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Background of Ensemble Control Theory
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System Model

• Ensemble control is about using a common control input to simultaneously steer a
large population of dynamical systems

It originated from quantum spin systems [Brockett, Khaneja, Li]

• Mathematical model:

ẋσ(t) = f(xσ(t), u(t), σ), for all σ ∈ Σ

▶ common control input u(t) ∈ Rm

▶ continuum/discrete space Σ

Integrated output (over Σ):

y(t) =

∫
Σ
ϕ(xσ(t))dµ ∈ Rℓ

where µ describes population density
Ensemble System

Controller
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Fundamental System Properties

• Controllability: ability of using u(t) to steer the population from any initial
condition to any target (within a given, but arbitrarily small error tolerance)

▶ Linear ensemble systems: extended Kalman rank condition [Triggiani]

▶ Control-affine ensemble systems: extended Rachevsky-Chow [Agrachev etc.]

• Observability: ability of using u(t) and y(t) to estimate xσ(t) for all σ ∈ Σ

▶ Linear ensemble systems: Duality theory [Curtain]

▶ Control-affine (nonlinear) ensemble systems: Co-distribution algebra [Chen]

• Feedback stabilizability (focus today): existence of a feedback control law
u(t) = k(x(t)) to stabilize the population at an equilibrium point [Chen, 2024]
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Problem Formulation
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Setup

• Let X be a Banach sequence space in C (X = ℓp, for 1 ≤ p < ∞ or X = c0)

• Discrete ensemble of unstable linear systems:

ẋn(t) = anxn(t) + bnu(t), for all n ∈ N (1)

▶ x(t) := (xn(t)) ∈ X, u(t) ∈ C
▶ a := (an) ∈ ℓ∞ with an > 0, b := (bn) ∈ X

• Linear feedback control law: u(t) = kx(t), where k ∈ X∗, which turns (1) into

ẋ(t) = (A+ bk)x(t), where A := diag(a1, a2, a3, · · · ) (2)

• Definitions:

▶ System (2) is stable if ∃C > 0 s.t. for any initial x(0), ∥x(t)∥ ≤ C∥x(0)∥
▶ System (2) is asymptotically stable if it is stable and, moreover, limt→∞ x(t) = 0
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Feedback Stabilization and Pole Placement

• Feedback system:
ẋ(t) = (A+ bk)x(t) (3)

where (A, b) is given and k ∈ X∗ is a free variable

• Question 1: When is there a k ∈ X∗ such that (3) is (asymptotically) stable?

• A necessary condition for (3) to be stable is that

spec(A+ bk) ⊆ H := closed left half plane of C (4)

• Question 2: When is there a k ∈ X∗ such that (4) can be satisfied?
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Results for Pole Placement
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A Necessary Condition

• Theorem 1: If there is a k ∈ X∗ s.t. spec(A+ bk) ⊆ H, then

1. (an) ∈ c0 and, moreover, an ̸= am for all n ̸= m

2. bn ̸= 0 for all n ∈ N

• Sketch of proof:

▶ Since an > 0 and since spec(A+ bk) ⊆ H, ess(A) = ess(A+ bk) = {0}
▶ “Distinct an and nonzero bn” follows from the Weinstein-Aronszajn formula

• The two items are sufficient for controllability:

If the above two items are satisfied, then the system ẋ = Ax+ bu is uniformly
controllable (i.e., the linear span of {b, Ab,A2b, · · · } is dense in X)
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Re-visit of the Finite-dimensional Case

• N -dimensional system: ẋ(t) = A′x(t) + b′u(t), with A′ = diag(a1, . . . , aN )

• If the an’s are distinct and the bn’s are nonzero, then pole placement is feasible:

▶ Given the target eigenvalues {λ1, . . . , λN}, there is a unique (row) vector k′ s.t.

spec(A′ + b′k′) = {λ1, . . . , λN}

▶ The Ackermann’s formula provides an explicit expression for k′ = (k′1, . . . , k
′
N ):

k′n = −(an − λn)

bn

N∏
m=1,m ̸=n

1− λm/an
1− am/an

(5)

• Can we extend the result to the infinite-dimensional case?
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Toward the Infinite-dimensional Case

• Let cH := {λ = (λn) ∈ c0 | re(λn) ≤ 0, for all n ∈ N}
• For each λ = (λn) ∈ cH , we define k(λ) = (kn(λ)) as

kn(λ) := −(an − λn)

bn

∞∏
m=1,m ̸=n

1− λm/an
1− am/an

• Theorem 2: Suppose that λ is such that k(λ) ∈ X∗; then,

spec(A+ bk(λ)) = {λn | n ∈ N} ∪ {0}

• When does there exist such a λ ∈ cH?
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On Feasibility of Pole Placement: A Negative Result

• Theorem 3: If there is a d < 2 s.t. (ndan)n∈N is eventually monotonically
increasing, then there does not exist any λ ∈ cH such that k(λ) ∈ X∗

• Sketch of proof:

▶ Focus on the special case λ = 0, which yields the minimum norm ∥k(λ)∥
▶ Evaluate kn(0) in the asymptotic regime (n → ∞):

|1/kn(0)| = |bn| ·
1

an
·

∞∏
m=1,m̸=n

|1− am/an| = O(nde−αn)

where α is some positive constant

▶ limn→∞ |kn(0)| = ∞, so k(0) ̸∈ X∗
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On Feasibility of Pole Placement: A Positive Result

• Theorem 4: If a, b, and λ satisfy the following:

1. There is a d > 2 s.t. (ndan)n∈N is eventually monotonically decreasing

2. lim sup
n→∞

1
n ln(an/|bn|) ≤ 0 (i.e., an/|bn| does not grow exponentially fast)

3. limn→∞ λn/an = 0

then |kn(λ)| decays exponentially fast as n → ∞ =⇒ k(λ) ∈ X∗

• Examples:

▶ an = 1/nα for α > 2, bn = 1/nβ, and λn = −1/nα+ϵ for ϵ > 0

▶ an = e−αn for α > 0, bn = e−βn for β ≤ α, and λn = −e−(α+ϵ)n for ϵ > 0
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Result for Feedback Stabilization
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A Sufficient Condition:

• Theorem 5: If there are constants 0 < ν0 < ν1 < ν2 < 1 such that an+1/an < ν0
and ν1 < |bn+1/bn| < ν2 for all n ∈ N, then k(−a) ∈ X∗ and

ẋ(t) = (A+ bk(−a))x(t)

is asymptotically stable

• Example: an = e−αn for α > 0, bn = e−βn for β ≤ α, and λn = −e−αn

• Sketch of proof:

▶ Define Y := {y | By ∈ X} where B := diag(b1, b2, · · · ), and ∥y∥Y := ∥By∥X
▶ Let y(t) := B−1x(t) =⇒ ẏ(t) = B−1(A+ bk(−a))By(t) and ∥y(t)∥Y = ∥x(t)∥X
▶ Define P : Y → Y as

Pij :=

 2aj
ai + aj

∞∏
k=1,k ̸=j

1 + ak/aj
1− ak/aj


▶ P is bounded, P 2 = I, and B−1(A+ bk(−a))B = −PAP
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