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Motivation for Finite and Fixed Time Stability

Finite and fixed time stability
Better robustness and disturbance rejection system properties
Optimal control without discontinuous dynamics (sliding mode)

Chattering due to system uncertainties or measurement imperfections

Finite and fixed time consensus, parallel formations, cyclic pursuit
Network systems and multiagent networks

Upgraded speed of convergence
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Motivation for Strong & Uniform Strong Dissipativity

Dissipativity theory for dynamical system with C1 flows addresses:

Robustness, disturbance rejection, stability of feedback system
interconnections, optimality, and inverse optimality

Strong and uniform strong dissipative systems can address:

Robustness, disturbance rejection, risk-sensitive control

Finite and fixed time stability of feedback interconnections

Finite and fixed time stabilization understood in physical terms

Strong dissipativity = Dissipativity + Finite time stability

Uniform Strong dissipativity = Dissipativity + Fixed time stability
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Goals

Strongly and uniformly strongly dissipative systems

New dissipation inequality: Gus-dissp→ Gs-dissp→ Gdissp

Affine systems with quadratic supply rates

Extended Kalman-Yakubovitch-Popov conditions

FT and FxT stability of S and US dissipative feedback systems

Storage functions for forward and feedback systems

Leading to closed-loop finite time and fixed time stability

Generalization of positivity & small gain thms for FT and FxT
stabilization

Dynamic compensation
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Finite Time and Fixed Time Stability

Consider the nonlinear dynamical system Gclosed

ẋ(t) = f (x(t)), x(t0) = x0, t ≥ t0

x(t) ∈ D ⊆ Rn, D is open, 0 ∈ D, f : D → Rn, & f (0) = 0

Denote the solution of Gclosed by s : R+ ×D → Rn

The ZS x(t) ≡ 0 to Gclosed is FTS if ∃ a STF T: N \ {0} → (0,∞)

Finite time convergence (limt→T(x) sx(t) = 0)
Lyapunov stability

The ZS x(t) ≡ 0 to Gclosed is fixed time stable if:
Finite time stability
Uniform boundedness of the settling time function (T(x) ≤ Tmax)
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Lyapunov Theorem for Finite Time Stability

Assume ∃ C0 function V : D → R, α ∈ (0, 1), a > 0, and a nbhd
M ⊆ D of the origin s.t.

V(0) = 0

V(x) > 0, x ∈ M\{0}

V ′(x)f (x) ≤ −a (V(x))α , x ∈ M\{0}

Then the ZS x(t) ≡ 0 of Gclosed is finite time stable

Moreover, ∃ a nbhd N of the origin & a STF T : N → [0,∞) s.t.

T(x0) ≤
1

a(1 − α)
(V(x0))

1−α , x0 ∈ N

where T(·) is continuous on N
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Lyapunov Theorem for Fixed Time Stability

Assume ∃ C0 function V : D → R, δ ∈ (0, 1), θ > 1 a, b, c, k > 0, & a
nbhd M ⊆ D of the origin s.t.

V(0) = 0

V(x) > 0, x ∈ M\{0}

V ′(x)f (x) ≤ −
[
aVδ(x) + bVθ(x)

]k
− cV(x) , x ∈ M\{0}

Then the ZS x(t) ≡ 0 of Gclosed is fixed time stable

Moreover, ∃ a nbhd N of the origin & a STF T : N → [0,∞) s.t.

T(x0) ≤ Tmax ≜
1

(1 − δk)c
ln

[
1 +

c
ak

(a
b

) 1−δk
θ−δ

]
+

1
(θk − 1)c

ln

[
1 +

c
bk

(
b
a

) θk−1
θ−δ

]

where T(·) is continuous on N
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Optimized Estimate of Settling Time Bound

Proof follows by considering the comparison system

ż(t) = −[azδ(t) + bzθ(t)]k − cz(t), z(0) = z0, t ≥ 0

The ZS z(t) ≡ 0 is Lyapunov stable with LF V(z) = z2

Fixed time stability follows from

lim
z0→∞

T(z0) =

∫ ∞

0

dz
(azδ + bzθ)k + cz

≤ 1
(1 − δk)c

ln
(

1 +
c
ak r1−δk

)
+

1
(θk − 1)c

ln
(

1 +
c
bk r1−θk

)
≜ g(r)

dg(r)
dr = 0 and d2g

dr2 > 0 ⇒ g(r) attains its minimum at rmin =
( a

b

)1/(θ−δ)

T(z0) ≤
1

(1 − δk)c
ln

[
1 +

c
ak

(a
b

) 1−δk
θ−δ

]
+

1
(θk − 1)c

ln

[
1 +

c
bk

(
b
a

) θk−1
θ−δ

]
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Remarks

Letting c → 0 gives (Hu et al., Neural Networks, 2017)

Tmax,2 =
1
ak

(a
b

) 1−δk
θ−δ

(
1

1 − δk
+

1
θk − 1

)
Setting r = 1 and letting c → 0 gives (Polyakov, IEEE TAC, 2012)

Tmax,3 =
1

ak(1 − δk)
+

1
bk(θk − 1)

Tmax < Tmax,2 ≤ Tmax,3

b = c = 0, a = 0.5, δk = 0.5
Tmax(c = 3, r = 0.397), Tmax,2(c = 0, r =

0.397), Tmax,3(c = 0, r = 1)
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Converse Lyapunov Theorem for FxT Stability

Let N ⊆ D be an open nbhd of the origin

If x(t) ≡ 0 is FxTS and the STF T(·) is C0 at x = 0

Then there exists a C0 function V : N → R & scalars a, b, c, δ, θ,
k > 0, δk < 1, θk > 1, s.t. V(0) = 0, V(x) > 0, x ∈ N , x ̸= 0, &

V̇(x) ≤ −[aVδ(x)− bVθ(x)]k − cV(x), x ∈ N

V̇(x) ≜ limh→0+
1
h [V(s(h, x))− V(x)]

V(x) ≜
(

T(x)
Tmax

) 1
1−δ

V̇(x) = −1
(1−δ)Tmax

(
T(x)
Tmax

) δ
1−δ ≤ −1

3(1−δ)Tmax

[
(V(x))δ + (V(x))θ + V(x)

]
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Open Dynamical System

Consider the open nonlinear dynamical system G

ẋ(t) = F(x(t), u(t)), x(t0) = x0, t ≥ t0
y(t) = H(x(t), u(t))

x(t) ∈ D ⊆ Rn, D open with 0 ∈ D

u(t) ∈ U ⊆ Rm with 0 ∈ U and y(t) ∈ Y ⊆ Rl

F : D × U → Rn and H : D × U → Y are C0 in x and u

U and Y define input and output spaces

G has at least one equilibrium so that wlog F(0, 0) = 0 & H(0, 0) = 0
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Dissipativity, Strong Dissipativity, & Uniform Strong Dissipativity

G is dissipative w.r.t r(u, y) iff ∃ a C0 SF Vs : D → R s.t. Vs(·) is
NND and

Vs(x(t)) ≤ Vs(x(t0)) +

∫ t

t0

r(u(s), y(s))ds, t ≥ t0

G is S dissipative w.r.t. r(u, y) iff ∃ a C0 SF Vs : D → R & scalars
α ∈ (0, 1), a > 0 s.t. Vs(·) is NND &

Vs(x(t))+ a
∫ t

t0

[Vs(x(s))]α ds ≤ Vs(x(t0)) +

∫ t

t0

r(u(s), y(s))ds, t ≥ t0

G is US dissipative w.r.t. r(u, y) iff ∃ a C0 SF Vs : D → R & scalars
a, b, c, δ, θ, k > 0 s.t. δk < 1, & θk > 1, Vs(·) is NND, &

Vs(x(t))+
∫ t

t0

[
[aVδ

s (x(s)) + bVθ
s (x(s))]

k + cVs(x(s))
]

ds ≤ Vs(x(t0)) +

∫ t

t0

r(u(s), y(s))ds
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Observations

If Vs is C1, then dissipativity implies
V̇s(x, u) ≤ r(u,H(x, u)), x ∈ D, u ∈ U

V̇s(x, u) = d
dt Vs(s(t, x, u))

∣∣
t=0 is the total derivative of Vs along s(t, x, u)

If Vs is C1, then S and US dissipativity imply

V̇s(x, u) + aVα
s (x) ≤ r(u,H(x, u)), x ∈ D, u ∈ U

V̇s(x, u) + [aVδ
s (x) + bVθ

s (x)]
k + cVs(x) ≤ r(u,H(x, u)), x ∈ D, u ∈ U

For a closed system (i.e., u(t) ≡ 0 & y(t) ≡ 0) and Vs(x) > 0, x ∈ D

V̇s(x, 0) ≤ −aVα
s (x) , x ∈ D, (FT stability)

V̇s(x, 0) ≤ −[aVδ
s (x) + bVθ

s (x)]
k − cVs(x) , x ∈ D (FxT stability)

where V̇s(x, 0) = d
dt Vs(s(t, x, 0))

∣∣
t=0 = V ′

s(x)F(x, 0)
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Nonlinear Affine Dynamical Systems

Consider the nonlinear dynamical system G

ẋ(t) = f (x(t)) + G(x(t))u(t), x(t0) = x0, t ≥ t0
y(t) = h(x(t)) + J(x(t))u(t)

f (·), G(·), h(·), and J(·) are C0 mappings

u(·) ∈ U satisfies the required properties for the existence and
uniqueness of solutions

G has at least one equilibrium so that wlog f (0) = 0 & h(0) = 0

Assume every storage function Vs(·) for G is C1
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Extended Kalman-Yakubovich-Popov Conditions

G is S dissipative w.r.t. r(u, y) = yTQy + 2yTSu + uTRu iff ∃ fun’s Vs,
ℓ, & W, & a > 0, α ∈ (0, 1), s.t Vs(·) is C1, nnd, &

0 = V ′
s(x)f (x) + aVα(x) − hT(x)Qh(x) + ℓT(x)ℓ(x)

0 = 1
2 V ′

s(x)G(x)− hT(x)(QJ(x) + S) + ℓT(x)W(x)

0 = R + STJ(x) + JT(x)S + JT(x)QJ(x)−WT(x)W(x)

G is US dissipative w.r.t. r(u, y) = yTQy + 2yTSu + uTRu iff ∃ fun’s Vs,
ℓ, & W, & a, b, c, δ, θ, k > 0, δk < 1, θk > 1, s.t. Vs(·) is C1, nnd, &

0 = V ′
s(x)f (x) +

[
aVδ(x) + bVθ(x)

]k
+ cV(x) − hT(x)Qh(x) + ℓT(x)ℓ(x)

0 = 1
2 V ′

s(x)G(x)− hT(x)(QJ(x) + S) + ℓT(x)W(x)

0 = R + STJ(x) + JT(x)S + JT(x)QJ(x)−WT(x)W(x)
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Uniform Strong Positive Real and Bounded Real Lemma

r(u, y) = 2uTy and r(u, y) = γ2uTu − yTy, γ > 0

G is US passive iff ∃ fun’s Vs, ℓ, & W, & a, b, c, δ, θ, k > 0, δk < 1,
θk > 1, s.t. Vs(·) is C1, nnd, &

0 = V ′
s(x)f (x) +

[
aVδ(x) + bVθ(x)

]k
+ cV(x) − hT(x)Qh(x) + ℓT(x)ℓ(x)

0 = 1
2 V ′

s(x)G(x)− hT(x) + ℓT(x)W(x)

0 = J(x) + JT(x)−WT(x)W(x)

G is US nonexpansive iff ∃ fun’s Vs, ℓ, & W, & a, b, c, δ, θ, k > 0,
δk < 1, θk > 1, s.t. Vs(·) is C1, nnd, &

0 = V ′
s(x)f (x) +

[
aVδ(x) + bVθ(x)

]k
+ cV(x) + hT(x)h(x) + ℓT(x)ℓ(x)

0 = 1
2 V ′

s(x)G(x) + hT(x)J(x) + ℓT(x)W(x)

0 = γ2Im − JT(x)J(x)−WT(x)W(x)
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Stability of Feedback Dynamical Systems

Consider the dynamical system G with nonlinear feedback system Gc

ẋc(t) = fc(xc(t)) + Gc(uc(t), xc(t))uc(t), xc(0) = xc0, t ≥ 0

yc(t) = hc(uc(t), xc(t)) + Jc(uc(t), xc(t))uc(t)

G

Gc �

-

+

–

Plant (G) order n, compensator (Gc) order nc with nc ≤ n

Assume feedback interconnection of G and Gc is well posed

det[Im + Jc(y, xc)J(x)] ̸= 0 for all y, x, and xc
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Finite Time Stabilization

If G and Gc are strongly dissipative w.r.t. supply rates r(u, y) &
rc(uc, yc), with SFs Vs(·) & Vsc(·)
And ∃ a scalar σ > 0 s.t.

r(u, y) + σrc(uc, yc) ≤ 0, uc = y, and yc = −u

Then:

The NFI of G and Gc is FTS

There exists a C0 STF T: Rn × Rnc → [0,∞) s.t

T(x0, xc0) ≤
1

c̃(1 − α̃)
(Vs(x0) + Vsc(xc0))

1−α̃
, (x0, xc0) ∈ Rn × Rnc

α̃ ≜ max{α, αc} ∈ (0, 1)

c̃ ≜ 1
V(x0,xc0)

α̃ min{cV(x0, xc0)
α, σ1−αc ccV(x0, xc0)

αc} > 0
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Fixed Time Stabilization

If G and Gc are uniformly strongly dissipative w.r.t. supply rates
r(u, y) & rc(uc, yc), with SFs Vs(·) & Vsc(·)
And ∃ a scalar σ > 0 s.t.

r(u, y) + σrc(uc, yc) ≤ 0, uc = y, and yc = −u

Then:

The NFI of G and Gc is FxTS

There exists a C0 STF T: Rn × Rnc → [0,∞) s.t

T(x0, xc0) ≤
1

(1 − δ̃)c̃
ln

(
1 +

c̃
ã

)
+

1

(θ̂ − 1)c̃
ln

(
1 +

2θ̃−1c̃
b̃

)
ã > 0, b̃ > 0, c̃ > 0, δ̃ ∈ (0, 1), θ̃ > 1, and θ̂ > 1
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Specialization to Quadratic Supply Rates

Let r(u, y) = yTQy + 2yTSu + uTRu, rc(uc, yc) = yT
c Qcyc + 2yT

c Scuc + uT
c Rcuc

Assume ∃ σ > 0 s.t.

Q̂ =

[
Q + σRc −S + σST

c
−ST + σSc R + σQc

]
≤ 0

If G and Gc are uniformly strongly dissipative w.r.t. r(u, y) and rc(uc, yc),
then the NFI of G and Gc is fixed time stable

US passivity: r(u, y) = 2uTy & rc(uc, yc) = 2uT
c yc

US nonexpansivity: r(u, y) = γ2uTu − yTy & rc(uc, yc) = γ2
c uT

c uc − yT
c yc,

γγc ≤ 1

Generalizes positivity and small gain theorems to guarantee FxTS
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Fixed Time Stabilization of a Rigid Satellite

Consider the single DoF satellite

ẋ1(t) = x2(t), x1(0) = x10, t ≥ 0
ẋ2(t) = u(t), x2(0) = x20

Feedback control law (α ∈ (0, 1))

u(x1, x2) = −sign(x1)|x1|
α

2−α − sign(x2)|x2|α − sign(x1)|x1|
4−3α
2−α − sign(x2)|x2|

4−3α
3−2α

Lyapunov function that shows FxT stability

V(x1, x2) =
k1(2 − α)

3 − α
|x1|

3−α
2−α + k2x1x2 +

1

3 − α
|x2|

3−α
+

k′1(2 − α)

(3 − 2α)(3 − α)
|x1|

(3−2α)(3−α)
2−α

+
k′2

(3 − 2α)
sign(x1)|x1|

3−2αx2 +
k′2(3 − 2α)

(3 − α)(3 − 2α) − (2 − α)
sign(x2)|x2|

3−α− 2−α
3−2α x1
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Controlled Satellite Simulations

Controlled angular positions with
p0 = π/6 rad/s Phase portrait shows trajectories

converge to a positively invariant
terminal sliding mode in FxT
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Dynamic Compensation Example

Consider the first-order nonlinear dynamical system G
ẋ(t) = −sign(x)|x(t)|1/3 − sign(x)|x(t)|2 + u(t), x(0) = x0, t ≥ 0
y(t) = x(t)

With candidate storage function Vs(x) = x2

V̇s(x, u) = −2Vs(x)0.67 − 2Vs(x)1.5 + 2yu (G is US passive)

Design a first-order dynamic compensator Gc

ẋc(t) = −sign(xc)|xc(t)|1/2 − 4sign(xc)|xc(t)|2 + uc(t), xc(0) = xc0, t ≥ 0
yc(t) = xc(t)

With candidate storage function Vsc(x) = x2
c

V̇sc(x, u) = −2Vsc(xc)
0.75 − 8Vsc(xc)

1.5 + 2ycuc (Gc is US passive)

The NFI of G and Gc is fixed time stable
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Simulations

Controlled versus uncontrolled state trajectories
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Conclusion and Future Research

Extended dissipativity theory to S and US dissipativity

Connections to finite time and fixed time stability
New KYP conditions for quadratic supply rates

Developed FT and FxT stability results for NL feedback systems

Connect S and US dissipativity theory and optimal and inverse
optimal FxT stabilization using HJB theory

Time-optimal control problem

C0 Lyapunov functions → viscosity solutions of HJB equations

Discrete-time and hybrid extensions
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