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Graphon Mean Field Games: Motivation

sp Non-uniform Network of Clusters
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Finite Network Finite Population Mean Field Games

Consider a finite population distributed over a finite graph Gk
with Mk clusters of agents at the Mk nodes.

This gives a total of N =

Mk∑

l=1

|Cl| agents.

For Ai in the node cluster C(i), there are two dynamical input
terms (scalar states for simplicity):

f0(xi, ui, C(i)) =
1

|C(i)|
∑

j∈C(i)

f0(xi, ui, xj) (1)

fGk(xi, ui, gk
C(i)) =

1
Mk

Mk∑

l=1

gk
C(i)Cl

[
1
|Cl|

∑

j∈Cl

f (xi, ui, xj)] (2)

NB: fGk uses the sectional (i.e.vertex neighbourhood)
information gk

C(i)•.
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Finite Network Finite Population MF Games:
Agent Dynamics in Clusters at Nodes
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The state process of Ai in its cluster C(i) is given by the
SDE

dxi(t) =
1

|C(i)|
∑

j∈C(i)

f0(xi, ui, xj)dt

+
1

Mk

Mk∑

l=1

gk
C(i)Cl

[
1
|Cl|

∑

j∈Cl

f (xi, ui, xj)]dt + σdwi (3)

= f0(xi, ui, C(i))dt + fGk(xi, ui, gk
C(i))dt + σdwi (4)

1 ≤ i ≤ N
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Nash Equilibria

Fundamental Notion of Non-cooperative Game
Equilibrium:

The controls U0 = {u0
i ; u0

i adapted to Uloc,i, 1 ≤ i ≤ N},
generate an ε-Nash Equilibrium w.r.t. {Ji; 1 ≤ i ≤ N} if, for
all i, a unilateral control law ui utilizing the global
information pattern U satisfies

Ji(u0
i , u0

−i)− ε ≤ inf
ui∈U

Ji(ui, u0
−i) ≤ Ji(u0

i , u0
−i)

So, by definition, a unilateral move against a population of
agents all of whom are utilizing a Nash strategy cannot
yield a benefit of more than ε > 0 for the unilateral agent.
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From Graphons to Graphexons
Graph Sequence Convergence to Graphons

How many 4-cycles must a graph with edge density at least 1/2 have?

So, suppose G has n vertices and at least n(n� 1)/4 edges, half as many as are possible. Can you avoid
having many 4-cycles? It is an interesting and worthwhile exercise to try to find as many as you can;
start with trying to find at least one. It is not hard to see that there are at most on the order of n4

4-cycles (in fact, there are 3
�
n
4

�
possible). The following result of Erdős tells us that there must be very

many 4-cycles, in fact, on the order of n4 of them.

Theorem (Erdős) For any graph G,

t( , G) � t( , G)4.

In particular, if t( , G) � 1/2, then t( , G) � 1/16.

In light of the theorem, it would be best to reformulate our problem as follows.

Minimize t( , G) over all finite graphs G satisfying t( , G) � 1/2.

It is beneficial at this point to draw an analogy with a problem familiar from elementary calculus.

Minimize x3 � 6x over all real numbers x satisfying x � 0.

The minimum here is attained at x =
p

2, which, though our polynomial has rational coe�cients, is
irrational. The best we can do in the rational numbers is find a sequence limiting to

p
2 at which the

polynomial achieves values approaching the minimum. Completing the rational numbers to the real
numbers allows us to objectify the limit, which algebra then allows us to realize and work with as

p
2.

It turns out that we are in an analogous situation with our graph problem. Erdős’ theorem tells us that
the minimum of t( , G) is greater than or equal to 1/16, and with a little extra work, it can be shown
that that minimum is not achieved by any finite graph. There is, however, a sequence of finite graphs
(Rn)n with edge density at least 1/2 and 4-cycle density approaching 1/16. Indeed, for each n � 1, let
Rn be an instance of a random graph on n vertices where the existence of each possible edge is decided
independently with probability 1/2. By throwing those Rn’s away for which t( , Rn) < 1/2, the 4-cycle
density in the remaining graphs almost surely limits to 1/16.

The situation is now primed for us to seek to, in pure analogy, complete the space of graphs, realize the
limit of (Rn)n as workable object, and understand the way in which that object achieves the minimum
of 1/16 in our problem above.

Graphons

Let’s speculate as to the possible limits of the graph sequence (Rn)n, where Rn is an instance of a
random graph with edge probability 1/2. One real possibility is the Rado graph, the random graph with
vertex set N and edge probability 1/2. (I write “the” random graph since any two instances of such a
graph are almost surely isomorphic.) This and many other possible limits are explored in [1] but are not
examples of graphons.

Exploring an idea that at first sight is a bit more naive, consider the following three representations of
a graph.

Graph Adjacency Matrix Pixel Picture

�!

0
BB@

0 1 0 1
1 0 1 0
0 1 0 1
1 0 1 0

1
CCA �!

2

Finally, consider the following inductively defined sequence of graphs (Gn)n. Let G1 = . For n � 2,
construct Gn from Gn�1 by adding one new vertex, then, considering each pair of non-adjacent vertices in
turn, drawing an edge between them with probability 1/n. This is called a growing uniform attachment
graph sequence, and the pixel pictures below come from one particular instance of a such a sequence.
This sequence of graphs almost surely limits to the graphon 1 � max(x, y).

It is finally time to define graphons properly.

Definitions A labeled graphon is a symmetric, Lebesgue-measurable function from [0, 1]2 to [0, 1] (mod-
ulo the usual identification almost everywhere). An unlabeled graphon is a graphon up to relabeling,
where a relabeling is given by an invertible, measure preserving transformation of the [0, 1] interval.
More formally, a labeled graphon W determines the equivalence class of graphons

[W ] =

⇢
W' : (x, y) 7! W

�
'(x), '(y)

� ����
' an invertible, measure

preserving transformation of [0, 1]

�
.

Such equivalence classes are called unlabeled graphons.

It is helpful to think of graphons as edge-weighted graphs on the vertex set [0, 1]. In this sense, the
sequence (Rn)n of instances of random graphs with edge probability 1/2 almost surely limits to the
complete graph on a continuum of vertices, each edge with weight 1/2. Also, note that any graph gives
rise to several labeled graphons via its various pixel pictures and that each of these graphons correspond
to the same unlabeled graphon.

This viewpoint also allows us to extend homomorphism densities to graphons in an intuitive way. This
will allow us to see how the limit of the graph sequence (Rn)n, the constant 1/2 graphon, solves the
minimization problem from the previous section.

For a finite graph G, the value t( , G) may be computed by giving each vertex of G a mass of 1/n and
integrating the edge indicator function over all ordered pairs of vertices. In complete analogy, the edge
density of a graphon W is given by the expression

t( , W ) =

Z

[0,1]2
W (x, y) dxdy.

It is not hard to see then that

t( , W ) =

Z

[0,1]4
W (x1, x2)W (x2, x3)W (x3, x4)W (x4, x1) dx1dx2dx3dx4.

It is straightforward from here to write down the formula for the homomorphism density t(H, W ) of a
finite graph H into a graphon W .

Finally, in the case of W ⌘ 1/2 as the limit graphon of (Rn)n, we see that t( , W ) = 1/2 and
t( , W ) = 1/16, solving the minimization problem from the previous section elegantly.

4

Definition: A graphon (Lovasz, AMS 2012) is a bounded
symmetric Lebesgue measurable function W : [0, 1]2 → [0, 1].

Graphons may be interpreted as weighted undirected edge
graph limits on the vertex set [0, 1].

Theorem [Lovasz and Szegedy, 2006; LL AMS2012]
Under the cut metric the graphon space (W[0,1], δ□) is compact.
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Graphons

Graphon [Lov2012]: A measurable function [0, 1]2 → [0,1]

Example: Unif. Attachment Graphon: g(α, β) = 1 −max(α, β)

Convergence of “adjacency matrices” to graphons is in the cut
metric. The space of graphons is compact.
We use stronger topology of L2[0, 1] operator convergence.
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Infinite Network Infinite Population MF Games:
Drifts of Each Agent in its Cluster

Assume :
(i) The graph sequence Gk; 1 ≤ k < ∞ has a
unique graphon limit function g(α, β), α, β ∈ [0, 1].
(ii) The subpopulation at each node tends to infinity,
giving the local mean field µα and the global set of mean
fields µG = {µβ; 0 ≤ β ≤ 1}. Hence resulting in the drifts:

f0[xα, uα, µα] :=

∫

Rn
f0(xα, uα, z)µα(dz), (5)

f [xα, uα, µG; gα] : =

∫ 1

0

∫

Rn
f (xα, uα, z)g(α, β)µβ(dz)dβ, (6)

yielding the local limit graphon drift dynamics (and
similarly for costs l̃[x, u, µG; gα]):

f̃ [xα, uα, µG; gα] : = f0[xα, uα, µα] + f [xα, uα, µG; gα]
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Graphon Mean Field Game (GMFG) Equations
HJB generates the value function Vα for the representative
agent at node α at Nash equilibrium.

[HJB](α) − ∂Vα(t, x)
∂t

= inf
u∈U

{
f̃ [x, u, µG; gα]

∂Vα(t, x)
∂x

+ l̃[x, u, µG; gα]
}
+

σ2

2
∂2Vα(t, x)

∂x2 ,

Vα(T, x) = 0, (t, x) ∈ [0,T]× R, α ∈ [0, 1], (7)
FPK generates the mean field density for the representative
agent at node α at Nash equilibrium.

[FPK](α)
∂pα(t, x)

∂t
= − ∂{f̃ [x, u0, µG; gα]pα(t, x)}

∂x

+
σ2

2
∂2pα(t, x)

∂x2 , pα(0) = p0 (8)

[BR](α) u0 = φ(t, x|µG; gα).
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GMFG Eqns: Existence, Uniqueness, epsilon-Nash

Theorem: GMFG Existence and Uniqueness [PEC-Minyi
Huang CDC2018,CDC 2019, SICON 2021]

For U compact, subject to regularity conditions there exists a
unique Nash equilibrium solution (Vα, µα(·))α∈[0,1]to the GMFG
equations (7) and (8).

Moreover subject to a graph convergence condition, the
GMFG epsilon - Nash Property holds.

The feedback control best response (BR) strategy
φ(t, xα|µG(·); gα) for each agent depends only upon the agent’s
state and the graphon mean fields: (xα, µG).

For networked LQG and control affine systems the GMFG
equation solvability depends on the complexity of the graphon.

GMFG refs: CDC 2018-23, IEEE TAC 2020, 2021,2023, MTNS
2022, ESAIM 2022, IFAC 2023, Automatica + SCL 2024
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Inconvenient Truths Provoking ”Graphexon Response”

Graphon theory is widely employed in large Network Mean
Field Control and Games studies.

Fact: non-zero graphon limits exist only if ”dense”, i.e. the
number of edges scales quadratically with node cardinality,
equivalently, have strictly positive asymptotic density.
(Shall call non-dense network sequences sparse.)

Hence bounded node degree network sequences have Zero
Limit graphons. True even with refined definitions of sparse.

But (i) NO large real world networks are dense - all are sparse
due to low bounded node degree: Metros, Power grids, etc.

(ii) And there is NO metric based topology for graphs in
Rm, 2 ≤ m, since nodes of a limit graphon G are
combinatorically indexed by reals in [0, 1]m.
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London Underground Bounded Degree Real Network
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Large Sparse Network : Node degree = 4, n = 1, 2, ..
Rectangular Lattice Vertices and Edges in the Unit Square: A Sparse Graph
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Networks in Space: Vertexons and Graphexons

Vertexon and Graphexon Sequences

Let each of a sequence of simple graphs {Gn; n ∈ N} have its
vertices embedded in [0, 1]m, and each of the corresponding
edge vertex pairs be embedded in R2m.

Take cubic partitions (voxels) of [0, 1]m and [0, 1]2m of edge
length 1/k.

Definition: Vertexon and Graphexon {n, k}-sequences:

k− indexed step functions on [0, 1]m (resp. [0, 1]2m) with

steps of height proportional to the fraction of vertices

(resp. vertex pairs connected by edges) of Gn

contained in the corresponding k−voxels.
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Networks in Space: Embedded Graphs: Vertexon and
Graphexon {n, k}-Sequences

k indexes the partition level corresponding to a row above, while
n indexes the total number of elts. per graph passing L to R.
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Vertexon and Graphexon Limits

Vertexon (limits) are weak (double) limit measures on [0, 1]m of
Vertexon {n, k} sequences of embedded graph sequences.

Graphexon (limits) are weak (double) limit measures on [0, 1]2m

of Graphexon {n, k} sequences of embedded graph sequences.
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Networks in Space: Embedded Graphs: Vertexons
and Graphexons

Theorem: Embedded Vertexon-Graphon Stepping Function
Limits (PEC CDC 2022)

Consider an M = [0, 1]m embedded graph sequence
{Gn = (Vn,En), n ∈ N}.
Then there exists a joint vertexon-graphon sub-sequence
converging weakly in measure to a limit vertexon - graphon
measure pair:

Gnv = (Unv ,Env)(z,w) → (V∞,W∞)(dz, dw) a.e.M×M2 as nv → ∞
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Networks in Space: Embedded Graphs: Vertexons
and Graphexons

(a) Graphexon limits have topologies: the metrics on spaces of
distributions.

(b) All (non-empty) graph sequences have non-zero
subsequential limits.

Overview:
Graphon (limits) map [0, 1] node indexed graph sequences to
bounded measurable function (limits) on the unit square.

Graphexon (limits) map (m dim) embedded graph sequences to
measure limits on the (2m dim) unit cube.

Normalizing any non-zero graphon g(α, β) on [0, 1]2 yields an

a.c. graphexon
g(α, β)∫∫
(g(α, β))

on [0, 1]2.
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Recall London Underground Network Example
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Recall Large Sparse Network : Node degree = 4.
Rectangular Lattice Vertices and Edges in the Unit Square: A Sparse Graph
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Infinite Network Infinite Population MF Games:
Drifts of Each Agent in its Cluster

Assume :
(i) The graph sequence Gk; 1 ≤ k < ∞ has a
unique graphon limit function g(α, β), α, β ∈ [0, 1].
(ii) The subpopulation at each node tends to infinity,
giving the local mean field µα and the global set of mean
fields µG = {µβ; 0 ≤ β ≤ 1}. Hence resulting in the drifts:

f0[xα, uα, µα] :=

∫

Rn
f0(xα, uα, z)µα(dz), (9)

f [xα, uα, µG; gα] : =

∫ 1

0

∫

Rn
f (xα, uα, z)g(α, β)µβ(dz)dβ, (10)

yielding the local limit graphon drift dynamics (and
similarly for costs l̃[x, u, µG; gα]):

f̃ [xα, uα, µG; gα] : = f0[xα, uα, µα] + f [xα, uα, µG; gα]
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Graphexon Mean Field Game (GMFG) Equations

Example: (MH-PEC) Vertexon-Graphexon of the Infinite
2-dimensional Rectangular Lattice) - in 4-dimensions!!

Consider the limit of a uniformly distributed uniformly
rectangular (i.e. square) grid in [0, 1]2.

Vertexon: A uniform unit density on [0, 1]2 which is evidently not
singular.

Graphexon: The sum of two singular measures supported on
two foliations of [0, 1]4, namely

{1
2
δ(p − x)δ(q − y) +

1
2
δ(p − y)δ(q − x); 0 ≤ x, y, p, q ≤ 1

}
.
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Infinite Network Infinite Population MF Games:
Drifts of Each Agent in its Cluster: Graphexon Case

Assume :
(i) The graphexon sequence Gk; 1 ≤ k < ∞ has a
unique graphexon limit measure Nα(dβ), α, β ∈ [0, 1].
(ii) The subpopulation at each node tends to infinity,
giving the local mean field µα and the global set of mean
fields µG = {µβ; 0 ≤ β ≤ 1}. Hence resulting in the drifts:

f0[xα, uα, µα] :=

∫

Rn
f0(xα, uα, z)µα(dz), (11)

f [xα, uα, µG;Nα] : =

∫ 1

0

∫

Rn
f (xα, uα, z)Nα(dβ)µβ(dz), (12)

yielding the local limit graphon drift dynamics (and
similarly for costs l̃[x, u, µG; gα]):

f̃ [xα, uα, µG; gα] : = f0[xα, uα, µα] + f [xα, uα, µG;Nα]
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Graphexon MFG Equations (MH-PEC CDC24 sub.)

On a Graphexon with singular measure Nα the GXMFG HJB
generates a value function Vα for the representative agent at
node α at Nash equilibrium with prescribed dynamics on the
support of measure.

[HJB](α) − ∂Vα(t, x)
∂t

= inf
u∈U

{
f̃ [x, u, µG;Nα]

∂Vα(t, x)
∂x

+ l̃[x, u, µG;Nα]

}
+

σ2

2
∂2Vα(t, x)

∂x2 ,

FPK generates the mean field for the representative agent at α

[FPK](α)
∂pα(t, x)

∂t
= − ∂{f̃ [x, u0, µG;Nα]pα(t, x)}

∂x

+
σ2

2
∂2pα(t, x)

∂x2 , pα(0) = p0

[BR](α) u0 = φ(t, x|µG;Nα).
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Example: Heat Equation Influence Between NNs on a
Ring Graphexon (MH-PEC CDC24 sub.)

Scalar nonlinear model with affine control drift dynamics at
node α

f [xα, uα, µG;Nα] : =

∫ 2π

0

∫

Rn
f (xα, uα, z)Nα(dβ)µβ(dz)

:=

∫ 2π

0

∫

Rn
D∂2

βmβ(t)δ(α− β)µβ(dz),

Hence:
dxα(t) = f0(α, xα(t), uα(t), µα(t))dt

+ D∂2
αmα(t)dt + σdwα(t),

where α ∈ [0, 2π), xα(t) ∈ R, uα(t) ∈ R, wα(t) ∈ R, and

mα(t) =
∫

R
xµα(t, dx).
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Example: Heat Equation Influence Between NNs on a
Ring Graphexon (MH-PEC CDC24 sub.)

How does the coupling term ∂2
αmα arise?

In this case we consider a ring graphexon corresponding to
a ring in [0, 1]2 with paramterixed singular graphexon
δ(α− β) on [0, 2π)2. Agent interactions are modelled as
nearest neighbour influences.

Each node’s local mean field mαi receives an averaging
effect with respect to two neighbouring nodes’ mαi−1 and
mαi+1 .

Suitable scaling leads to the second order term ∂2
αmα,

which also has a heat equation diffusion interpretation.
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Example: Heat Equation Influence Between NNs on a
Ring Graphexon (MH-PEC CDC24 sub.)

HJB ∂tVα(t, x) =∂xVα(t, x)f0(x, µ)−
1
4
(∂xVα(t, x))2

+ D∂2
αmα(t) + L0(x, µ) +

σ2

2
∂2

x Vα(t, x).

FPK ∂tpα(t, x) =− ∂x{[f (x, µα(t))− (1/2)∂xVα(t, x)

+ D∂2
αmα(t)]pα(t, x)}

+
σ2

2
∂2

x pα(t, x),

where pα(t, ·) is the probability density function of µα(t).

In the linear dynamics quadratic costs case existence and
uniquness of solutions have been established (MH+PEC,
CDC24 submitted) but ϵ-Nash remains to complete!
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Networks in Space: Vertexons and Graphexons

Summary and Conclusions

(1) Work with Alex Dunyak on Q-noise driven
Graphon/Graphexon LQG control, games, filtering and its
connections to Network Science and Low-rank graphon
approximations (following Shuang Gao) has not been
presented here.

(2) Recall that *all* spatially embedded sparse and dense
graphs have graphexon (weak measure) limits. To Explore!

(3) In principle, the graphexon framework permits the
application of diff. calculus in GXMFG/C systems. Explore!

(4) In the absolutely continuous case the graphexon framework
enables the analysis of maxima, minima, and saddle points of
mean field game equilibrium values as functions of location.
Hence can define “Nash-optimal places”. Explore!
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