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This talk is about joint work

▶ Everything in this talk is joint with

James Fairbanks (UF MAE) Tyler Hanks (UF CISE)
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Decision problems often have temporal coupling
▶ Example #1: State space control systems

minimize
u(0),...,u(T )

T∑
t=0

ℓ
(
x(t), u(t)

)
subject to x(t + 1) = f

(
x(t), u(t)

)
x(0) = x0

▶ Example #2: Markov decision processes

a b c d e

f g h i j

k l m n o

Pa(s, s′) = P (st+1 = s′ | st = s, aa = a)

▶ Example #3: Various classes of games
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Today’s talk will
focus on this!



We will examine MPC for nonlinear systems
▶ Model-predictive control (MPC) optimizes inputs over a finite lookahead window

t t+ 1 t+ 2 t+ 3 t+ 4
· · ·

▶ A standard MPC problem formulation is then

minimize
t+N∑
k=t

ℓ
(
x(k), u(k)

)
subject to x(k + 1) = f

(
x(k), u(k)

)
g
(
x(k), u(k)

)
≤ 0 k = t, t + 1, . . . , t + N

▶ A decision at one time parameterizes the constraints at the next time
▶ Once u∗(k) is computed and applied, we get the state x(k + 1) = f

(
x(k), u∗(k)

)
▶ That state is in the next constraint: x(k + 2) = f

(
f
(
x(k), u∗(k)

)
, u(k + 1)

)

Question for this talk
How can we model this temporal coupling in MPC?

2 / 14



We will examine MPC for nonlinear systems
▶ Model-predictive control (MPC) optimizes inputs over a finite lookahead window

t t+ 1 t+ 2 t+ 3 t+ 4
· · ·

▶ A standard MPC problem formulation is then

minimize
t+N∑
k=t

ℓ
(
x(k), u(k)

)
subject to x(k + 1) = f

(
x(k), u(k)

)
g
(
x(k), u(k)

)
≤ 0 k = t, t + 1, . . . , t + N

▶ A decision at one time parameterizes the constraints at the next time

▶ Once u∗(k) is computed and applied, we get the state x(k + 1) = f
(
x(k), u∗(k)

)
▶ That state is in the next constraint: x(k + 2) = f

(
f
(
x(k), u∗(k)

)
, u(k + 1)

)

Question for this talk
How can we model this temporal coupling in MPC?

2 / 14



We will examine MPC for nonlinear systems
▶ Model-predictive control (MPC) optimizes inputs over a finite lookahead window

t t+ 1 t+ 2 t+ 3 t+ 4
· · ·

▶ A standard MPC problem formulation is then

minimize
t+N∑
k=t

ℓ
(
x(k), u(k)

)
subject to x(k + 1) = f

(
x(k), u(k)

)
g
(
x(k), u(k)

)
≤ 0 k = t, t + 1, . . . , t + N

▶ A decision at one time parameterizes the constraints at the next time
▶ Once u∗(k) is computed and applied, we get the state x(k + 1) = f

(
x(k), u∗(k)

)
▶ That state is in the next constraint: x(k + 2) = f

(
f
(
x(k), u∗(k)

)
, u(k + 1)

)

Question for this talk
How can we model this temporal coupling in MPC?

2 / 14



We will examine MPC for nonlinear systems
▶ Model-predictive control (MPC) optimizes inputs over a finite lookahead window

t t+ 1 t+ 2 t+ 3 t+ 4
· · ·

▶ A standard MPC problem formulation is then

minimize
t+N∑
k=t

ℓ
(
x(k), u(k)

)
subject to x(k + 1) = f

(
x(k), u(k)

)
g
(
x(k), u(k)

)
≤ 0 k = t, t + 1, . . . , t + N

▶ A decision at one time parameterizes the constraints at the next time
▶ Once u∗(k) is computed and applied, we get the state x(k + 1) = f

(
x(k), u∗(k)

)
▶ That state is in the next constraint: x(k + 2) = f

(
f
(
x(k), u∗(k)

)
, u(k + 1)

)

Question for this talk
How can we model this temporal coupling in MPC?

2 / 14

{Can be
non-convex
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We will use category theory to answer this question
▶ Why category theory?

1 It’s a natural language for composition
2 Abstraction can offer new insights and extensions
3 It offers an ecosystem to plug into

E.g., other categories:
Dynam

Gph
Man

▶ What does it take to make a category?
▶ We need (i) objects, (ii) morphisms,

and (iii) a way to compose morphisms

▶ E.g., in Set the objects are sets and
the morphisms are total functions

X Y

Z

f

g◦f
g

Sets are red
Functions are blue
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We can draw from classic work of Rockafellar
▶ In 1970, Rockafellar proposed “bifunctions” for convex problems1

▶ We replace

minimize f(x)
subject to g(x) ≤ 0

h(x) = 0

with
minimize f(x)

subject to g(x) ≤ y1

h(x) = y2

▶ Then with y = (yT1 , yT2 )T we form the bifunction

B(x, y) =
{

f(x) g(x) ≤ y1, h(x) = y2

∞ otherwise

becomes ∞ ∞

▶ Bifunctions have an associative composition law! It is inf-multiplication, i.e.,(
B1 ◦ B2

)
(x, z) = inf

y

[
B1(x, y) + B2(y, z)

]

1R.T. Rockafellar, Convex Analysis, Princeton University Press, 1970. 4 / 14
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Major changes are required to make this useful to us

▶ We can take objects as Euclidean spaces, e.g., Rm and Rn

▶ A morphism is a bifunction B : Rm p→Rn

Rm RnB

▶ Composition via ◦ takes in B1 : Rm p→Rn and B2 : Rn p→Rp and gives back

(
B1 ◦ B2

)
(x, z) = inf

y

[
B1(x, y) + B2(y, z)

]
Rm Rn

Rp

B1

B1◦B2
B2

▶ We will not use inf-multiplication for composition!
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Optimality is non-convex problems is inherently local
▶ Non-convex problems are (almost always) solved to local optimality

▶ We need to model local optimality in a composition law

▶ We will consider systems with polynomial dynamics and costs
=⇒ we have polynomial optimization problems!

▶ For polynomial f , g, and h:
(locally) minimize f(x) (starting from x0)

subject to h(x) = 0
g(x) ≤ 0

▶ We want (i) local optimality and (ii) feasibility

Modeling question
Which local optimum?
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We use negative gradient flows to model optimization algorithms

▶ The region F = {x ∈ Rn : h(x) = 0, g(x) ≤ 0} is a Nash manifold with corners

Assumption #1: Morse property
The objective f is a stratified Morse function on F .

▶ The projected negative gradient field2 −∇̃f models optimization algorithms

becomes ×

×

×

▶ Flows follow −∇f as much as possible while keeping F forward-invariant.

2D.G.C. Handron, “Generalized Billiard Paths and Morse Theory for Manifolds with Corners”, Topology and its Applications, 126 (2002), pp. 83-118.

7 / 14



We use negative gradient flows to model optimization algorithms

▶ The region F = {x ∈ Rn : h(x) = 0, g(x) ≤ 0} is a Nash manifold with corners

Assumption #1: Morse property
The objective f is a stratified Morse function on F .

▶ The projected negative gradient field2 −∇̃f models optimization algorithms

becomes ×

×

×

▶ Flows follow −∇f as much as possible while keeping F forward-invariant.

2D.G.C. Handron, “Generalized Billiard Paths and Morse Theory for Manifolds with Corners”, Topology and its Applications, 126 (2002), pp. 83-118.

7 / 14



We use negative gradient flows to model optimization algorithms

▶ The region F = {x ∈ Rn : h(x) = 0, g(x) ≤ 0} is a Nash manifold with corners

Assumption #1: Morse property
The objective f is a stratified Morse function on F .

▶ The projected negative gradient field2 −∇̃f models optimization algorithms

becomes ×

×

×

▶ Flows follow −∇f as much as possible while keeping F forward-invariant.

2D.G.C. Handron, “Generalized Billiard Paths and Morse Theory for Manifolds with Corners”, Topology and its Applications, 126 (2002), pp. 83-118.

7 / 14



We use negative gradient flows to model optimization algorithms

▶ The region F = {x ∈ Rn : h(x) = 0, g(x) ≤ 0} is a Nash manifold with corners

Assumption #1: Morse property
The objective f is a stratified Morse function on F .

▶ The projected negative gradient field2 −∇̃f models optimization algorithms

becomes ×

×

×

▶ Flows follow −∇f as much as possible while keeping F forward-invariant.

2D.G.C. Handron, “Generalized Billiard Paths and Morse Theory for Manifolds with Corners”, Topology and its Applications, 126 (2002), pp. 83-118.

7 / 14



We use negative gradient flows to model optimization algorithms

▶ The region F = {x ∈ Rn : h(x) = 0, g(x) ≤ 0} is a Nash manifold with corners

Assumption #1: Morse property
The objective f is a stratified Morse function on F .

▶ The projected negative gradient field2 −∇̃f models optimization algorithms

becomes ×

×

×

▶ Flows follow −∇f as much as possible while keeping F forward-invariant.

2D.G.C. Handron, “Generalized Billiard Paths and Morse Theory for Manifolds with Corners”, Topology and its Applications, 126 (2002), pp. 83-118.

7 / 14



Now we can define local inf-multiplication
▶ We need the stable foliation of F with respect to −∇̃f

Definition #3: Stable foliation3

Let P = {p1, . . . , pn} be the stationary points of −∇̃f . Then F =
⋃
pi∈P W s(pi)

▶ For example:

× ×

▶ Then local inf-multiplication
is inf-multiplication over a leaf

▶ Our composition law is(
B1◦y0 B2

)
(x, z) = local min

y,y0

[
B1(x, y)+B2(y, z)

]
= min
y∈L (y0)

[
B1(x, y) + B2(y, z)

]

▶ The foliation is ×∪ ∪ ∪∪×

Leaves

▶ We’d like to have

Rm Rn

Rp

B1

B1◦y0B2
B2

3R. Thom, Sur une partition en cellules associée à une fonction sur une variété, C. R. Acad. Sci. Paris 228 (1949), 973–975. 8 / 14
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We now have a category!
Definition #4: The category C
We define C such that
▶ Ob(C): objects are pointed Euclidean spaces, e.g, (Rn, x0)
▶ Mor(C): morphisms are algebraic bifunctions, i.e., polynomial B where

B(x, y) =
{

f(x) g(x) ≤ y1, h(x) = y2

∞ otherwise

▶ Composition uses local inf-multiplication
▶ For B1 : (Rm, x0) p→ (Rn, y0) and B2 : (Rn, y0) p→ (Rp, z0), we have(

B1 ◦y0 B2
)
(x, z) = local min

y,y0

[
B1(x, y) + B2(y, z)

]

(Rm, x0) (Rn, y0) (Rp, z0)
B1

B1◦B2

B2

Theorem #1: We have a category
This construction of C satisfies all of the category axioms.

▶ Fine, but where are the inputs?
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We need to introduce external parameters
▶ We will use Para to introduce inputs4. To get there, we make a new category

Definition #5: AlgBiFun

▶ Define AlgBiFun =
(

C, ⊕, (R0, •)
)

so that

1 (Rn, x0) ⊕ (Rm, y0) =
(
Rn ⊕ Rm,

(
x0
y0

))
2

(
B1 ⊕ B2

)(
(w, x), (y, z)

)
= B1(w, y) + B2(x, z)

Theorem #2: We’ve made a new category
AlgBiFun is a strict symmetric monoidal category.

This has two immediate outcomes:

1 We unlock “string diagrams”. For
f : (U, u0) p→ (W, w0) ⊕ (X, x0),
g : (X, x0) p→ (Y, y0),
h : (W, w0) ⊕ (Y, y0) p→ (Z, z0),
we can “draw” the composite
h ◦(w0,y0) (idW ⊕ g) ◦(w0,x0) f

2 We can parameterize this category!

g

f h

w0

x0 y0

4B. Fong, D. Spivak and R. Tuyéras, "Backprop as Functor: A compositional perspective on supervised learning," 34th Annual ACM/IEEE Symposium
on Logic in Computer Science (LICS), 2019 10 / 14
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We apply the Para construction to model inputs
▶ So far: made C (category), then AlgBiFun (strict symmetric monoidal category)
▶ Now: Para(AlgBiFun)

Definition #6: The category Para(AlgBiFun)
i. Objects are pointed Euclidean spaces, e.g., (Rn, x0)
ii. A morphism (X, x0) → (Z, z0) is a pair

(
(U, u0), F

)
, where

F : (U, u0) ⊕ (X, x0) → (Z, z0)

iii. For bifunctions F1 : (X, x0) p→ (Y, y0) and F2 : (Y, y0) p→ (Z, z0), composition of the
two morphisms

(
(U, u0), F1

)
and

(
(V, v0), F2

)
is(

V ⊕ U, F2 ◦y0 (idV ⊕ F1)
)

F1 F2

(U, u0) (V, v0)

(X,x0) (Z, z0)y0

▶ Roughly, given x(k), we have
x(k + 1) = f

(
x(k), u

)
▶ Then x(k + 2) = f

(
x(k + 1), v

)
▶ The figure essentially says

x(k + 2) = f
(

f
(
x(k), u

)
, v

)
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One-step MPC problems are morphisms
▶ Consider the one-step MPC problem

minimize
u(k)

ℓ
(
x(k), u(k)

)
subject to x(k + 1) = f

(
x(k), u(k)

)
g
(
x(k), u(k)

)
≤ 0

▶ Its associated one-step bifunction is G : (U, u0) ⊕ (X, x0) p→ (X, ξ0), i.e.,

G
((

(u, u0), (x, x0)
)
, (x′, ξ0)

)
= ℓ(x, u)︸ ︷︷ ︸

Cost
+ δ

(
x′ | f(x, u)

)︸ ︷︷ ︸
Dynamics

+ δ
(
x, u | g(x, u) ≤ 0

)︸ ︷︷ ︸
Constraints

Theorem #3: One-step problems are morphisms

The pair
(
(U, u0), G

)
is a morphism from (X, x0) to (X, ξ0) in Para(AlgBiFun).

▶ Pictorially, a 1-step MPC problem is

G

(U, u0)

(X,x0) (X, ξ0)

12 / 14
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N -step MPC problems are N -fold bifunction compositions
▶ Now consider the N -step MPC problem

minimize
t+N−1∑
k=t

ℓ
(
x(k), u(k)

)
subject to x(k + 1) = f

(
x(k), u(k)

)
g
(
x(k), u(k)

)
≤ 0 k = t, t + 1, . . . , t + N − 1

▶ Let
(
(U, ui0), G

)
be the morphism corresponding to time i

Theorem #4: N -step problems are compositions of N morphisms
The N -step MPC problem can be represented as an N -fold composition of morphisms:(

(U, ut0), G
)

◦x0

(
(U, ut+1

0 ), G
)

◦ξ0 · · · ◦ζ0

(
(U, ut+N−2

0 ), G
)

◦ψ0

(
(U, ut+N−1

0 ), G
)

G G · · · G G

(U, ut0) (U, ut+1
0 ) (U, ut+N

0 ) (U, ut+N+1
0 )

(X,α0) (X,β0)x0 ξ0 ζ0 ψ0
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What’s next?
▶ We can automatically generate correct-by-construction software
▶ How easy can we make the implementation of MPC/multi-stage optimization?
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▶ This talk generalized work from ACC ’24 on
compositional models for convex MPC problems5

▶ How can we generalize to non-convex (and non-MPC)
decision problems on other spaces, e.g., manifolds6?

Next steps: Can we prove stability of MPC in purely categorical terms?
(Talking to Aaron Ames and Joe Moeller about this)

5T. Hanks, B. She, M. Hale, E. Patterson, M. Klawonn, J. Fairbanks, “Modeling Model Predictive Control: A Category Theoretic Framework for
Multistage Control Problems”, 2024 American Control Conference, 2024.

6W. Warke, J. Ramos, P. Ganesh, K. Brink, and M.T. Hale, “Pose Graph Optimization over Planar Unit Dual Quaternions: Improved Accuracy with
Provably Convergent Riemannian Optimization”, Accepted to IROS 2024. Preprint: https://arxiv.org/abs/2404.00010v2 14 / 14
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