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Brief Progress Report

» Theoretical work in Y2 focused mostly on developing global aspects of applying
topological transition guarantees (this talk, joint work with Yu Wang):

®  “Topologically-Aware Planning Under Linear Temporal Logic Constraints"

(submission to DAM imminent, [1])

> Applications were developed and submitted, with Sage C. Edwards as lead:

®  “Multi-Agent Localization Using Geometric Constraints on Relative Distance Measurements in the Presence of Intermittent State Feedback”
(from Y1, submitted to IJRR, [2])
®  “Occluded Target Surveillance: A Topological Perspective on Intermittent Target Tracking with Lyapunov-based Deep Neural Networks"

(from Y2, submitted to TRO, [3])

» Sage C. Edwards graduated in May 2024 and moved to AFRL-RW, Autonomy Group.
» Work from Y1 with Federico M. Zegers completed:

®  “Event-Triggered Multi-Agent System Rend with Graph Mai in Varied Hybrid Formulations: A Comparative Study"

(published in TAC, [4])

» New PhD student, Yixuan Wang (finally!!) hired in May 2024.
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Recap: Topological Transition Guarantees

» Overarching goal: Facilitate symbolic planning in realistic conditions, where:

e transition boundaries are geometrically and topologically complex;
e state feedback is incomplete/uncertain, but state error growth rate bounds are known.

> Motivating Example: Relay-Explorer Problems [5,6,7,8,9].

e State feedback only available in F (grey). 0 p

e Plan to track Xy for as long as possible (legs
76 and op); then return to F (leg pg) to
regulate your state; replan & repeat
indefinitely.

e Lyapunov-based design guarantees rapid Xa

regulation of the state while x € F, and
known error growth bounds while x € FL.

e Growth rate of error bounds determines when
to head back into F, provided we know how A single RE planning cycle.
to pick g, given p.
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Recap: Topological Transition Guarantees
Key Observations [10]:

» Symmetric shapes of F are too easy to handle. Scarcity of symmetries generates regions
where aiming to fit your error ball inside F gets you lost.
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Recap: Topological Transition Guarantees
Key Observations [10]:

» Guaranteeing a transition into JF is about relative connectivity (AKA 0-homology of pairs).
Given a plan X, R contains the error envelope until time t, and B; is the error ball at time
t, saying that any path from By (centered at X(0) = p) to Bs (centered at X(s) = g) must
intersect F is equivalent to OF separating By from B;.

_ p=X(0)

General TTG (left) improves on inscribed-ball approach (right) because the latter takes no account of the error envelope.
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Recap: Topological Transition Guarantees

» Multiple relay-explorers can assist each other by communicating relative range information
with bounded error [2].

An agent updates its position estimate using ranging information from a collaborator and minimal circumscribed ball
computation. General position arrangements of agents lead to significant reductions in estimation error bounds, but also

to hybrid dynamics due to discontinuities in state estimates.
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Recap: Topological Transition Guarantees

» An agent with a camera can track a target through an occluded environment, provided a

decent predictor [3], by controlling camera pose.
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Symbolic Planning/Navigation in Topological Spaces

» Symbolic constraints complicate TTGs. If {F,},cap are symbols, F, C X, then

e JF, may not be contained in a single chart
e X may not even be a manifold

e transition into F, may be required to satisfy a Boolean expression in the Fg, 8 # «

> A common fix: e Select the symbols F, to be pairwise disjoint convex sets;
e Ensure that X \ |J,cap Fa is path connected.

> Another fix, e.g. [11]: Tile X with convex polytopes, make them your symbols.

> Instead, topology may offer a similar, but systematic paradigm:
e Present X as the union of contractible sub-spaces refining the set of atomic propositions AP
e Replace AP with this set, rewrite any constraints in new AP
e Plan “high-level” paths satisfying the constraints in the nerve of this cover

e Consider ways of realizing the planned paths in the space and compute associated TTG
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The Nerve Simplicial Complex (scx) and Good Covers
Let (X,.7) be a nice? topological space.
> An indexed cover isa map U: AP — 7 such that® X = (J,_c,p U(a).
> A subset ¢ C AP is U-consistent, if U(c) £ Naco U(@) is non-empty.

» The Nerve N(U) is the scx of all U-consistent sets o C AP.

c

2e.g., (X, ) is completely regular, Il-countable, connected, and locally contractible.
3AP may be infinite, in which case U must be locally finite.
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The Nerve Simplicial Complex (scx) and Good Covers

» The geometric realization of a SCX K on a vertex set V is

kl=UJ 47, (1)
ogeK
where
A”é{ﬁéRgoi Zﬁ(V)—l,ﬁ(V\U)—{O}}, (2)
vev

taken with the weak topology.
Theorem (Nerve Lemma)

X is homotopy-equivalent to the geometric realization of N(U) if every U(c), o € N(U) is
contractible. An open cover with this property is called a good cover.
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The optimistic Planning Pipeline
Example: LTL-based planning on a transition system (TS) over the circle.

(1) Find a good cover U;
(2) Construct sd(N(U));
(3) Form a TS over sd(N(U));

C

Q /A

A good cover of a circle with cw/ccw rotations converted into a non-deterministic TS over the 1-skeleton of sd(N(U)).
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The optimistic Planning Pipeline

Example: LTL-based planning on a transition system (TS) over the circle.

(4) Pick a Biichi automaton;

(5) Form the product TS;
(6) Obtain a solution path.

() Other control paradigms
are applicable, e.g.
reactive strategies [12)].

a 1
3 L.
© O

c

/\
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Challenges of Nerve-Based Planning

» First Challenge: Not all 0 € N(U) are witnessed by a point of X.

e {c} is not realized;
e {a, b} is not realized.

1
1
X

Definition (Realizability)
Define a map ¢ : X — U by ¢(x) £ {a € AP: x € U(a)} € N(U).
A simplex o € N(U) is U-realized, if o € ¢(X).

> o€ N(U) is realized <= [,c, U(e) \ Ugeap\, U(B) # 2.

» Unrealized simplices are one obstruction to planning using N(U).
~~ Not every path in {N(U)| is realized by a path in X

~~ Deforming a bad plan to a realized one may violate task constraints.
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Challenges of Nerve-Based Planning

» Deleting the unrealized simplices of N(U) produces no meaningful model of X!

Recall: if K is a SCX, then sd(K) is the scx of all T C K that are (C)-chains.?

~> n-simplices of sd(N(U)) are increasing maps T : [n+ 1] — N(U), naturally and consistently orienting sd(N(U))

{a,ac,abc}

— Vb a b

There is no way to access a from abc except via ac, so the red simplex of sd(N(U)) in the center should not be deemed
realizable, yielding a “reduced nerve” as in the diagram on the right (red).

» What is a good definition of the “reduced nerve”?
» Why is sd(N(U)) a natural point of departure?

» Will homotopy type be preserved under deletion of unrealized simplices?

2T € sd(K) iff, for all 0,7 € T one has o C T or 7 C 0.
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Challenges of Nerve-Based Planning
» Second Challenge: No path correspondence between X and sd(N(U)), recall [13].

Definition (Tame Path)
Let J C R be a non-degenerate interval. A continuous path ¢ : J — X is U-tame if o c is
piecewise constant with jump points not accumulating in J.

y

a 7////% //////// b I xz

z a ax X xb b

A disconnected witness set causing trouble.

> Example: Here, a topological disk X is the union of convex open regions labeled
a,b,y, z, x, consituting a good cover U of X (left).

An edge-path in sd(N(U)) from {a} to {b} via {x} exists (right), while avoiding any

simplices containing y or z, but there is no tame path in X avoiding the region y U z.
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The Reduced Nerve and the Connectivity Trisp

Definition (U-small singular simplex)

Let T C 24P, Then, T is a U-small singular T-simplex if there exists a continuous map

g: AT — X such that (o0 g)(A%) =S forall S C T. Let Cy(T) be the space of all U-small
singular T-simplices, and C%(T) be the set of path components of Cy(T).

Some U-small singular T-simplices with, from left to right, T = {y, yz}, {yz, xyz}, {y, yz, xyz}, and {y,xy}. The

{yz, xyz}-simplex is in the same path component of Cy({yz, xyz}) as a 1-face of the {y, yz, xyz}-simplex.

12/28



The Reduced Nerve and the Connectivity Trisp

Lemma (Definition of the Reduced Nerve)

The set of all T C 2AY with Cy(T) # @ is a sub-complex, N.,(U), of sd(N(U)).

> recall the example of the first challenge. ..

C C

{a,ac,abc}
ac bc
a

a b a s

b

There is no way to access a from abc in X except via ac, so {a, ac, abc} ¢ N,q(U).

C c

a

a ah b a ab b

Deleting the unrealized vertices of sd(N(U)) (right) does not produce N,q(U) (bold, left).
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The Reduced Nerve and the Connectivity Trisp

> Elements of C(T) may be regarded as abstract (| T| — 1)-simplices, giving rise to a

triangulated space Ry—the connectivity trisp—encoding how they are glued together in X.

y

a'////%// W/ﬁb

X2
a ax, xl

The trisp ﬁu resolving the example of the second challenge.
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The Reduced Nerve and the Connectivity Trisp
Triangulated Spaces (Trisps [14]).
> Simplex Category A.

e ODbA is all the non-negative integers;
e A(m,n) is all the increasing maps® o : [m+1] — [n+ 1].
» Trisp [Gluing Data]: any co-functor [ : A — Set.

e (n) is the set of simplices of dimension n;

e [(a):T(n) — I'(m) lists which m simplex is the a-face of which n simplex.

ro) == {xyz}
r) := {ab,cd}
re) = {or7}

o and 7 share three vertices (0,1,2)
and the edges a, b, but not ¢ or d.

3We use the notation [n] = {1,...,n}.
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The Reduced Nerve and the Connectivity Trisp

» Trisp Geometric Realization is the quotient

T2 || T(n) x Al+ / (~r).

n>0

where the equivalence relation (~r) is generated by all expressions of the form
(. a[(€)) ~r (T(a)o, )

for € A(m, n), £ € A"l and o € [(n), where |a| : Al™+1 — Aln+]

is the geometric a-face of the standard n-simplex.

15/28



The Reduced Nerve and the Connectivity Trisp
Definition (N,.,(U) as a Trisp)
The gluing data for N,,(U) are the trisp Ry defined as follows:
> For n € ObA, Ry(n) is the set of all T € N,(U) with |T| =n+1;
» For o € A(m, n), Ry(a) : Ry(n) — Ry(m) is given by

Ry(a)T £ Toaq,

where T € N,,(U) is regarded as an increasing map [n+ 1] — N(U).
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The Reduced Nerve and the Connectivity Trisp
Putting U-small T-simplices together:
> Each g € Cy(T),
|T| = n+1 contributes a
point [g] € CO(T);
> Restricting g to an a-face

of AT for any a € A(m, n)
yields a point of CY(T o a).

Representatives of 2-simplices in Ry with the edges joining them.

Definition (Connectivity Trisp)
For each n,m € Z_, and o € A(m, n), define Ry(n) and Ry(a) : Ry(m) — Ry(n) as

ﬁTU(”) = UTEN,ed(U),\T\:n+1 CH(T), ﬁ[U(O‘)[g] 2lgo ’T oo — T|], ()

for all g € Cy(T) with |T|=m+ 1.
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The Reduced Nerve and the Connectivity Trisp

Theorem (Path Correspondence)

Every U-tame path in X induces an edge-path in ﬁU, and hence in N,.,(U). Conversely, any
edge-path in Ry is induced by a U-tame path in X.

X=X

2),= (),

Xx,b b a ax X xb b

The canonical covering map {m(n) : ﬁU(n) — Ry(n)}rcoba given by

[g]l— T & geCy(T) (8)
is a dimension-preserving natural transformation, giving rise to a surjective PL map

] < [Ru| = |No(U)]. (9)
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The Reduced Nerve and the Connectivity Trisp

Definition
U has the path-lifiting property if for every pair of vertices v € N,,(U) and ¥ € 771(v) and

edge-path ~ in N.,(U) emanating from v there exists an edge-path 4 € Ry emanating from ¥
such that m o § = ~.

Corollary (Path Correspondence Criterion)

For an open cover U : AP — 7, the following are equivalent:
1. U has the path-lifting property;

2. For every x € X and every edge-path - in N,.,(U), there exists a tame path ¢ in X
emanating from x and inducing ~y.

Corollary

If s~Y(o) is path-connected for all U-realized o € N(U), the path correspondence holds for U.
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The Reduced Nerve: is it a deformation retract of sd(N(U))?

We want a theorem of the form: “Let U be a good cover. If U satisfies additional
conditions, then N, (U) is a deformation retract (DR) of sd(N(U))."

C C C

{a,ac,abc}
ac bc
a

Ob a b a s

b

ab
The unrealized simplices {c} and {a, b} seem to lie “on the boundary” of N(U).

Indeed, there are some hints in this direction:
Lemma (unrealized part is sparse)

Maximal simplices of N(U) are U-realized. O

Lemma (actually, the following statement is FALSE:)

If o € N(U) is unrealized, then o is contained in a unique maximal simplex (o is a free face).
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The Reduced Nerve: is it a deformation retract of sd(N(U))?

Recap: Free simplices and simplicial collapses.
» A simplex o of a complex K is free if it is contained in only one maximal simplex.
» The deletion delk (o) is obtained by removing all simplices of K containing o.

> If o is free, the delk(c) is said to have been obtained from K by (one) simplicial collapse,
and is an SDR of K.

Jow)

A vertex collapse (left), elementary collapse (center), and edge collapse (right) and the correponding retractions.
o A .
> sth(o)={reK:0C7}

st(oc) 2 {T€K:TU0 € K}
> lkx(o) = {1 €stk(o): TNo = o}

v
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The Reduced Nerve: is it a deformation retract of sd(N(U))?

» Removing the two unrealized vertices of sd(N in our running example:

&M

» Collapsing the [only] unrealized simplex is impossible:

y X X

a

z a

Only {a} is unrealized in N(U), but it is not free.
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Current Results: Removing Unrealized Simplices of N(U)

Since simplicial collapses won’t work for us. ..

Definition

A simplex o of a scx K is said to be removable, if lki (o) is contractible.

> If 0 € K is removable then the deletion delk (o) is an SDR of K (see, e.g., [15])

» If L is obtainable from K by a sequence of deletions of removable simplices, we say L is
obtained from K by generalized collapse.

Lemma (unrealized is removable)

Suppose o € N(U) is an unrealized simplex of a good cover U. Then:
1. o is a removable simplex of N(U);
2. o is a removable vertex of sd(N(U)).
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Current Results: Removing Unrealized Simplices of N(U)
Proof sketch: Let K £ N(U), N £ sd(K), L £ lkk(o), and &° £ {A: AC o}.
Removability of ¢ in K:
> If o is unrealized, then the U(c U {a}), @ € AP\ & form a good cover of U(c);
» The nerve of this cover is L, which is therefore contractible, by the nerve lemma.
Removability of {c} in N = sd(K):
» The link Iky({c}) is simplicially isomorphic to the join &7 « sd(L).
» Since L is contractible, so is lky({c}). O

Corollary (A single DR removes all unrealized simplices!!)

The subcomplex N[0] £ N dely({o}) is an SDR of N.

€K not realized

Proof sketch: Remove all the unrealized vertices {o} of dimension 0 in one fell swoop, then
the ones of dimension 1, and so forth. .. O

24 /28



Current Efforts: Step-by-Step Retraction to N_,(U)

We would like to continue removing unrealized simplices inductively, e.g.:

>

>

Set N[d] & N dely(T), then N, (U) = N[d] for eventually all d.
TEN unrealized of dim<d

Plan: Proceed to show N[d + 1] is a generalized collapse of N[d] for all d > 0.
Challenge: The link of a simplex T = {0 C ... Cog} € Nis

ky(T) =2 &% % G\ % ... % G\ x sd(lkk (0g)).

Can we argue that lkyjg_1j(T) is contractible?
Note: N[1] = N.,(U) if N.,(U) happens to be a flag complex!

e A complex K over V satisfies the flag condition, if G° C K implies o € K for all o C V.

When would this be true? When, for each T = {01 C ... C o441} € N with all the o;
realized, the subspace U?:o ¢ (o7) of X is contractible.

WHAT IS THE HOMOTOPY TYPE OF |Ry|? (And when?)
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THANK Youl!
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The Nerve vs. 227: the Shtan’ko-Shtogrin map [16]

P> The geometric realization |N(U)| of the nerve is constructed in RAF, as a union of
geometric simplices spanned by the e,, a € AP

INWD)| & | A7, A& {3, teea ERAT S (o ta =1, (Vaco)(ta > 0)}
oeN(U)
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The Nerve vs. 227: the Shtan’ko-Shtogrin map [16]

P> The geometric realization |N(U)| of the nerve is constructed in RAF, as a union of
geometric simplices spanned by the e,, a € AP

INWD)| & | A7, A& {3, teea ERAT S (o ta =1, (Vaco)(ta > 0)}
oeN(U)
» The nerve is mapped homeomorphically into the positive boundary of the unit cube:

O £ (0,1 c RAP, O3 £ {¢ € O 3a ¢(a) =1},

uvw

uw AP AP
y A - 0Of
N 7 c:
— & N

§

I3[

w

realizing the natural map of N(U) into 24F.

~~ each d-simplex is made of (d + 1) d-cubes meeting in its barycenter and creating a ‘corner’
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