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Progress in Year 1

Our projects starts at 09/15/2023. In Year 1 (09/15/2023-now), we
made significant progress in developing advanced tools for verification
of learning-based control. Our main results include:
® S. Noori, B. Hu, G. Dullerud, P. Seiler. Stability and performance analysis
of discrete-time RelLU recurrent neural networks, accepted to CDC, 2024.
https://arxiv.org/abs/2405.05236
® S. Noori, B. Hu, G. Dullerud, P. Seiler. A complete set of quadratic
constraints for repeated ReLU and generalizations, submitted to IEEE TAC,
2024. https://arxiv.org/abs/2407.06888
® A. Havens, P. Seiler, G. Dullerud, B. Hu. A quantitative local small gain
theorem without gains, in preparation to IEEE TAC, 2024.

Some collaborative efforts on the machine learning side:

® 7. Wang, B. Hu, A. Havens, A. Araujo, Y. Zheng, Y. Chen, S. Jha. On the
scalability and memory efficiency of semidefinite programs for Lipschitz
constant estimation of neural networks, ICLR, 2024.
https://openreview.net/forum?id=dwzLn78jq7

® A. Havens, A. Araujo, H. Zhang, B. Hu. Fine-grained local sensitivity
analysis of standard dot-product self-attention. ICML, 2024.
https://proceedings.mlr.press/v235/havens24a.html
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Artificial Intelligence Revolution

ChatGPT Sprints to One MillionUsers

ALL SYSTEMS GO

Deep learning models such as neural networks (NNs) and
transformers have shown great promise for many tasks!

Safety-critical applications!



Verification is Crucial!

Automatic Control Systems.

The interactions of the airplane’s automatic control systems coupling with
the structural modes must be controlled to prevent the occurrence of any
aeroservoelastic instability (§ 25.629). These control systems could
include flight control systems, autopilots, yaw damper systems, modal
suppression systems, or any other feedback system that could interact with
the airplane’s structural modes. Aeroelastic stability analyses of the basic
configuration should include simulation of any control system for which
interaction may exist between the sensing elements and the structural
‘modes. Where structural/control system feedback is a potential problem,
the effects of servo-actuator characteristics and the effects of local
deformation of the servo mount on the feedback sensor output should be
included in the analysis. The effect of control system failures on the
airplane acroelastic stability characteristics should be investigated.
Failures that significantly affect the system gain and/or phase and are not
shown to be extremely improbable should be analyzed. The structural
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DRAFT AC25.629-1C

‘modes should have the stability margins specified below for any single
control system feedback loop at speeds up to the acroelastic stability
envelope described in § 25.629(b)(2) and be stable within the envelope
described in § 25.629(b)(1). If these margins are not used, then a technical
justification should be provided for the use and acceptance of alternative
criteria.

A gain margin of at least 6 dB and., separately,

A phase margin of at least £60°.

Our research aims at bridging the gap between modern deep learning
models and the verification requirements on safety-critical systems!



Robustness Verification of Learning-Based Control

We are interested in robustness verification of learning-based control
with deep learning components in the loop:

Sensing
Modules
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A can be dynamical uncertainty (with unknown order) or
time-varying delay

L

The controller 7 is a deep learning model

Complex perception errors due to high-dimensional sensory data

Issues: Conservatism, generality, and scalability of verification



Outline

e Mitigating Conservatism via Complete Quadratic Constraints
® Improving Generality: Robustness Analysis for Transformers

® Plan for Year 2



Quadratic Constraints for NN Controllers

The quadratic constraint (QC) approach can address neural networks
and dynamical uncertainty simultaneously for verifying robust region
of attractions:
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Key idea (Fazlyab, Morari, Pappas 2019; Yin, Seiler, Arcak 2021): Rewrite
the original system as a feedback loop of LTI M and troublesome elements
(A, ¢) and then abstract the troublesome elements using QCs

® Nonlinearity ¢ is the activation function used in neural networks
® Dynamic integral quadratic constraints for dynamical uncertainty A

® Firmly connected to dissipativity theory



Repeated Rectified Linear Unit (ReLU)

The scalar Rectified Linear Unit (ReLU) w=¢(v)
is a function ¢ : R = R>( defined by:

0 ifo<O
¢(v)_{v ifo>0 - v

i) Positivity: ¢(v) > 0. ii) Positive Complement: ¢(v) > v. iii) Complementarity:
o) (v —¢(v)) = 0. iv) Positive Homogeneity: ¢(Bv) = Bo(v) Vv € R, 5 > 0.
v) Slope-restricted on [0,1]: 0 < % <1

The repeated ReLU is the function

¢
mapping from R™ to RYj defined by .
(b(vl) v ¢ w
d(v2)
w:= ¢(v) =
o) =", vk

$(vm,)




Review: Basic Ideas of QCs for NN Controllers

> ¢

M <

® Goal: Analyze the following set of coupled sequences {£(k), w(k),v(k)}
{(& w,v) : §(k+ 1) = AL(k) + Bw(k), v(k) = C&(k)} N {(&,w,v) : w(k) = ¢(v(k))}

® Key idea: Quadratic constraints! Replace the graph of ¢ with a relation
on (v,w) captured by a quadratic constraint:

{(vw) - w(k) = G(o(k))} © {ww) : [w((’,jﬂA ]2 o} 7

where A is constructed from the property of ¢.

® We only need to analyze the stability of the following set:

]
{ (&w,v) s €(k +1) = AE(K) + Bu(k), v(k) = CE(k), [w((’,?)} A {wﬁ’f})} > o} 3



Review: Basic Ideas of QCs for NN Controllers

Now we are analyzing the sequence from the following set:
T
{(g,w,v) E(k+ 1) = AL(k) 4+ Bw(k), v(k) = C&(k), {”(k)] A [”(k)} > o} .

Theorem
If there exists a positive definite matrix P and 0 < p < 1 s.t.

ATPA—p?P ATPB] | _[C 0]"  [C 0
B™PA  B™PB|= |0 1I] %|o I

then £(k +1)TPE(k + 1) < p26(k)TPE(k) and limy,_ o0 £(K) = 0.

§<k>HATpA_pzp ATPB} [Wﬂé [ H JT

BTPA  BTPB| |w(k)
E(k+1)T PE(k+1)—p2€ (k)T PE(K) B [v(kj)}

This condition is a semidefinite program (SDP) problem!
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QCs for Feedback Systems with ReLU Networks

| QCs on (v, w)

ko

M |«

® To reduce conservatism, replace troublesome ¢ with multiple QCs:

() s w(k) = o)} € {@,w): 0T A zo},

AeM

[Willems, Brockett, '68; Willems '71]: If Qg is doubly hyperdominant, then

MT Bo @ QE)] [ﬂ =0

[Ebihara, et al '21, Richardson, et al '23]: Many papers on QCs for ReLU!

e Advantages: General stability/robustness/input-output analysis
Ref: Noori, Hu, Dullerud, Seiler (CDC 2024)



Conservatism in QCs for ReLU Networks

A

QCs on (v, w)

M |

® To reduce conservatism, replace troublesome ¢ with multiple QCs:

() s w(k) = o)} < () {w,w): 2] [ 20},

Aem

® [ssue: If the set on the right side is much larger than the set on the left
side, then the analysis can become conservative!

® QOur main result: The complete set M of QCs on repeated RelLU can be
derived. The use of the complete set M does not introduce conservatism in
a formal sense.
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Complete QCs for Repeated Rel U

A fundamental question: Have we found the complete set of
quadratic constraints on repeated ReLU? In other words, have we
found all the matrices A € R?"*2" which can guarantee the
following inequality with ¢ being repeated ReLU?

-

v
The answer is NO!

Theorem (NHDS2024)
A € R?>X20 gives g valid QC for repeated Rel U if and only if

T
D D : i : n
{%([—l- D)] A {%([+ D)} is copositive VD € diag({1, —1}™).

Ref: Noori, Hu, Dullerud, Seiler (Submitted to TAC, 2024)
https://arxiv.org/abs/2407.06888
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Complete QCs for Repeated Rel U

Theorem (NHDS2024)
A € R?>X2m gives g valid QC for repeated Rel U if and only if

T
D D 1. g . .
{%([+ D)} A [%(I—l— D)} is copositive VD € diag({1, —1}").

® (Q is copositive if zTQx > 0 for all z with only non-negative entries
e All existing QCs on repeated ReLU can be re-derived via the above theorem.

® Proof idea: The graph of the repeated RelLU satisfies:

=
- { [é(lﬁ D)] oo € Rir, D € ding({1 _mu)}

In other words, we write v = Do where ¢ = |v| and D = diag (sign(v)).
Then entry k of $(I + D)o is 0 if Dy, = —1 or equal to the entry k of v if
Dy = 1.

veER™ andw = d)(v)}
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Complete QCs for Repeated Rel U

Denote M to be the set of all A such that

[%(Ii D)] A [5(13 D)} is copositive YD € diag({1, —1}"™).

Theorem (NHDS2024)

A function satisfies all the QCs defined by the previous complete set M if and
only if the function is either repeated Rel U or flipped RelLU.

® Qur complete set of QCs is as tight as possible up to the sign invariance
inherent in quadratic forms.

® The complete set M does not introduce conservatism in the following
sense:

{(v,w) s w(k) = $(v(k)) orw(k) = —$(—v(k))}
B )T, Tolk)
AQA{(U,w). [w(k)] ALU( )} ZO}.
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Complete Incremental QCs for Lipschitz Constant
Analysis of NNs

Incremental QCs are crucial for Lipschitz analysis of NNs [Fazlyab et.al 2019]:

[fﬁ(vl)) _ Z(@)} TA Lzﬁ(vl)} B Z(@)} >0,Vv,0 € R™

Theorem (NHDS2024)

A € R?7v%21% gjves an incremental QC for repeated Rel U if & only if

D, -D, TA D, -D,
1I+Dy) —-L(I+Dy) 1I+D1) —-i(I+Dy)

is copositive YDy, Dy € diag({1, —1}™).

e All existing incremental QCs on repeated ReLU can be re-derived via the
above theorem.

® The above theorem provides a unified approach for incremental QCs.

® The above theorem can improve Lipschitz analysis of ReLU networks.
16



Generalizations to HouseHolder and MaxMin

We can also obtain complete QCs for other piecewise linear activation functions.
® Leaky RelLU: Define gos : R = R for o # 3 as follows:

_Joav ifu<0
Gap(v) = Bv ifv>0
gap is the scalar ReLU when o« = 0 and § = 1. It corresponds to leaky
ReLU when 0 < a < 1 and 8 = 1. We can show the complete QC set for
T
L D D
leaky ReLU is given by L‘D"‘ ‘?‘(I—i—D)] A [aD+ ﬁ_Ta(I—i—D)
being copositive VD € diag({1, —1}").
® HouseHolder/MaxMin: Given h with ||h||2 = 1, Householder is defined by:
v if \To >0
Gn(v) = { (I-2hhT)v if hTu <0
If h = % [1 —1]T then we have MaxMin activations. Both are widely
used to improve certified robustness of neural network image classifiers.
Ref: C. Anil, J. Lucas, and R. Grosse, Sorting out Lipschitz function
approximation, ICML 2019.
We have obtained complete sets for both!



Numerical Results
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Figure: Bound on induced ¢5 gain for system Fy(G, ®) vs. « using QCs
defined by M. and M 2. We expect the interconnection to eventually
become unstable as « increases which is consistent with both curves. The

complete set M. provides a less conservative (smaller) bound on the gain.
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Outline

¢ Mitigating Conservatism via Complete Quadratic Constraints
® Improving Generality: Robustness Analysis for Transformers

® Plan for Year 2
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Self-Attention and Transformers

The self-attention mechanism has become a major building block in
many modern deep learning-based system, in particular Transformers

s ) a) ¢ @j‘a

* Extra learnable

[class] embedding Linear Projection of Flattened Patches

... I N

Figure: Alexey Dosovitskiy et al. 2021
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Dot-Product Self-Attention

The main building-block of transformers are self-attention units. The dot-product

multi-head self-attention maps R™*¢ to R"*?. With h heads, the I-th head maps
R"*d to RM¥d/ as:

— 7 XWE(XWENT
= Y, = softmax XWX W) xwyY
X — : c Rxd Vd/h
_ a7

n =P (X)
where WZQ, Wk wY e R*d/h denote the weight matrices for the I-th head

® |Issue 1: Dot-product self-attention is not globally Lipschitz [Kim
et.al. ICML2021] and does not have a global gain bound.

® [ssue 2: One cannot rewrite dot-product self-attention as a feedback
interconnection of a LTl component and a nonlinearity

Key question: How to certify closed-loop robustness of such transformer
components?
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Robustness Analysis of Dot-Product Self-Attention

High-level idea: We decouple the analysis into two steps.

® Local sensitivity analysis of self-attention: Given an input X and some
€ > 0, we want to prove a bound in the following form:

|F(X") — F(X)||lr <8(X,e) for X' satisfying || X' — X||p <e

where F' is the self-attention mapping.

Ref: A. Havens, A. Araujo, H. Zhang, B. Hu. Fine-grained local sensitivity
analysis of standard dot-product self-attention. ICML, 2024.

® A gainless version of small gain theorem (which incorporates a local
sensitivity bound into the closed-loop robustness property)

Ref: A. Havens, P. Seiler, G. Dullerud, B. Hu. A quantitative local small
gain theorem without gains, in preparation to IEEE TAC, 2024.



Local Sensitivity of Transformers
IFO) = PO

=|H(X - +ZB(X Xywwe +ZB - B(X)XW WP,
=1
<|E(x’ - +ZPz WWPHF+HZ R(X') = R(X))X WY WP
=1
A< (X e) Ap<8y(X,e)

[F(X") = F(X)|lr < 01(X,€) + 02(X, €)

ma.
XX — XHF<5

We bound & (X, ¢) as 61 (X,e) = [|[H @ I, + 1, (P(X) ® (WY WP)T)|

The calculation of d3(X, ) is complicated:

52(X g) =

(IXWYWE| + WY WP le) -

(IR W) TXT |+ X W2 W) T+ el W2 (W) )

The final bound is much tighter than doing a local Lipschitz analysis.
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Outline

¢ Mitigating Conservatism via Complete Quadratic Constraints
® Improving Generality: Robustness Analysis for Transformers

® Plan for Year 2
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Plan for Year 2

1. Scalability: We are studying how to scale up the SDP for complete QCs
for practical deep learning models.

® One plausible approach is to derive equivalent unconstrained
formulation of the original SDP condition derived from complete QCs.

® [nitial results for scaling up Lipschitz analysis to ImageNet
Ref: Z. Wang, B. Hu, A. Havens, A. Araujo, Y. Zheng, Y. Chen, S.
Jha. On the scalability and memory efficiency of semidefinite programs
for Lipschitz constant estimation of neural networks, ICLR, 2024.

® Next: Scale up the computation for verifying closed-loop robustness!

2. Verifying perception-based control: We will integrate perception errors
into the verification framework.

.

p N QT .

Sensin | Question: How can we charac-
ules p

; )L System terize perception errors in a form

that is friendly for verification?

Environment
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