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Progress in Year 1
Our projects starts at 09/15/2023. In Year 1 (09/15/2023-now), we
made significant progress in developing advanced tools for verification
of learning-based control. Our main results include:

• S. Noori, B. Hu, G. Dullerud, P. Seiler. Stability and performance analysis
of discrete-time ReLU recurrent neural networks, accepted to CDC, 2024.
https://arxiv.org/abs/2405.05236

• S. Noori, B. Hu, G. Dullerud, P. Seiler. A complete set of quadratic
constraints for repeated ReLU and generalizations, submitted to IEEE TAC,
2024. https://arxiv.org/abs/2407.06888

• A. Havens, P. Seiler, G. Dullerud, B. Hu. A quantitative local small gain
theorem without gains, in preparation to IEEE TAC, 2024.

Some collaborative efforts on the machine learning side:
• Z. Wang, B. Hu, A. Havens, A. Araujo, Y. Zheng, Y. Chen, S. Jha. On the

scalability and memory efficiency of semidefinite programs for Lipschitz
constant estimation of neural networks, ICLR, 2024.
https://openreview.net/forum?id=dwzLn78jq7

• A. Havens, A. Araujo, H. Zhang, B. Hu. Fine-grained local sensitivity
analysis of standard dot-product self-attention. ICML, 2024.
https://proceedings.mlr.press/v235/havens24a.html
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Artificial Intelligence Revolution

Deep learning models such as neural networks (NNs) and
transformers have shown great promise for many tasks!

Safety-critical applications!
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Verification is Crucial!

Our research aims at bridging the gap between modern deep learning
models and the verification requirements on safety-critical systems!
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Robustness Verification of Learning-Based Control
We are interested in robustness verification of learning-based control
with deep learning components in the loop:

• ∆ can be dynamical uncertainty (with unknown order) or
time-varying delay

• The controller π is a deep learning model

• Complex perception errors due to high-dimensional sensory data

• Issues: Conservatism, generality, and scalability of verification
5



Outline

• Mitigating Conservatism via Complete Quadratic Constraints

• Improving Generality: Robustness Analysis for Transformers

• Plan for Year 2
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Quadratic Constraints for NN Controllers
The quadratic constraint (QC) approach can address neural networks
and dynamical uncertainty simultaneously for verifying robust region
of attractions:

• Key idea (Fazlyab, Morari, Pappas 2019; Yin, Seiler, Arcak 2021): Rewrite
the original system as a feedback loop of LTI M and troublesome elements
(∆, ϕ) and then abstract the troublesome elements using QCs

• Nonlinearity ϕ is the activation function used in neural networks

• Dynamic integral quadratic constraints for dynamical uncertainty ∆

• Firmly connected to dissipativity theory
7



Repeated Rectified Linear Unit (ReLU)

The scalar Rectified Linear Unit (ReLU)
is a function ϕ : R → R≥0 defined by:

ϕ(v) =

{
0 if v < 0
v if v ≥ 0

.
-v
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w = ϕ(v)

�
�
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i) Positivity: ϕ(v) ≥ 0. ii) Positive Complement: ϕ(v) ≥ v. iii) Complementarity:
ϕ(v) (v − ϕ(v)) = 0. iv) Positive Homogeneity: ϕ(βv) = βϕ(v) ∀v ∈ R, β ≥ 0.

v) Slope-restricted on [0, 1]: 0 ≤ ϕ(v)−ϕ(ṽ)
v−ṽ ≤ 1

The repeated ReLU is the function
mapping from Rnv to Rnv

≥0 defined by

w := ϕ(v) =


ϕ(v1)
ϕ(v2)

...
ϕ(vnv

)

 M

ϕ
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v

-

w
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Review: Basic Ideas of QCs for NN Controllers

M

ϕ

v

-

w

�

• Goal: Analyze the following set of coupled sequences {ξ(k), w(k), v(k)}

{(ξ, w, v) : ξ(k + 1) = Aξ(k) +Bw(k), v(k) = Cξ(k)} ∩ {(ξ, w, v) : w(k) = ϕ(v(k))}

• Key idea: Quadratic constraints! Replace the graph of ϕ with a relation
on (v, w) captured by a quadratic constraint:

{(v, w) : w(k) = ϕ(v(k))} ⊂

{
(v, w) :

[
v(k)
w(k)

]T
Λ

[
v(k)
w(k)

]
≥ 0

}
,

where Λ is constructed from the property of ϕ.

• We only need to analyze the stability of the following set:{
(ξ, w, v) : ξ(k + 1) = Aξ(k) +Bw(k), v(k) = Cξ(k),

[
v(k)
w(k)

]T
Λ

[
v(k)
w(k)

]
≥ 0

}
.
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Review: Basic Ideas of QCs for NN Controllers
Now we are analyzing the sequence from the following set:{
(ξ, w, v) : ξ(k + 1) = Aξ(k) +Bw(k), v(k) = Cξ(k),

[
v(k)
w(k)

]T
Λ

[
v(k)
w(k)

]
≥ 0

}
.

Theorem
If there exists a positive definite matrix P and 0 < ρ < 1 s.t.[

ATPA− ρ2P ATPB
BTPA BTPB

]
⪯ −

[
C 0
0 I

]T
Λ

[
C 0
0 I

]
then ξ(k + 1)TPξ(k + 1) ≤ ρ2ξ(k)TPξ(k) and limk→∞ ξ(k) = 0.[
ξ(k)
w(k)

]T [
ATPA− ρ2P ATPB

BTPA BTPB

] [
ξ(k)
w(k)

]
︸ ︷︷ ︸

ξ(k+1)TPξ(k+1)−ρ2ξ(k)TPξ(k)

≤ −
[
ξ(k)
w(k)

]T [
C 0
0 I

]T
Λ

[
C 0
0 I

] [
ξ(k)
w(k)

]
︸ ︷︷ ︸

−

v(k)
w(k)

T

Λ

v(k)
w(k)

≤0

This condition is a semidefinite program (SDP) problem!
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QCs for Feedback Systems with ReLU Networks
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QCs on (v, w)

• To reduce conservatism, replace troublesome ϕ with multiple QCs:

{(v, w) : w(k) = ϕ(v(k))} ⊂
⋂

Λ∈M

{
(v, w) :

[
v(k)
w(k)

]T
Λ

[
v(k)
w(k)

]
≥ 0

}
,

• [Willems, Brockett, ’68; Willems ’71]: If Q0 is doubly hyperdominant, then[
v
w

]T [
0 QT

0

Q0 −(Q0 +QT
0 )

] [
v
w

]
≥ 0

• [Ebihara, et al ’21, Richardson, et al ’23]: Many papers on QCs for ReLU!

• Advantages: General stability/robustness/input-output analysis
Ref: Noori, Hu, Dullerud, Seiler (CDC 2024) 11



Conservatism in QCs for ReLU Networks
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QCs on (v, w)

• To reduce conservatism, replace troublesome ϕ with multiple QCs:

{(v, w) : w(k) = ϕ(v(k))} ⊂
⋂

Λ∈M

{
(v, w) :

[
v(k)
w(k)

]T
Λ

[
v(k)
w(k)

]
≥ 0

}
,

• Issue: If the set on the right side is much larger than the set on the left
side, then the analysis can become conservative!

• Our main result: The complete set M of QCs on repeated ReLU can be
derived. The use of the complete set M does not introduce conservatism in
a formal sense.
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Complete QCs for Repeated ReLU
A fundamental question: Have we found the complete set of
quadratic constraints on repeated ReLU? In other words, have we
found all the matrices Λ ∈ R2nv×2nv which can guarantee the
following inequality with ϕ being repeated ReLU?[

w
v

]T
Λ

[
w
v

]
≥ 0,∀w = ϕ(v)

The answer is NO!

Theorem (NHDS2024)

Λ ∈ R2nv×2nv gives a valid QC for repeated ReLU if and only if[
D

1
2
(I +D)

]T
Λ

[
D

1
2
(I +D)

]
is copositive ∀D ∈ diag({1,−1}nv).

Ref: Noori, Hu, Dullerud, Seiler (Submitted to TAC, 2024)
https://arxiv.org/abs/2407.06888
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Complete QCs for Repeated ReLU

Theorem (NHDS2024)

Λ ∈ R2nv×2nv gives a valid QC for repeated ReLU if and only if[
D

1
2
(I +D)

]T
Λ

[
D

1
2
(I +D)

]
is copositive ∀D ∈ diag({1,−1}nv).

• Q is copositive if xTQx ≥ 0 for all x with only non-negative entries

• All existing QCs on repeated ReLU can be re-derived via the above theorem.

• Proof idea: The graph of the repeated ReLU satisfies:{[
v
w

]
∈ R2nv

∣∣v ∈ Rnv andw = ϕ(v)

}
=

{[
D

1
2 (I +D)

]
ṽ
∣∣ṽ ∈ Rnv

+ , D ∈ diag({1,−1}nv )

}
In other words, we write v = Dṽ where ṽ = |v| and D = diag (sign(v)).
Then entry k of 1

2 (I +D)ṽ is 0 if Dkk = −1 or equal to the entry k of v if
Dkk = 1.
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Complete QCs for Repeated ReLU
Denote M to be the set of all Λ such that[

D
1
2 (I +D)

]T
Λ

[
D

1
2 (I +D)

]
is copositive ∀D ∈ diag({1,−1}nv ).

Theorem (NHDS2024)
A function satisfies all the QCs defined by the previous complete set M if and
only if the function is either repeated ReLU or flipped ReLU.

• Our complete set of QCs is as tight as possible up to the sign invariance
inherent in quadratic forms.

• The complete set M does not introduce conservatism in the following
sense:

{(v, w) : w(k) = ϕ(v(k)) orw(k) = −ϕ(−v(k))}

=
⋂

Λ∈M

{
(v, w) :

[
v(k)
w(k)

]T
Λ

[
v(k)
w(k)

]
≥ 0

}
.
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Complete Incremental QCs for Lipschitz Constant

Analysis of NNs
Incremental QCs are crucial for Lipschitz analysis of NNs [Fazlyab et.al 2019]:[

v − ṽ
ϕ(v)− ϕ(ṽ)

]T
Λ

[
v − ṽ

ϕ(v)− ϕ(ṽ)

]
≥ 0,∀v, ṽ ∈ Rnv

Theorem (NHDS2024)
Λ ∈ R2nv×2nv gives an incremental QC for repeated ReLU if & only if[

D1 −D2
1
2 (I +D1) − 1

2 (I +D2)

]T
Λ

[
D1 −D2

1
2 (I +D1) − 1

2 (I +D2)

]
is copositive ∀D1, D2 ∈ diag({1,−1}nv ).

• All existing incremental QCs on repeated ReLU can be re-derived via the
above theorem.

• The above theorem provides a unified approach for incremental QCs.

• The above theorem can improve Lipschitz analysis of ReLU networks.
16



Generalizations to HouseHolder and MaxMin
We can also obtain complete QCs for other piecewise linear activation functions.

• Leaky ReLU: Define gαβ : R → R for α ̸= β as follows:

gαβ(v) =

{
αv if v < 0
βv if v ≥ 0

.

gαβ is the scalar ReLU when α = 0 and β = 1. It corresponds to leaky
ReLU when 0 < α < 1 and β = 1. We can show the complete QC set for

leaky ReLU is given by

[
D

αD + β−α
2 (I +D)

]T
Λ

[
D

αD + β−α
2 (I +D)

]
being copositive ∀D ∈ diag({1,−1}nv ).

• HouseHolder/MaxMin: Given h with ∥h∥2 = 1, Householder is defined by:

Gh(v) =

{
v if hTv ≥ 0
(I − 2hhT)v if hTv < 0

.

If h = 1√
2

[
1 −1

]T
then we have MaxMin activations. Both are widely

used to improve certified robustness of neural network image classifiers.

Ref: C. Anil, J. Lucas, and R. Grosse, Sorting out Lipschitz function
approximation, ICML 2019.

We have obtained complete sets for both! 17



Numerical Results

Figure: Bound on induced ℓ2 gain for system FU (G,Φ) vs. α using QCs
defined by Mc and M12. We expect the interconnection to eventually
become unstable as α increases which is consistent with both curves. The
complete set Mc provides a less conservative (smaller) bound on the gain.
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Outline

• Mitigating Conservatism via Complete Quadratic Constraints

• Improving Generality: Robustness Analysis for Transformers

• Plan for Year 2
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Self-Attention and Transformers

The self-attention mechanism has become a major building block in
many modern deep learning-based system, in particular Transformers

Figure: Alexey Dosovitskiy et al. 2021
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Dot-Product Self-Attention

The main building-block of transformers are self-attention units. The dot-product
multi-head self-attention maps Rn×d to Rn×d. With h heads, the l-th head maps
Rn×d to Rn×d/h as:

X =

− xT
1 −
...

− xT
n −

 ∈ Rn×d
Yl = softmax

(
XWQ

l (XWK
l )T√

d/h

)
︸ ︷︷ ︸

=Pl(X)

XWV
l

where WQ
l ,WK

l ,WV
l ∈ Rd×d/h denote the weight matrices for the l-th head

• Issue 1: Dot-product self-attention is not globally Lipschitz [Kim
et.al. ICML2021] and does not have a global gain bound.

• Issue 2: One cannot rewrite dot-product self-attention as a feedback
interconnection of a LTI component and a nonlinearity

Key question: How to certify closed-loop robustness of such transformer
components?
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Robustness Analysis of Dot-Product Self-Attention

High-level idea: We decouple the analysis into two steps.

• Local sensitivity analysis of self-attention: Given an input X and some
ε > 0, we want to prove a bound in the following form:

∥F (X ′)− F (X)∥F ≤ δ(X, ε) for X ′ satisfying ∥X ′ −X∥F ≤ ε

where F is the self-attention mapping.

Ref: A. Havens, A. Araujo, H. Zhang, B. Hu. Fine-grained local sensitivity
analysis of standard dot-product self-attention. ICML, 2024.

• A gainless version of small gain theorem (which incorporates a local
sensitivity bound into the closed-loop robustness property)

Ref: A. Havens, P. Seiler, G. Dullerud, B. Hu. A quantitative local small
gain theorem without gains, in preparation to IEEE TAC, 2024.
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Local Sensitivity of Transformers

∥F (X ′)− F (X)∥F

=
∥∥H(X ′ −X) +

h∑
l=1

Pl(X)(X ′ −X)WV
l WO

l +

h∑
l=1

(Pl(X
′)− Pl(X))X ′WV

l WO
l

∥∥
F

≤
∥∥H(X ′ −X) +

h∑
l=1

Pl(X)(X ′ −X)WV
l WO

l

∥∥
F︸ ︷︷ ︸

∆1≤δ1(X,ε)

+
∥∥ h∑

l=1

(Pl(X
′)− Pl(X))X ′WV

l WO
l

∥∥
F︸ ︷︷ ︸

∆2≤δ2(X,ε)

max
X′:∥X′−X∥F≤ε

∥F (X ′)− F (X)∥F ≤ δ1(X, ε) + δ2(X, ε)

We bound δ1(X, ε) as δ1(X, ε) =
∥∥H ⊗ In +

∑h
l=1(Pl(X)⊗ (WV

l WO
l )T)

∥∥ε
The calculation of δ2(X, ε) is complicated:

δ2(X, ε) =
ε√
d/h

h∑
l=1

(
∥XWV

l WO
l ∥+ ∥WV

l WO
l ∥ε

)
·(

∥WQ
l (WK

l )TXT∥+ ∥XWQ
l (WK

l )T∥+ ε∥WQ
l (WK

l )T∥
)

The final bound is much tighter than doing a local Lipschitz analysis.
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Outline

• Mitigating Conservatism via Complete Quadratic Constraints

• Improving Generality: Robustness Analysis for Transformers

• Plan for Year 2
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Plan for Year 2
1. Scalability: We are studying how to scale up the SDP for complete QCs

for practical deep learning models.
• One plausible approach is to derive equivalent unconstrained

formulation of the original SDP condition derived from complete QCs.
• Initial results for scaling up Lipschitz analysis to ImageNet

Ref: Z. Wang, B. Hu, A. Havens, A. Araujo, Y. Zheng, Y. Chen, S.
Jha. On the scalability and memory efficiency of semidefinite programs
for Lipschitz constant estimation of neural networks, ICLR, 2024.

• Next: Scale up the computation for verifying closed-loop robustness!

2. Verifying perception-based control: We will integrate perception errors
into the verification framework.

Question: How can we charac-
terize perception errors in a form
that is friendly for verification?
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