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Escorting of HVAA

> Motivation.

» Future mission planning will involve
a high value aerial asset such as a
bomber or AWACS being escorted by
one or several wingmen.

» A similar concept includes a piloted,
exquisite aircraft commanding
several, relatively inexpensive,
Unmanned Aerial Vehicles (UAVS)
or Collaborative Combat Aircrafts
(CCAs).

Y

Fig. 1.

Dynamic Mission Planning
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Escorting of HVAA

> Problem.

» Protect an HVAA which travels with
constant heading.

» Wingman needs to block the red
interceptor as far as possible from
HVAA.

» Block: reach within fire range from

interceptor.
A
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Escorting of HVAA

> Problem. £ Y

» Red interceptor seeks to reach as close
as possible to the HVAA and fire its

weapons. -
=<,

» Wingman aims at maximizing the
terminal distance between the HVAA e
and interceptor at the moment it reaches A
blocking range.
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Optimal Strategies

* Reach-avoid differential game between B,, and R

Both players know the speeds constant speed and heading of B,

R also knows the blocking parameter (range of weapon of B,,)

(%

VR UR
p >0

Dominance regions explicitly considering both f and p are separated by the Cartesian Oval (CO)

rw=Jr+p
r . distance R will travel to reach a given point in the CO

ry - distance between the point in the CO and the current position of B,
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Optimal Strategies

 Without loss of generality, assume that the initial position of the HVAAis B, = (0,0) and 64 = g

 The positions of B,, and R in the relative frame are denoted by B,, = (Xyy, Yy) and R = (Xg, Yr)

* The LOS angle from R to B, is

Yyw — YR
Com—

Aw = arctan

 The current separation between B,, and R

d=+/(zw —2r)%+ (yw — Yr)>
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Optimal Strategies

« Theorem: The optimal blocking point in the CO between R and B,, such that R minimizes and B,
maximizes the terminal distance between R and B,, corresponds to the optimal distance r* which is
the real solution of the polynomial equation

(1)

that minimizes the cost

11
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 Where

A,
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Optimal Strategies

o Also

Yy TN
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Optimal Strategies

* Proof. Define

ar —yYyr
(o)

A1 = arctan

We can also find

J12 — x% + (ar — yR)2

Also, solve for ¢ in the following
ri; = d* 4+ 1 — 2dr cos ¢

d>+r?—r2
2dr

cos ¢ =

1

Sin ¢ = ———+/4d?r? — (& + 1% —12)?

2dr
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Optimal Strategies

The cost to be minimized is obtained (in terms of J,)
J? = J? + 1% —2Jyrcos(¢ — 6)

where 6 = AW — A1

Expanding and substituting J,

J? = x% + (ar —yg)* + r* — 2rJ;[cos ¢ cos § + sin ¢ sin 6]
1

2@ + 7 = r2)l(er — yr)Su — zrCu

— \/4d2r2 — (d2 + 12 — 12)2[(ar — yr)Cy + ZL‘RSw]]

= x% + (ar —ygr)® + 12 —

where C, = cos Ay, Sy, = sin Ay
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Optimal Strategies

Find the first derivative of J, with respect to r and set it equal to zero.

The resulting equation is as follows

dlafar —yn) +7] - S22 + (1= ) — 2fpr —

— [(ar = yr)Sw — zrRCu][(1 — fAr - fpl
o i P
[(ar — yr)Cw + rSw] [2d%r — [d* + (1 — f2)r2 = 2fpr — p?][(1 — f*)r — fp]]

VARrE —[d2 + (1 — f2)r2 — 2fpr — p?]2
=0

After extensive simplification, eq. (1) is obtained.
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Example

» Optimal strategies implemented by both
Wingman and Red Interceptor for

04 =1.32 rad
V(x) = 32.2388

 Minmax terminal distance between H
and R.

0 10 20

Fig. Optimal play.

30 40 50 60 70 80
X (mi)
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50
40 -
30+
H
= 20 W R
E -
)
10
O |4
10 b
| | |
0 10 20 30 40 50 60

X (mi)
Fig. ‘aggressive’ maneuver by R.
J =35.5943 >V(x)

70 80

THE AIR FORCE RESEARCH LABORATORY

* Non-optimal strategies implemented by the Red Interceptor.

60 -
50 -
W
H
40
=
g
A
>
30 -
20 +
10
0 E. | | |
0 10 20 30 40 50 60 70
x (mi)

Fig. ‘passive’ maneuver by R.
J = 32.5533 >V(X)

80

18



A /)
\/ USSF

Q< AFRL
Example
« Non-optimal strategies implemented by~ *° | | | | | | | ]
the Red Interceptor.
40 -
30 -
H
~ 20 4
10 4
0 A
Fig. R implements Pure Pursuiton H. ]
J =36.4824 >V(x)
0 2 . 4 s e 1 80

x (mi)

THE AIR FORCE RESEARCH LABORATORY
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Escorting of HVAA
» Practical extensions.
» Low-end CCA:s. Significantly slower than red | RlL
Interceptors, need to cooperate 2-on-1. £
» High-end CCAs. Carry several weapons, could RZR L
3

block sequential adversaries. Use terminal
conditions of one stage for next stage.

* Include other tasks such as stationary enemies or
tasks.

V&

« Multiple CCAs, tasks and interceptors. Find
optimal assignments.

Fig. 1.

Dynamic Mission Planning
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Virtual Target Selection for Multiple-Pursuer Multiple-Evader

Background.

* Pursuit and weapon target assignment problems involving mobile agents
represent a relevant class of problems for the aerospace and defense

community
* Scalable methods for performing weapon target assignment are desired

* Perform the optimization for an overall fleet of vehicles rather than
individually

* Delayed decisions made by the pursuers is of interest to provide agility and
flexibility to operations.
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Introduction

Problem Setup /

« Consider many pursuers and evaders ;7 ~orin) [Apal(V T, Eyu(t)

« Faster pursuers aim to capture slower '\X f/+ or,, 4wt
evaders N ;{;f’ﬁ 'u ,fﬁ;j:};i___;-‘ii-

« Evaders stay on fixed-course ¢ _“v*gf ;/\ CE

* Pursuers exhibit simple motion Vi, el

« Pursuers navigate to a virtual target
prior to engaging the evaders

Objectives

« Pursuer intercept strategies to evaders by way of a virtual target

« Obtain the pursuer-evader assignments to minimize overall energy required by
pursuer team.

Generalized Geometry

RRRRRRRRRRRRRRRRRRRRRRRRRRRRR
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Optimal Control Problem
State Space: 'Dynamics: R
["EPHEI'HJ::E':‘FE}ITH’- € [L.N]Aj € [1.M] tp = vpcosipp Vi€[l..N]
Yp, = tp singp Vi€ [1..N]
[Cﬂ-l‘ltl'nlﬁ: vp €OV O€ (0,21 CR fg = Vg r:ns-:,bsj ¥i € [1...M]
N yg, = v, sintg ¥jE [L.M] )
Initial Conditions:
p
. (sg.) €RLPERYS, B-P() | Equalty Condiions “
E = (IE,FHEJ eRL,EeRM<2 E =E(t) P = P[i.r-} =E; = E[t.r-}
x P(t)=VT(t)
VT = (ZyT., eRELPeRM VT, =VT !
§ ( VT, !hr"n_} ] () - Phase 1 Phase 2 .
P(t) ~*P(L). V(L) P(t;).E(t;) |

Objective:
L2 LTS

!
min J = min w—ﬂ,-jk+[ ldt}

RRRRRRRRRRRRRRRRRRRRRRRRRRRRR
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Optimal Control Problem - Indirect Method

The optimal control problem is broken into two phases: Phase 1: t € [t,,t,) and Phase 2: t € [t;,t].

"Phase 1 Hamiltonian: )

Hy= Py (t)vp mﬁ(‘n‘-"ﬁ Et}] T Pyp, (t)vp sin ('#".r', '{t]']

Phase 1 Costate Dynamics:
A v _ OHy
FIF' - _E =W 'PE'IF'l = _E =

Costates are constant for Phase 1.
Phase 1 Stationarity Condition:

aH .
wﬁ =0= ~Prp Vp, SIDYE +p”|trpt|:n51,l_'rpt =0

The optimal control is constant for Phase 1 and is:

uh&}‘ (t) = {ﬂtﬂﬂg (H‘w,, —V¥p Ty, — IF.:} | t € [ty El]‘}J

‘Phase 2 Hamiltonian:
Hy=p, P, (t)vp mﬁ(‘n‘-"ﬁ '[t]} T Pyp, (thvp Sjﬂ{'*-l"_r', '[t]']
Phase 2 Costate Dynamics:
By By
FIF' BI.FI_ - ¥p, ﬂypl —
Phase 2 Stationarity Condition:
i g

=0= —p, vpsing, +p vy costhy =0.

p
_Therefore the optimal control is constant for Phase 2.

'Phase 2 Solution Strategy:
= Pursuer takes a straight line course
= Intercept a slower evader

.+ Use Apollonius circle geometry

25
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Apollonius Circle and the Interception Point

Time for F to reach V'T: /
t, = %,J.'II':II-":;_IP,':‘u:]'1"'[!!'1-*'1';“5'1*,':‘:.1:}1 Ir/" I'Irlll (VT Eelty )
Position of E when Pisat VT : h J f+“ ]

——

E;j(t)) = Ej(ty) + tyvg Ug

pL*1 ] 4 By # p ~—E, |r1
Speed Ratio: \“’ “}’ﬁ\ﬁﬁ'

= = ‘Interception poi )
p .| In on point
Apollonius Circle . S— ms[d.ﬁ# + ;'t.-jt) (I-.m,)
ijk = i +
_ pi VT Eig(t) . o Ei“{"r' e i’li:‘k] W
k= 1 -2 h
Hij where
2
_E pii VI Ein(ty) (008 A OF.. = VE, — Nji TR, = sin”~! (Iuij singg l,,,]
Oijic(tr) = Eijc(ty) + 1— .2 cin )
her iy '_Tk JI'I_TJZ — Bt-ﬂ.ﬂﬂ (FE " I::tl.} - !.JW.: % :EE”.: {tl} - :EFTE]
where
] ] FT&.'E:. &
) FikEijih— = ‘vl'l{rsuk[t:}—zwk:l +|:I-'Euk[11:'—lﬂ-'rl) ) VI Ly = —F:-;(F“ COETg, ., T \/1 F.; sin® TE,, )

L &
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Mixed Integer Linear Program Formulation
Solution Approach Revisited

Value Function Assignment Problem

1. Use Optimal Control Theory to find 1. Obtain the cost for the assignment
the cost for the assignment of: P, — of: P, — VT, — E,
VT, = E, 2. Limit the number of VT, cadidates to

2. Optimal Control Theory allows for the some maximum: M,
utility of Apollonius circle geometry 3. Use a mixed integer linear program
3. Calculate the Length of P.VT, and to find the optimal assignments.
VI,.E,
4. Calculate the maneuver 6, ;,

i

5. The cost of the assignment is
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Mixed Integer Linear Program (MILP) Formulation

* The costfor F; — VT, — E, is denoted as «;;,

MILP Equation
Objective:  min Z CikTijkr
iEP je£ kEV
rrﬂuI]j-E~|::t o
Contraint 1: E Tik = 1, Vi€ £,
i€ P keV
Contraint 2: Z i =1, VieDP,
&£ REV
Contraint 3: Z Tijk S Y, TR EV,
i€P je£
Contraint 4: Eyk < My,
kEV
Contraint 5: ;5.4 € {0,1},Vie P.je& ke V.

A

Objective:
Find the assignment that minimizes the cost

Constraint 1:
Every E is assigned to at leastone P ata VT

Constraint 2:
Every P is assigned to some VT and an E combination

Constraint 3:
AVT,, can only be used if the corresponding i, =1

Constraint 4:
Limit the maximum number of VV'T's.

Constraint 5:
Binary constraints

28
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Example: Setup
Problem Setup: 4 Pursuers, 2 Evaders, 3 Virtual Targets

- —a
P-‘-l- EE
A

P
3 Candidate VT
Region

P.l. ‘ m—

2 & 3 VT Max Ey
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Example: Results - 100 Candidate Virtual Targets

20
15 -
154
104 10‘
F 3
! ¢
g = g s
3 F
- 0 - >~
T2 v
-5 4
-5 -
~10
5 0 5 v 15 20 25 3 3% 0 5 10 15 20 25 30

X Position, DU X Position, DU
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Covergence Time and Performance Tradeoft

Convergence Time
17.5
[}
15.0 .
ﬁ 12.5 & .
E 10.0 *
" .
E 1 . -
: ¢
5 50 st
-'-.' :
2.5 -
ﬂ‘-'“-' [ ]
0.0 l—
[II- EIE':I lll:l]I:' 15.[":' IEIII:':I I.-‘EII:I[F

EEEEEEEEEEEEEEEE
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Number of Virtual Targets

Tiotad Cost

L
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il
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=]
i
&
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o
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A
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Total Cost

il" &

AR Rl R T A

500 I'ZII.'-':I 1500
Humibr of Wirtual Targets

2000 50
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Results: Various Number of Candidate VTs

RRRRRRRRR

319 Virtual Targets

Compute: 2.55ms, J = 70.132

e,
%
k1
1
.'l_- .l
- % i
O L i
Iy L
e A
1|
'] ]
iy &

13 i e
P, b

3100 Virwal Targets

RRRRRRRRRRRRRRRRRRRR

= 4] ] 4 M

3716 Virmual Targets

= Compute: E.dEmEL.j — 64849

15 m
LT

37400 Virual Targets

L — F

Compute: 671ms, F= 58275

1E uh it FH] ]
0 Foaitics. g

325 Virtual Targets

&

- Compute: 5.55ms, J = 51.265

14 F2 ] Ik ]
X P, DU

312500 Virtual Targets

Compute: 11,2625 = 58.205

15 15 e Fil
* P, Do
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Cconclusions

Summary Observations

« Multi-pursuer Multi-Evader « A weighting factor on manuever or
Assignment Problem path travel changes the performance

* Pursuers navigate to virtual targets « Solutions scale well for potential
then to an assigned target hardware applications

« Apollponius circle geomery and linear Future Work
program solver leveraged « Ensuring path deconfliction of

« Energy of the team is minimized solutions

« Simulating higher-fidelity vehicles

+ Performing software-in-the-loop and
or hardware-in-the-loop tests

+ Flight test where possible.

RRRRRRRRRRRRRRRRRRRRRRRRRRRRR
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Optimal Dubins Path
on a Sphere
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Path Planning on a Sphere

* Problem Statement:

* Find shortest geodesic curvature
constrained path on surface of sphere.

 Results:

« Optimal path contained great circle arcs
(G) and arcs corresponding to minimum
turning radius (C).

* Optimal paths are of type CCC, CGC, and
degenerate paths for r < %

Tangent plane at s

RRRRRRRRRRRRRRRRRRRRRRRRRRRRR
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Free terminal orientation
« When the terminal orientation is free, the candidate solutions reduce to two segment paths, ¢Gand CC.
----- L segment '
it segment —_— "(" path |
-=eGsegment| o, T RG path| =
L 4 /X_, l 4= = <~LR path | gt X ;
0.5 4 0.5
E (0 ;:", 05 s
N N Xo
. N\
-0.5 0.5 \\ .\.
‘\\ I'
T
1 . 1.1 = -1
1 o -1 R Sl ‘ = 0
0 ’ 0 Al.,__v =5
Y (m) X (m) Y (m) X (m)

Initial configuration and final position

THE AIR FORCE RESEARCH LABORATORY

Candidate optimal paths
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Overview of Modeling

* On a sphere, Sabban frame was considered.

* s :Arc length
* X(s) : Position vector
* T(s) : Tangent vector
* N(s):X(s)xT(s).
« Sabban frame is given by
dX(s) — T(s)
ds ’
= —X(s) + ug(s)N(s),

*dN(s)
I - —ugy (s)T(s).

dT(s)
d

Tangent plane at s

T(s)

s : Distance travelled by vehicle
X(s) : Position of vehicle on sphere
T (s) : Direction of vehicle’s motion
N(s) : Lateral direction of vehicle

THE AIR FORCE RESEARCH LABORATORY
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Overview of Modeling

« Goal: Obtain shortest path connecting two configurations onLa sphere.

subject to

THE AIR FORCE RESEARCH LABORATORY

J = minj 1ds,
0

ax(s)
ds

= —X(s) + uz(s)N(s),

S
) T

R(0) = I3,
R(L) = Rf.

=T(s),
dT (s)
d

38
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Paths connecting initial and final configuration
----------- Left turns e Left turns LGL path
----------- Right turns weene Right turns RGR path

THE AIR FORCE RESEARCH LABORATORY
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Paths connecting initial and final configuration
----------- Left turns LGR path e Left, turns LRL path
----------- Right turns RGL path weene Right turns RLR path

THE AIR FORCE RESEARCH LABORATORY
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Model with spherical coordinates

» Consider [: longitude, L: latitude, y: heading.

» Bounded force F can act along y-axis (vehicle’s lateral
direction).

* Model:

dL

e = Ccos i,
dl smy
ds  cosL’

|
—"& =tan Lsing + —u,
ds R

THE AIR FORCE RESEARCH LABORATORY
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Equivalence of Model

« Two steps involved:

« Show control inputs are the same, i.e., optimal

segments are L, R, G

« Show adjoint equation in both models evolve through X(b)

same equatlon.

e Qutcome:

» Results from one approach transfer to other approach

THE AIR FORCE RESEARCH LABORATORY

(a) Great circular corresponding to « = 0 (b) Tight turn corresponding tou =1  (c¢) Tight turn corresponding to u = —1

Fig.4 Optimal segments for alternate sphere model
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