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Motivation

e Systems evolving on closed manifolds (i.e., compact without boundary).
E.g.: Attitude control, control of Spin systems

® Systems evolving on finite-dim. vector bundles on closed manifolds
E.g.: Formation control, UAV control.

Formal proof: S.P. Bhat and D.S. Bernstein, “A topological obstruction to continuous global stabilization of
rotational motion and the unwinding phenomenon”, in Systems & Control Letters, 2000, vol 39.
Conventions: Maps are continuous. Stabilization is asymptotic. M, U are path-connected.
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Notions of dynamic feedback stabilization

® State-space M: smooth manifold or vector bundle over a smooth manifold
Control space U: smooth manifold.

® Dynamic feedback: arbitrary plant dynamics x = f(x, u) and controller dynamics
U = g(x, u), defined in neighborhood Op(x,u) C E.

1. strongly stabilizes x* if it stabilizes some combination system + controller state.
2. weakly stabilizes x* if it stabilizes system state and controller-state is arbitrary.

3. 1-point almost globally weakly/strongly stabilizes x* if there exist one point z* in
closed-loop space E so that x* is weakly/strongly globally stabilized over E — {z*}.

Lemma

Assume that there exists a dynamic feedback controller (globally) weakly stabilizing x*. Set
U* := p~Y(x*). Then, there exists a deformation retraction of E onto U*.
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Motivation

This talk: Does there exist a dynamic controller
that globally stabilizes a given state?

® Dynamic feedback evolves on a fibre bundle E with base space M and fibre U:

p: E — M with fibre Uor U— E & M.

® From a topological viewpoint: state and dynamic feedback are , but
different. A bundle E is called trivial if E = M x U. Otherwise, we call it
twisted.
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Motivation

Key insights:

PR
HESSS
Enss%

Twisting is a design parameter for global
dynamic feedback law.

® | emma: M is contractible = all bundles over M are trivial.

We show that the topology of closed-loop system (= system + controller) matters!
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Main results

Theorem (A)

Consider a control system with state-space M and control space U. Then, x* € M is
weakly/strongly globally stabilizable by dynamic feedback only if M is contractible.

Theorem (B)

Consider a control system with closed state-space M and control space U. Then, x* € M
is weakly/strongly 1-point globally stabilizable by dynamic feedback only if the closed-loop
system has a total space E which is a nontrivial bundle.
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Mathematical Background

14 Ly— . .
° Do Apyp1 —— A 2% Ag_1 —> -+ with Ay abelian
groups and im £, = ker £y _1
° Hy and Ty are associated to a topological space.

Theorem[Hurewicz] Let M be a path connected space. Then for all k > 1, there exists
a homomorphism h, : 7 (M) — H(M;Z). Furthermore, for k > 2, if mi(M) =0 for
all1 < i< k-1, then h, : mk(M) — Hi(M;Z) is an isomorphism.

A fibre bundle U — E — M obeys the

—>7Tk(U) —)Wk(E) —)ﬂ'k(/\/l) —>7Tk_1(U) —

For A, B C M so that int AU int B = M, we have the sequence

s = Hk+1(M) — Hk(A N B) — Hk(A) D Hk(B) — Hk(/\/l) — .
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Mathematical background

° describes the homology of a product space: M; x M,

0 Z—1> @ H,'(Ml) & Hj(Mz) Z—2> Hk(/\/ll X MQ) £—3>

i+j=k
£
B Tor(Hi(M), Hi(Ma)) =0 (1)
itj=k—1
® Let x* € M; (M, x*) is a pointed space. PM is the of (M, x*)

PM := {v:[0,1] - M with y(1) = x*}

equipped with the compact-open topology.
® The QM of (M, x*) is the subspace of PM defined as

QM := {~:[0,1] - M with v(0) = (1) = x*}.
It holds that 7T,'(QM) = 7[','+1(M).
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Proof sketch

The main theorems are consequences of the following propositions

Proposition (A)
Let M, U be smooth, finite dimensional manifolds. Let p: E — M be a fibre bundle with
fibre U. Then E deformation retracts onto a point or a fibre only if M is contractible.

Let E* := E\1 point.

Proposition (B)

Let M, U be smooth, finite dimensional manifolds with M closed. Let p: E — M be a
fibre bundle with fibre U. Then, there exists a x* € E such that E* := E — {z*}
deformation retracts onto a point z* € E or a fibre p~*(x*), for some z*, x*, only if
p: E — M is a nontrivial bundle.
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Proof sketch of Proposition A

Obstruction to weak stabilization: Prove that if E deformation retracts onto Uy, then M
has homotopy type of a point. Then show that M deformation retracts to a point.

Claim: 7x(M) =0 for all k > 1. Proof: Long exact sequence of a fibration.
O Lx " O L
o 7-‘-/<(UO)*>7TI<(E)pﬂ'ﬂ-k(lw)H‘ﬂ'k_l(Uo)H--u

Claim: M is homotopy equivalent to a point.
Theorem:[Whitehead]lf X and Y are smooth manifolds (CW-complexes) and f : X — Y
is so that f : m(X) — mx(Y) are isomorphisms for all k > 0, then X is homotopic to Y.
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Proof sketch of Proposition A

Obstruction to strong stabilization:
Lemma 1: Let p: E — M be a fibre bundle with contractible total space. Then M is

simply-connected.

Lemma 2: Let p: E — M be a fibre bundle with contractible total space. Then its loop

space QM is homotopy equivalent to U.
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Proof sketch of Proposition A

Proof of Prop. A (Il):

® Assume a strongly stabilizing dynamic feedback exists on p: E — M
= E deformation retracts onto a point z* € p~1(x*).

® |Lemma 2 = U is homotopy equivalent to QM.
® let dim U = r. Then for any field F

Hi(QM; F) ~ H;(U; F) =0 for all i > r + 1. (2)
We now show that (2) can hold only if M is contractible.

[J-P Serre, Homologie Singuliere des espaces fibrés, 1951, Annals of Math.]:

Let F be a field and M be simply connected. If for some n > 2, H,(M; F) # 0 and

Hi(M; F) =0 for all i > n, then for all integers k > 0, there exists 0 < j < n so that
Hij(QM; F) # 0.
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Proof sketch of Proposition A

Case 1: Hy(M; F) # 0 for some n > 2 and field F: In this case, the homology of QM
does not vanish, which contradicts (2) and concludes the proof.
Case 2: H,(M; F) =0 for all n > 2 and all fields F:
¢ lemma l= Hi{(M;Z) =m1(M)=0.
e From Universal Coefficients Theorem, if H,(M; F) = 0 for all fields F and for all
n > 1 then H,(M,Z) = 0.
® By Hurewicz: h, : mo(M) — Ha(M;Z) is an isomorphism = m2(M) = 0. Next,
m1(M) = m(M) =0 = h, : m3(M) — H3(M;Z) = 0 is an isomorphism.
Iterating, we get mx(M) = 0 for all k > 1.
® Thus the inclusion map j : {x*} — M is a weak homotopy equivalence and, by
Whitehead Theorem, we conclude that M is contractible.
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Proof Sketch Proposition B

Let z* € E. Denote E* := E — {z"}.
We show that E* deformation retracts onto z* only if E is twisted

, assume that E is trivial and E* is contractible = Hy(E*) =0 for k > 1
® Lemma 3: Let p: E — M be a trivial bundle with fibre U and dimM = n. If M is
orientable, H,(E) # 0 and H,(E) # H,(U); otherwise H,_1(E) # 0 and
Hp—1(E) # Hn—1(U).
® Lemma 4: Let p: E — M be a fibre-bundle with dim E = m. Then, for
1< k<m-—2, we have Hy(E) = Hx(E™").
e Consider dimU>2, U=Ror U=SL
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Proof Sketch Proposition B

Then, m=dimE > n+2. Lemma 4 = H;(E) = H;(E*) =0 for
i=1,...,n But Lemma 3 says either H,(E) # 0 or H,_1(E) # 0 = contradiction.

We have E = M x S1. From the Kiinneth of order 1, we obtain

0 — Ho(M)® Hi(SY) @ Hi (M) ® Ho(SY) — Hi(M x St) — Tor(Ho(M), Ho(S1)) — 0
Since Ho(M) = Ho(S') = Z, the torsion term vanishes, and we get
0—>Z€BH1(M)—> Hl(E)—)O (3)

This shows that Hi(E) # 0. But Hi(E*) vanishes by assumption, so Lemma 4 yields a
contradiction.
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Proof Sketch of Proposition B

Then, E=M xR~ M = H(E) ~ Hx(M) and in particular H,(E) = 0.
® |et B be an open ball containing z*, then E = E* U B and Mayer-Vietoris yields

e — Hm(E) — Hm—l(E* N B) — Hm—l(E*) D Hm—l(B) —
Hn-1(E) — Hp—2(E*NB) — -+ (4)

e We have E*XN B ~ S™ 1 and Hk(Sm_l) =Zfork=m—1and k=0, and is zero
otherwise; Hy(B) = 0 for all k > 0.

® From the Mayer-Vietoris sequence (4) starting at H,,,(E) = 0, and using the above
observations, we have

0% Z 2 Hy 1(E) & Hypr(E) = 0

= {5 is injective and thus Hn,_1(E*) # 0 and thus E* is not contractible.
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Does twisting help? Example: case M = 52

e State feedback: x = f(x, u(x)) so that xg is GAS?

. _f
® Dynamic feedback X (x,u)

u =g(x,u)
® Dynamic feedback on M x U so that xp is almost globally (1-point) stable?
® Dynamic feedback on twisted bundle?

“Hopf system”: Based on the Hopf fibration:

so that xg is GAS?
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Summary

e Natural habitat for dynamic feedback control: fibre bundles
p: E — M with fibre U.
It can be trivial or twisted.
® Global dynamic feedback stabilization is possible only if the state-space M is
contractible: same as state-feedback.
e Almost global dynamic feedback (1-point) stabilization is possible only if the
state-space M is contractible or the closed-loop space E is a twisted bundle.
® Example of almost global 1-point stabilization on M = 52 via “Hopf system".
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Outlook

® How to design bundles over M that permit almost global (1-point) stabilization.

® Almost global stabilization = remove one point from E.
= hierarchy of sets to be removed from E to permit “global” stabilization.

® How to extend the results to stabilization to submanifolds of M?
Synchronization for a pair of systems:

p:E—->MxM

Goal: Stabilize the diagonal M C M x M. Do similar obstructions exist?
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