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Background of Ensemble Control Theory
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System Model

® Ensemble control is about using a common control input to simultaneously steer a
large population of dynamical systems

It originated from quantum spin systems [Brockett, Khaneja, Li]

¢ Mathematical model:

o) = flar ) u0).0), forallg e s Mol -/
» common control input u(t) € R™ Zu(t)
» continuum /discrete space X
Integrated output (over X): r—a A*';‘ '
A 8
A

1) = [ ool du e B

Ensemble System

where 1 describes population density
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Fundamental System Properties
¢ Controllability: ability of using u(t) to steer the population from any initial
condition to any target (within a given, but arbitrarily small error tolerance)
» Linear ensemble systems: extended Kalman rank condition [Triggiani]

» Control-affine ensemble systems: extended Rachevsky-Chow [Agrachev etc.]

¢ Observability: ability of using u(t) and y(t) to estimate z,(t) for all 0 € ¥
» Linear ensemble systems: Duality theory [Curtain]

» Control-affine (nonlinear) ensemble systems: Co-distribution algebra [Chen]

¢ Feedback stabilizability (focus today): existence of a feedback control law
u(t) = k(z(t)) to stabilize the population at an equilibrium point [Chen, 2024]
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Problem Formulation
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Setup
® Let X be a Banach sequence space in C (X = /P, for 1 <p < oo or X = ¢)

® Discrete ensemble of unstable linear systems:
En(t) = anen(t) + byu(t), forallmeN (1)

» 2(t) == (zp(t)) € X, u(t) € C
» a = (ay) € £> with a, >0, b:= (b,) € X
® Linear feedback control law: wu(t) = kx(t), where k € X*, which turns (1) into

&(t) = (A+ bk)x(t), where A :=diag(ai,a2,as,---) (2)

¢ Definitions:
» System (2) is stable if 3C > 0 s.t. for any initial 2(0), ||z(¢)]] < C||=(0)]]

» System (2) is asymptotically stable if it is stable and, moreover, lim;_,~, 2:(t) =0
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Feedback Stabilization and Pole Placement
® Feedback system:
&(t) = (A + bk)x(t) (3)
where (A, b) is given and k € X* is a free variable
® Question 1: When is there a k € X* such that (3) is (asymptotically) stable?

® A necessary condition for (3) to be stable is that
spec(A + bk) C H := closed left half plane of C (4)

® Question 2: When is there a k € X* such that (4) can be satisfied?
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Results for Pole Placement
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A Necessary Condition

® Theorem 1: If there is a k € X* s.t. spec(A + bk) C H, then
1. (ay) € co and, moreover, a,, # a,, for all n #m
2. b, #0forallneN
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e Sketch of proof:
» Since a,, > 0 and since spec(A + bk) C H, ess(A) = ess(A + bk) = {0}
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® Theorem 1: If there is a k € X* s.t. spec(A + bk) C H, then
1. (ay) € co and, moreover, a,, # a,, for all n #m
2. b, #0forallneN

e Sketch of proof:
» Since a,, > 0 and since spec(A + bk) C H, ess(A) = ess(A + bk) = {0}
» “Distinct a, and nonzero b," follows from the Weinstein-Aronszajn formula

® The two items are sufficient for controllability:

If the above two items are satisfied, then the system & = Ax + bu is uniformly
controllable (i.e., the linear span of {b, Ab, A%b,---} is dense in X)
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Re-visit of the Finite-dimensional Case
e N-dimensional system: &(t) = A’z (t) + V'u(t), with A’ = diag(aq,...,an)
® |f the a,,'s are distinct and the b,'s are nonzero, then pole placement is feasible:

» Given the target eigenvalues {\1,...,An}, there is a unique (row) vector k' s.t.

spec(A" +VK') = {)\1,..., A\n}

» The Ackermann’s formula provides an explicit expression for k' = (kf,..., k}y):
N
Yo (an — An) H 1—Ap/an (5)
" bn 1- am/a’n

m=1,m#n
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» The Ackermann’s formula provides an explicit expression for k' = (kf,..., k}y):
N
Yo (an — An) H 1—Ap/an (5)
" bn 1- am/a’n
m=1,m#n

e Can we extend the result to the infinite-dimensional case?
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Toward the Infinite-dimensional Case
o Let ey :={A=(\n) € co|re(\n) <0, for all n € N}
® For each A\ = (\,,) € ¢y, we define k(\) = (k, (X)) as

[e.9]

o (an =) 1—Am/an
kn(X) = P mzy[n#n ——
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b, 1—am/an

m=1m#n
® Theorem 2: Suppose that A is such that k(\) € X*; then,

spec(A + bk(N)) = { | n € N} U{0}

® When does there exist such a A\ € cy?
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On Feasibility of Pole Placement: A Negative Result

® Theorem 3: If there is a d < 2 s.t. (n%ay)nen is eventually monotonically
increasing, then there does not exist any A € cy such that k(\) € X*
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On Feasibility of Pole Placement: A Negative Result

® Theorem 3: If there is a d < 2 s.t. (n%ay)nen is eventually monotonically
increasing, then there does not exist any A € ¢y such that k(\) € X*

e Sketch of proof:
» Focus on the special case A = 0, which yields the minimum norm ||k(A)]|

» Evaluate £, (0) in the asymptotic regime (n — o0):

o0

1 a  —an
11/kn(0)] = [bn] - o H 11— am/an| = 0(7116 )
e m=1,m#n

where « is some positive constant
» limy, 00 |K, (0)] = 00, so k(0) & X*
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On Feasibility of Pole Placement: A Positive Result
® Theorem 4: If a, b, and A satisfy the following:
1. Thereisa d > 2 s.t. (n%ay)nen is eventually monotonically decreasing
2. limsup L In(an/|bn|) < 0 (i.e., an/|by| does not grow exponentially fast)
n—oo

then |k, (\)| decays exponentially fast as n — co = k(\) € X*
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® Theorem 4: If a, b, and A satisfy the following:
1. Thereisa d > 2 s.t. (n%ay)nen is eventually monotonically decreasing
2. limsup L In(an/|bn|) < 0 (i.e., an/|by| does not grow exponentially fast)
n—oo

then |k, (\)| decays exponentially fast as n — co = k(\) € X*

e Examples:
> a, = 1/n% for a > 2, b, = 1/n?, and A, = —1/n¢ for € > 0
s ap=e " fora>0,b,=eP"for < a, and \, = —e (T for ¢ > ()
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Result for Feedback Stabilization
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A Sufficient Condition:

® Theorem 5: If there are constants 0 < vy < v; < 15 < 1 such that a,,41/a, < 1y
and vy < |by1/by| < 1o for all n € N, then k(—a) € X* and

(1) = (A + bk(—a))a(t)

is asymptotically stable
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A Sufficient Condition:

® Theorem 5: If there are constants 0 < vy < v; < 15 < 1 such that a,,41/a, < 1y
and vy < |by1/by| < 1o for all n € N, then k(—a) € X* and

(1) = (A + bk(—a))a(t)

is asymptotically stable

e Example: a, = e " for a > 0, by, = e " for f < @, and \,, = —e~ "

e Sketch of proof:
» Define Y := {y | By € X} where B := diag(b1,b2,---), and ||y|ly := || Byl x
- Let y(t) i= B-la(t) — §(t) = B(A + bk(—a)) By(t) and [y(®)ly = |2(t)]x
» Define P:Y — Y as

P.o— 2aj ﬁ 1+6Lk/aj
i - a; + aj K1 bt 1-— ak/aj
» P is bounded, P? = I, and B~'(A + bk(—a))B = —PAP
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