ 1. Proof: Long exact sequence of a fibration.

· · · δ∗ // πk(U0)
ι∗ // πk(E )

p∗ // πk(M)
δ∗ // πk−1(U0)

ι∗ // · · ·

Claim: M is homotopy equivalent to a point.
Theorem:[Whitehead]If X and Y are smooth manifolds (CW-complexes) and f : X → Y
is so that fk : πk(X ) → πk(Y ) are isomorphisms for all k ≥ 0, then X is homotopic to Y .
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Proof sketch of Proposition A

Obstruction to strong stabilization:
Lemma 1: Let p : E → M be a fibre bundle with contractible total space. Then M is
simply-connected.

Lemma 2: Let p : E → M be a fibre bundle with contractible total space. Then its loop
space ΩM is homotopy equivalent to U.
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Proof sketch of Proposition A

Proof of Prop. A (II):

• Assume a strongly stabilizing dynamic feedback exists on p : E → M
⇒ E deformation retracts onto a point z∗ ∈ p−1(x∗).

• Lemma 2 ⇒ U is homotopy equivalent to ΩM.

• Let dimU = r . Then for any field F

Hi (ΩM;F ) ≃ Hi (U;F ) = 0 for all i ≥ r + 1. (2)

We now show that (2) can hold only if M is contractible.

Proposition [J-P Serre, Homologie Singulière des espaces fibrés, 1951, Annals of Math.]:

Let F be a field and M be simply connected. If for some n ≥ 2, Hn(M;F ) ̸= 0 and
Hi (M;F ) = 0 for all i > n, then for all integers k ≥ 0, there exists 0 < j < n so that
Hk+j(ΩM;F ) ̸= 0.
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Proof sketch of Proposition A

Case 1: Hn(M;F ) ̸= 0 for some n ≥ 2 and field F : In this case, the homology of ΩM
does not vanish, which contradicts (2) and concludes the proof.

Case 2: Hn(M;F ) = 0 for all n ≥ 2 and all fields F :

• Lemma 1 ⇒ H1(M;Z) = π1(M) = 0.
• From Universal Coefficients Theorem, if Hn(M;F ) = 0 for all fields F and for all

n ≥ 1 then Hn(M,Z) = 0.
• By Hurewicz: h∗ : π2(M) → H2(M;Z) is an isomorphism ⇒ π2(M) = 0. Next,
π1(M) = π2(M) = 0 ⇒ h∗ : π3(M) → H3(M;Z) = 0 is an isomorphism.
Iterating, we get πk(M) = 0 for all k ≥ 1.

• Thus the inclusion map j : {x∗} → M is a weak homotopy equivalence and, by
Whitehead Theorem, we conclude that M is contractible.
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Proof Sketch Proposition B

Let z∗ ∈ E . Denote E ∗ := E − {z∗}.

We show that E ∗ deformation retracts onto z∗ only if E is twisted

By contradiction, assume that E is trivial and E ∗ is contractible ⇒ Hk(E
∗) = 0 for k ≥ 1.

• Lemma 3: Let p : E → M be a trivial bundle with fibre U and dimM = n. If M is
orientable, Hn(E ) ̸= 0 and Hn(E ) ̸= Hn(U); otherwise Hn−1(E ) ̸= 0 and
Hn−1(E ) ̸= Hn−1(U).

• Lemma 4: Let p : E → M be a fibre-bundle with dimE = m. Then, for
1 ≤ k ≤ m − 2, we have Hk(E ) = Hk(E

∗).

• Consider three cases: dimU ≥ 2, U = R or U = S1.
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Proof Sketch Proposition B

Case dimU ≥ 2: Then, m = dimE ≥ n + 2. Lemma 4 ⇒ Hi (E ) = Hi (E
∗) = 0 for

i = 1, . . . , n. But Lemma 3 says either Hn(E ) ̸= 0 or Hn−1(E ) ̸= 0 ⇒ contradiction.

Case U = S1: We have E = M × S1. From the Künneth of order 1, we obtain

0 → H0(M)⊗H1(S
1)⊕H1(M)⊗H0(S

1) → H1(M×S1) → Tor(H0(M),H0(S
1)) → 0

Since H0(M) = H0(S
1) = Z, the torsion term vanishes, and we get

0 → Z⊕ H1(M) → H1(E ) → 0. (3)

This shows that H1(E ) ̸= 0. But H1(E
∗) vanishes by assumption, so Lemma 4 yields a

contradiction.
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Proof Sketch of Proposition B

Case U = R: Then, E = M × R ≃ M ⇒ Hk(E ) ≃ Hk(M) and in particular Hm(E ) = 0.

• Let B be an open ball containing z∗, then E = E ∗ ∪ B and Mayer-Vietoris yields

· · · −→ Hm(E ) −→ Hm−1(E
∗ ∩ B) −→ Hm−1(E

∗)⊕ Hm−1(B) −→
Hm−1(E ) −→ Hm−2(E

∗ ∩ B) −→ · · · (4)

• We have E ∗ ∩ B ≃ Sm−1, and Hk(S
m−1) = Z for k = m − 1 and k = 0, and is zero

otherwise; Hk(B) = 0 for all k > 0.

• From the Mayer-Vietoris sequence (4) starting at Hm(E ) = 0, and using the above
observations, we have

0
ℓ1−→ Z ℓ2−→ Hm−1(E

∗)
ℓ3−→ Hm−1(E ) −→ 0

⇒ ℓ2 is injective and thus Hm−1(E
∗) ̸= 0 and thus E ∗ is not contractible.
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Does twisting help? Example: case M = S2

• State feedback: ẋ = f (x , u(x)) so that x0 is GAS?

• Dynamic feedback

{
ẋ = f (x , u)

u̇ = g(x , u)
so that x0 is GAS?

• Dynamic feedback on M × U so that x0 is almost globally (1-point) stable?
• Dynamic feedback on twisted bundle?

“Hopf system”: Based on the Hopf fibration:

S1 // S3 p // S2
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Summary

• Natural habitat for dynamic feedback control: fibre bundles

p : E → M with fibre U.

It can be trivial or twisted.

• Global dynamic feedback stabilization is possible only if the state-space M is
contractible: same as state-feedback.

• Almost global dynamic feedback (1-point) stabilization is possible only if the
state-space M is contractible or the closed-loop space E is a twisted bundle.

• Example of almost global 1-point stabilization on M = S2 via “Hopf system”.

19 / 20



Outlook

• How to design bundles over M that permit almost global (1-point) stabilization.

• Almost global stabilization = remove one point from E .
⇒ hierarchy of sets to be removed from E to permit “global” stabilization.

• How to extend the results to stabilization to submanifolds of M?
Synchronization for a pair of systems:

p : E → M ×M

Goal: Stabilize the diagonal M ⊂ M ×M. Do similar obstructions exist?
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