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Graphon Mean Field Games: Motivation
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Finite Network Finite Population Mean Field Games

Consider a finite population distributed over a finite graph Gy

with M, clusters of agents at the M; nodes.
My
This gives a total of N = > |C,| agents.
=1
For A; in the node cluster C(i), there are two dynamical input
terms (scalar states for simplicity):

fO(xHula Zfo xlvulax] (1)

8’5(i)c, (2)

NB: fi, uses the sectional (i.e.vertex neighbourhood)
information g,
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Finite Network Finite Population MF Games:
Agent Dynamics in Clusters at Nodes

The state process of .4; in its cluster C(i) is given by the
SDE

cixl — § jb Xi, MI)A&

]GC

= fo(xl', Uj, C(i))dl‘ + + odw; (4)
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Nash Equilibria

The controls 1/° = {u; u adapted to U, ;, 1 < i < N},
generate an w.rt. {J;;1 <i < N} if, for
all i, a unilateral control law u; utilizing the global
information pattern ¢/ satisfies

Ji(ud u® ;) — e < inf Ji(u, u®,) < Ji(ud, u’)

w; €U

So, by definition, a against a population of
agents all of whom are utilizing a Nash strategy
for the unilateral agent.
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From Graphons to Graphexons

Graph Sequence Convergence to Graphons

(Lovasz, AMS 2012) is a bounded
symmetric Lebesgue measurable function W : [0, 1]> — [0, 1].

Graphons may be interpreted as weighted undirected edge
graph limits on the vertex set [0, 1].

[Lovasz and Szegedy, 2006; LL AMS2012]
Under the cut metric the graphon space (W) 1), dn) is compact.
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Graphons

Graphon [Lov2012]: A measurable function [0, 1)*> — [0,1]

Example: Unif. Attachment Graphon: g(«, 8) = 1 — max(a, §)

Convergence of “adjacency matrices” to graphons is in the cut
metric. The space of graphons is compact.
We use stronger topology of
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Infinite Network Infinite Population MF Games:
Drifts of Each Agent in its Cluster

Assume :
(i)
unique graphon limit function
(ii)
Hence resulting in the drifts:
fO[xa,Maa,Ua] = fO(xaquwZ),uOé(dZ)v (5)

Rn
(6)

yielding the local limit graphon drift dynamics (and
similarly for costs /[x, u, 16; g4]):

f[xaauamuGﬂga] L= fO[xaauanua] +
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Graphon Mean Field Game (GMFG) Equations

[HIB](a) ~— ove(nx) _ ;glf] {f[x,u,ﬂc;ga]avzg’x)

ot
~ 2 92ve(s,
%‘ZLX,M,/L(ﬁ g(l]} + 517 ( X)

VA(T,x) = 0, (t,x)€[0,T] xR, a€[0,1],

_
[FPK](a) 81’&8(?’6) _ {fl, uca;cga]pa(r,x)}
282 o(t, )
+% ax(z =, pal0) = po

[BRI(a) u® = o(t,x|1c; 8a)-

2 ox?
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GMFG Eqgns: Existence, Uniqueness, epsilon-Nash

Theorem: GMFG Existence and Uniqueness [PEC-Minyi
Huang CDC2018,CDC 2019, SICON 2021]

For U compact, subject to regularity conditions
to the GMFG
equations (7) and (8).

Moreover subject to a graph convergence condition, the

The feedback control
o(t, xa|pc(+); o) for each agent depends only upon

For networked LQG and control affine systems the GMFG
equation solvability depends on the complexity of the graphon.

GMFG refs: CDC 2018-23, IEEE TAC 2020, 2021,2023, MTNS
2022, ESAIM 2022, IFAC 2023, Automatica + SCL 2024
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Inconvenient Truths Provoking "Graphexon Response”

is widely employed in large Network Mean
Field Control and Games studies.

Fact: non-zero graphon limits exist only if "dense”, i.e. the
number of edges scales quadratically with node cardinality,
equivalently,

(Shall call non-dense network sequences sparse.)

Hence bounded node degree network sequences have
graphons. True even with refined definitions of sparse.

But large real world networks are dense - all are sparse
due to low bounded node degree: Metros, Power grids, etc.

And there is metric based topology for graphs in
R"™,2 < m, since nodes of a limit graphon G are

combinatorically indexed by reals in [0, 1]".
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London Underground Bounded Degree Real Network
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Large Sparse Network : Node degree =4,n = 1, 2, ..

Rectangular Lattice Vertices and Edges in the Unit Square A Sparse Graph
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Networks in Space: Vertexons and Graphexons

Let each of a sequence of simple graphs {G,;n € N} have its
vertices embedded in [0, 1], and each of the corresponding
edge vertex pairs be embedded in R*".

Take cubic partitions (voxels) of [0, 1)™ and [0, 1]*" of edge
length 1/k.

Definition: Vertexon and Graphexon {n, k}-sequences:

k— indexed step functions on [0, 1]™ (resp. [0, 1]*") with
steps of height proportional to the fraction of vertices
(resp. vertex pairs connected by edges) of G,

contained in the corresponding k—voxels.
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Networks in Space: Embedded Graphs: Vertexon and
Graphexon {n, k}-Sequences

k indexes the partition level corresponding to a row above, while
n indexes the total number of elts. per graph passing L to R.
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Vertexon and Graphexon Limits

are weak (double) limit measures on [0, 1]™ of
Vertexon {n, k} sequences of embedded graph sequences.

are weak (double) limit measures on [0, 1]*"
of Graphexon {n, k} sequences of embedded graph sequences.
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Networks in Space: Embedded Graphs: Vertexons
and Graphexons

Consider an M = [0, 1] embedded graph sequence
{G, = (Vy,E,), n € IN}.

Then there exists a joint vertexon-graphon sub-sequence
converging weakly in measure to a limit vertexon - graphon
measure pair:

G, = (Un,  En,) (2, W) = (Voo, Woo ) (dz, dw) a.e. MXM? as n, — oo
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Networks in Space: Embedded Graphs: Vertexons
and Graphexons
(a) Graphexon limits have topologies: the metrics on spaces of
distributions.
(b) All (non-empty) graph sequences have non-zero
subsequential limits.

Overview:
Graphon (limits)

Graphexon (limits)

Normalizing any non-zero graphon g(a, 8) on [0, 1]* yields an
(a 6)
on [0, 1.
I/ (s, B)

a.c. graphexon
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Recall London Underground Network Example
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Recall Large Sparse Network : Node degree = 4.
Rectangular Lattice Vertices and Edges in the Unit Square: A Sparse Graph
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Infinite Network Infinite Population MF Games:
Drifts of Each Agent in its Cluster

Assume :
(i)
unique graphon limit function
(ii)
Hence resulting in the drifts:
fO[xaaua>Ma] = Jo (X, ey 2) o (dZ), 9)

R»

yielding the local limit graphon drift dynamics (and
similarly for costs /[x, u, 16; g4]):

f[xaauamuGﬂga] L= fO[xaauanua] +
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Graphexon Mean Field Game (GMFG) Equations

Example: (MH-PEC)
- in 4-dimensions!!

Consider the limit of a uniformly distributed uniformly
rectangular (i.e. square) grid in [0, 1]°.

: A uniform unit density on [0, 1]* which is evidently not
singular.

: The sum of two singular measures supported on
two foliations of [0, 1]*, namely

{%5(11—X)5(q—y) + %5(p—y)5(q—X);0§x,y,p,q§ 1}.
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Infinite Network Infinite Population MF Games:
Drifts of Each Agent in its Cluster: Graphexon Case

Assume :
(i)
unique graphexon limit measure N, (d3), a, 5 € [0, 1].

(ii)
Hence resulting in the drifts:

fO[xaauauua] = R"fO(xOmua>Z)Ma(dZ)v (11)

S p
o tta, pigi No| = = /0 R”f(xa,umz)Nu(dﬁ)/ta(dZ)a (12)

yielding the local limit graphon drift dynamics (and
similarly for costs /[x, u, 16; g4]):

f[xaauamUG;ga] L= fO[xaauauua] + f[xaa”aa/LG;Na}
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Graphexon MFG Equations (MH-PEC CDC24 sub.)

On a Graphexon with singular measure /,, the GXMFG HJB
generates a

with prescribed dynamics on the
support of measure.

oVe(t, x) e = 0Vt x)
HBl(e) 2 — it {1
~ o2 ?Ve(t, x)
= le7Lt7/L(;; ] }> 4§g744442§;;f4447’
Opa(t,x) _ O, u, png; Vo Jpa(t, )}
[FPK](«) % o
02 ?pa(t, x)
+ DG Pa(0) = po

[BRI(er) u® = o(t,x|ug; V..
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Example: Heat Equation Influence Between NNs on a
(MH-PEC CDC24 sub.)

Scalar nonlinear model with affine control drift dynamics at
node «

2
flXa, o, pG;Na| : = / /fxa,ua, o(dB)pp(dz)

2w
0 R~

Hence:
dxa(1) = fola,xa(t), ua(t), pa(r))dt
+ dt + odwy (1),
where X () € R, un (1) € R, wo(t) € R, and

me(t) = /Rx,ua(t, dx).
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Example: Heat Equation Influence Between NNs on a
(MH-PEC CDC24 sub.)

How does the coupling term 9%m,, arise?

In this case we consider a ring graphexon corresponding to
aring in [0, 1]> with paramterixed singular graphexon

§(ac— B) on [0,27)2. Agent interactions are modelled as
nearest neighbour influences.

Each node’s local mean field m,, receives an averaging
effect with respect to two neighbouring nodes’ m,, , and

Moy -

Suitable scaling leads to the second order term 92m,,,
which also has a heat equation diffusion interpretation.
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Example: Heat Equation Influence Between NNs on a
(MH-PEC CDC24 sub.)

HIB 0,V (t,x) =0,V (t, x)fo(x, 1) — %(@Va(t, x))?

2
+ DPma(t) + Lo(x, ) + %afva(z, x).

FPK  9pa(t,x) = — 0{[f(x, pa(t)) — (1/2)0:Va(t, %)
+ Do (1)|pa(t, x)}

0'2 2
+ Taxpa(tax)v

where p,(t,-) is the probability density function of 1, (z).

but <-Nash remains to complete!
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Networks in Space: Vertexons and Graphexons

Work with Alex Dunyak on Q-noise driven
Graphon/Graphexon LQG control, games, filtering and its
connections to Network Science and Low-rank graphon
approximations (following Shuang Gao) has not been
presented here.

Recall that *all* spatially embedded sparse and dense
graphs have graphexon (weak measure) limits. To Explore!

In principle, the graphexon framework permits the
application of diff. calculus in GXMFG/C systems. Explore!

In the absolutely continuous case the graphexon framework
enables the analysis of maxima, minima, and saddle points of
mean field game equilibrium values as functions of location.

Hence can define “Nash-optimal places”. Explore!
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