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Problem Description

• General Objective: Maintain an estimate of a 

specified target’s position and velocity, develop 

motion model to predict target future position, 

quantify the uncertainty of target estimates.

• Assumptions:

• Agent’s own position is always known

• Relative target position measured accurately 

when target is in agent’s field of view (FOV)

• Occlusions cause intermittent measurements

• Target follows a stochastic road network path

• Agent has position history of previous targets on 

road network

• Guidance Objective: Determine how to command 

the agent’s next position based on predicted 

future information gain.
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Prior Work

Z. I. Bell, R. Sun, K. Volle, P. Ganesh, S. A. Nivison, W. E. Dixon, “Target Tracking Subject to Intermittent Measurements using 

Attention Deep Neural Networks," IEEE Control Systems Letters, Vol. 7, pp. 379-384 (2023).



4
Distribution A. Approved for public release; distribution unlimited. (AFRL-2021-XXXX)

Prior Work – Pose Error
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Prior Work – Pose Error (by axis)
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Project Overview

Given:

● Target following an unknown (to the agent) 
stochastic road network path that we treat as 
some general nonlinear function of the state f(x)

● Occlusions that cause intermittent and uncertain 
measurements

● Only measure the position of the target

We want to answer:

● How to command the next agent position to 
maximize the future information of target?

● Particle Filter for target state estimation

● Transformer-based Neural Network (NN) for 
motion prediction

● Expected Entropy Reduction (EER) estimation for 
guidance
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Particle Filter Concept

We approximate the belief distribution of the target position 

using a set of particles (guesses) with an associated “weight” 

for each particle.
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System Overview

Approximate the state belief distribution of the target state: only 2D position

Workspace

FOV(t)

Current Particles 
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Workspace

Propagation of Particles with DNN Motion Model

Propagated Particles 

Current Particles 

Propagate the current distribution based on the state history with DNN motion model 
k time-steps into the future

Target Velocity from DNN

FOV(t)
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DNN Motion Model Learning

• Transformer-based NN trained in advance on position histories

• Prior work looked at online training, neglected here

• NN takes as input the immediate position history

• NN recursively outputs future positions

• Used for particle motion prediction

Sensor Input DNN Future Trajectory 
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Transformer DNN Motion Model Results

• NN is fed 1 second of 

position history and 

projects 1 second forward

• Trained on an hour of data 

from observation
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Workspace

Propagated Particles 

Current Particles 

Particle Filter Measurement Update and Guidance
Update (and resample) when a measurement appears in the sensor field of view (FOV) or update 
particles inside FOV when there are no measurements (negative measurements). How do we 
incorporate the information of the updated distribution into the agent’s guidance law to determine 
where future FOV should be? We look at maximizing the expected entropy reduction.

FOV(t+k)

Measurement 

Agent Velocity

FOV(t)
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Entropy
Average level of "information", "surprise", or "uncertainty" inherent to the variable's possible outcomes.

For discrete random 

variables:

For Continuous random 

variables:

Measurements           Agent Action

Particle-based

Weights

Y. Boers, H. Driessen, A. Bagchi, and P. Mandal, “Particle filter based entropy,” in 2010 13th International Conference on Information Fusion, July 2010, pp. 1–8
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Information Gain and Expected Entropy Reduction

Reduction of entropy between two different distributions at next step

Expected entropy reduction over all possible future measurements at next step
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Sample Particles for Entropy Calculation

Sample Ns particles from the particle states distribution at k time-steps to 
calculate expected entropy

Samples

Current 
Particles (t)



16

Current 
Particles (t)

Sample Particles for Entropy Calculation

Each of the sampled particles has a pdf that indicates how likely it is to be 
measured, this is the measurement model. In our case, it is Gaussian.

The measurement model generates the measurement likelihood, 

Measurement model

Current 
Particles (t)
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Current 
Particles (t)

Sample Particles for Entropy Calculation

Nm measurements are sampled from the PDF to get the possible future 
measurement. We take the entropy with these Nm possible measurements

Possible future measurements

Current 
Particles (t)
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Current 
Particles (t)

Actions

The sampled particles positions are the set of possible goal positions to go. Actions are 
the velocities that will take the drone to those positions. Select the action for time t 
that maximizes the expected entropy reduction.

Current 
Particles (t)

FOV(𝜆2, 𝑡 + 𝑘)  

FOV(𝜆1, 𝑡 + 𝑘)  
Agent Velocity 𝜆2

FOV(t)

Agent Velocity 𝜆1

𝜆𝑡 = 𝑎𝑟𝑔𝑚𝑎𝑥 𝐸𝐸𝑅(𝜆𝑚)
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DNN Particle Filter Guidance Architecture 
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Test Scenario

● Two occlusions (one in a 
stochastic node)

● Agent’s FOV with smaller size 
than the occlusions

● Five nodes in the Markov road 
network

● Two stochastic nodes (A and C)
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Guidance Methods

Information (to compare): go 
to the position of the maximum 
Expected Entropy Reduction 
(EER) at the future k time step

Lawnmower: go to the position 
of the last target measurement, 
and if a measurement is not 
available perform a lawnmower 
path in the working area of the 
target

KF: go to the mean estimated 
position from a Kalman Filter 
which also estimates velocities 
from sensor data

Particles: go to the position of 
the weighted mean of the 
particle filter 
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Guidance Comparison Metrics

• Tracking error is the difference between the positions of the agent (𝑠𝑘) and target (𝑥𝑘)

e= ‖𝑠𝑘 − 𝑥𝑘‖

• This captures the intuition that the agent should stay above the target

• Estimation error is the error between the position of the weighted mean of the particle filter and 
the position of the target

෤e = ‖𝜇𝑘 − 𝑥𝑘‖

𝜇𝑘 = ෍

𝑖=1

𝑁

𝑤𝑘
(𝑖)

𝑥𝑘
(𝑖)

The determinant of the particle position covariance matrix is a measure of estimate uncertainty.

Σ𝑘 = ෍

𝑖=1

𝑁

𝑤𝑘
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Comparison of Results
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Next steps: Multi-agent and Multi-target Tracking

● Extend to multi-vehicles:  2 vs 3 target tracking

● Incorporate policy approximation for every 

agent with recent deep approximate dynamic 

programming results

● Leverage hierarchical reinforcement learning for 

resource allocation to determine what target to 

track and which agent to use

● Decision maker using entropy for where to get 

most information

Max L. Greene, Zachary I. Bell, Scott Nivison, Warren E. Dixon, “Deep Neural Network-based Approximate Optimal Tracking for Unknown Nonlinear Systems”, IEEE Transactions on Automatic Control, (2023).
Wanjiku A. Makumi, Zachary I. Bell, Warren E. Dixon, “Approximate Optimal Indirect Regulation of an Uncertain Agent with a Lyapunov-Based Deep Neural Network”, IEEE Control Systems Letters, (2023).
Wanjiku A. Makumi, Max L. Greene, Zachary I. Bell, Scott Nivison, Rushikesh Kamalapurkar, Warren E. Dixon, “Heiarchical Reinforcment Learning-based Supervisory Control of Unknown Nonlinear Systems”, IFAC World Congress, 
July 2023. 
Wanjiku A. Makumi, Zachary I. Bell, Warren E. Dixon, “Lyapunov-based Deep Reinforcement Learning for Approximate Optimal Control”,  IEEE Transactions on Automatic Control, submitted (2024).

https://ncr.mae.ufl.edu/papers/tac232.pdf
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Next Steps: Multi-Target Selection via Deep Approximate Dynamic 
Programming

● The deep ADP approach consists of two DNNs working together per subsystem in a model-based actor-critic architecture

● First, we use separate DNN motion models to estimate the dynamics of each target, just as we are currently doing to estimate the 

motion model previously described. 

● We pair that with separate DNNs to estimate the value function associated with each pairing of an agent tracking each potential 

target. With ADP, the control policy is derived from the gradient of the value function as below with the DNN estimating the value.

● Currently investigating how to incorporate the entropy from the particle filter into the cost for each agent to improve exploration in 

the policy and better cost structure in general for the multi-agent problem.

● Also, must determine how the switching strategy/minimum dwell-time must change from a previous HRL result which selected the 

minimizing value subsystem and computed a minimum dwell-time condition to remain in that subsystem.

Max L. Greene, Zachary I. Bell, Scott Nivison, Warren E. Dixon, “Deep Neural Network-based Approximate Optimal Tracking for Unknown Nonlinear Systems”, IEEE Transactions on Automatic Control, (2023).
Wanjiku A. Makumi, Zachary I. Bell, Warren E. Dixon, “Approximate Optimal Indirect Regulation of an Uncertain Agent with a Lyapunov-Based Deep Neural Network”, IEEE Control Systems Letters, (2023).
Wanjiku A. Makumi, Max L. Greene, Zachary I. Bell, Scott Nivison, Rushikesh Kamalapurkar, Warren E. Dixon, “Hierarchical Reinforcement Learning-based Supervisory Control of Unknown Nonlinear Systems”, IFAC World Congress, 
July 2023. 
Wanjiku A. Makumi, Zachary I. Bell, Warren E. Dixon, “Lyapunov-based Deep Reinforcement Learning for Approximate Optimal Control”,  IEEE Transactions on Automatic Control, submitted (2024).

https://ncr.mae.ufl.edu/papers/tac232.pdf
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Questions?
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