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Motivation

Emerging energy efficient airframes pose complex dynamics,
not amenable to traditional model reduction and control.
Low bandwidth control is standard approach to avoid exciting
unmodeled dynamics, but it sacrifices performance/agility.
Neural Network controllers can overcome these difficulties.

Favored by several Advanced Air Mobility companies, but...

e.g., Code of Federal Regulations on Airworthiness Standards
(14 CFR 25) states: “The airplane must be longitudinally,
directionally, and laterally stable in accordance with the
provisions of §25.173 through 25.177.” Advisory Circular on
aeroelastic stability demands 6 dB gain, 60° phase margin.




Outline

Neural Network (NN) Control System
A unifying recurrent implicit NN architecture for controlling
an uncertain plant

Control Synthesis

NN training to maximize a reward subject to a dissipativity
constraint to accommodate a class of plant uncertainties
Examples
1. Inverted pendulum, 2. Flexible rod on a cart
Disk Margins

Incorporating classical gain/phase margins and elevating
them to nonlinear systems through dissipativity theory




NN Control System

(in continuous time):
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Gk @ LTI model for the linear dynamics of the controller
¢ : vector of activation functions, acting componentwise

“Implicit” due to equation: Wi = ¢(CroTk + DivwWk + Divyy)

Can be made explicit in special cases, e.g. feedforward networks
where Dy, is strictly upper triangular. Our training procedure
ensures well-posedness without restricting the network structure.




NN Control System
with plant G, and model uncertainty Ay:
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NN Control System

1. Characterize activation functions and plant uncertainty with

Integral Quadratic Constraints (IQCs)

2. Formulate closed-loop stability requirement as dissipation

inequality to be satisfied by nominal system G

3. Train NN controller (i.e. weights in (Gi.) to maximize a reward

subject to the dissipativity constraint
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Simplest quadratic constraint for

activation functions in sector [0,1]:
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NN Control System
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where v, w are outputs of “filters” &, W, applied to v, w.
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More expressive than static IQCs: can choose ¥, ¥5, e.g., to
emphasize different frequency ranges in signals v, w.




NN Control System

2. Formulate closed-loop stability requirement as dissipation
inequality to be satisfied by nominal system G

Take combined dynamical model for G, ¥, Wo:
x(t) = f(x(t), w(t),d(t))

If there exists nonnegative storage function  — V(x) such that
1T .
VV(z)' flz,w,d) + [~] M [~] < s(d,e) Vx,w,d

T

then V(z(T)) < V(2(0)) + / s(d(t), e(t))dt VT >0
0

This guarantees Lyapunov stability with s = 0, L, gain with

s(d,e) = v?*|d|? — |e]?, etc., for any A satisfying the 1QC.




Control Synthesis

. Train NN controller (i.e. weights in (G1,) to maximize a reward
subject to the dissipativity constraint

Training algorithm alternates between a Reinforcement
Learning (RL) step and a dissipativity-enforcing step.

RL step aims to maximize reward fOTr(x(t),u(t))dt averaged
over disturbances and initial conditions seen during training.
Dissipativity-enforcing step computationally tractable for

linear G (i.e., if plant nonlinearities can be subsumed in A):
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Control Synthesis

Matrices above are affine in control parameters:
A, B 575 ]
0 = | Cho Divw Doy
 Cku Diuw Diuy |

With quadratic storage function V(z) = z ' Pz, the
dissipativity condition becomes a Bilinear Matrix Inequality
in P,8, A where A is the diagonal matrix in M.

Change of variables to obtain Linear Matrix Inequality (LMI)
in new decision variables, from which P, 8, A recovered.
LMl incorporates ADgyw + Dy A — 2A < 0. Imposing
strictness of this inequality ensures well-posedness of the
implicit NN for activation functions with slope bound [0,1].




Episode Reward

Examples
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Episode Reward

Examples

Nominal model for rigid rod + uncertainty
with L, gain bound cover flexible model.
Training with flexible model to minimize
cost in state and control. my
. Performance on Flexible Rod on a Cart
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Disk Margins

Linear SISO plant G, with controller K has
disk margin D(a, 0) if 1—0Gp(w)K(w)#0

Vw, V6 € D(a,0) := {
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G, with controller K has disk margin D(«, o) if

perturbed system below is stable for any A, with L, gain < «a:
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Disk Margins

l+o Wp l—0
2 2

Up iéa
PRV S N e B Py
_/ p

Final LFT, merging LTI part of NN
controller with G, (o) into G(0):
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Synthesis method applied to this setup guarantees disk margin.
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