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Motivation: Multi-scale, multi-physics systems

@ Classical & quantum interactions in rapid molecular processes.

@ Dynamics of complex fluids in, e.g., liquid crystals and superfluids.
@ Turbulence in fluid dynamics.

@ Atmosphere & ocean interactions in the climate systems.

@ Control and response.

Versatile geometric stochastic modelling paradigm

Abstract
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Motivation: Turbulent ocean dynamics

Observational data:

7508 e
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Ansatz: Stochastic dynamics of Lagrangian barticle trajectory,

dxe = we(xe) dt + > &i(xe) o AW, .
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What will we talk about

@ Homogenisation of Lagrangian trajectories

@ Stochastic variational closures

© Example
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Lagrangian decomposition of flow maps

Goal: Derive the Eulerian velocity decomposition
K
dXe = Ue(Xe) dt + ) & (Xe) o dW,
k=1

from the homogenisation of a multi-scale dynamical system.

@ Lagrangian trajectories factorise

Initial Mean Current
] . g = =i og; € Diff(T9)
T I~ T ™~ @ Coordinates defined by
z = B -
=] L Xe=gi(X), X =Zi(Xe).
pe - @ Eulerian velocity field
X X, X Ui = gigi ™
—e—c;—1 —e —f_g;—1

=i S8 8y
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Homogenisation of fast map =°
Let =° be the flow map of Y{, =F(X) = Y:(X), with the evolution equations
K
dYf = &YW , Y =X eT?,

k=1 te 2 t
where W = (W W), W/ = z—:/ Aids, W5 = / (Wi — WS edw; .
0 s

Assumption (Fast map assumptions [KM17; Che+19])

@ Weak invariance principle holds such that W& —p W™ = (W, W") where P is an
invariant measure of A dynamics.

Proposition (Homogenisation of fast map)

Assume that above assumption and smoothness criterion of & holds. For all X € ']I‘d,
Y€ —p Y as e | 0 satisfying

K

aYe = D &(V)aW! = S e (v odWs + 2 37 TV [a(X), &0 de. (1)

k=1 k,I=1

Thus, =° —p = where = is the flow map of Y;.
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Homogenisation of composite map =° o g°

Assumption (Limit of slow map)

@ There exists V(-,W®) = g; the flow map of g°.
@ g° —p g converges ase | 0 and 31, : Q — C*([0, T], X), such that,

dg.(X) = ue(g.(X))dt, go(X) = X. )

Theorem (Homogenisation of composite map [DHL24])

Let the assumptions on the fast map =° and mean map g° hold. Then, the composite

map g° = =° o g° converges g —wp g ==o0g ase | 0. Moreover, for all t > 0 and
XeT?,

dge(X) = Zee(ge(X)) de + Y Eu(ge(X))dWs

k=1

= [ uege (X)) + D T [€(ge(X)), &i(ge(X))] | dt + D &ilge(X)) 0 W

k,i=1 k=1

3)
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What will we talk about

@ Stochastic variational closures
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Variational closures

Goal: from the homogenised flow maps

K K
A== =) MG, gldt+ > &odW),  dgg, ' =u.dt, g=Zog,
k,I=1 k=1
K K
dgege = |ue+ D T, &1 | dt+ > GodW/, where u:=ZuT,
k,I=1 k=1

derive equations of motion for the velocities v and T using physical principles.

Additional physics

@ Advected quantities a; — aogt_l c v @ Define adjoint action ad, v = —|[u,
@ g acts on ap via pullback, apg: = g} 0. @ Define the coadjoint action by
@ The Lie-derivative is (ady v, m) = (v, ad; m) = (v, L,

d *
Lua:= E}tzo exp (tu)"a. Euler-Poincaré variational principle

@ Define o: V x V* — X*(D) by

ty
0:55(gg) :5/ E(Ut,at)
to

(=boa, u)ypyx=p) = (Lud, by yx -
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Defining variations
A variation of the homogenised composite map g: = =; o g, is constructed by

Bet = €,tC8:y Bet =Z=tO8ct>

where e. : Q — C*([0, T]; Diff(D)) be the solution of the random ODE

et =eviecr, eo=Id, v:Q— CY[0,T|;X(D)), w=vr=0.

il
The perturbed diffeomorphism g. : gives

. d 2 1 _ —1
Uet i= € vt +Ade. , Ut, 3et = a08.;; Uet:=Adz, Uer, act:= a8 -

Proposition (Variation induced by e, ;)

ec,+ Introduces the following variations of u; and a;

d _ d _ d d

E E:OUE,t - EV’: +F ath e, E E:OUGJ = AdEt (avt + ad\/t AdEt—l Ut) )
d _ _ d o

de E:an’t = —Lv3:. E‘G:an’t == (Lvtat:t) =5 1
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Modified SALT closure I.

Modelling choices (SALT modelling choice)

@ Given a Lagrangian functional £ : X(D) x V* — R, we assume it is a function of
the drift velocity of the homogenised Lagrangian particle dynamics dgig;

! = E(Ut, at) 5

Proposition (SALT Euler-Poincaré equations)

The variational principle

d d
O—E S(ggt—df

/ KUet,agt)dt
e=0

e=0

yields the stochastic Euler-Poincaré equations

dis +ady, 2= dt + Zadgk 2 odW + 3 Z adrk,[gk o dt = 2 o acdt,

&l 5Ut

dat = [,utat dt 1= Z £5kat [e] th 1= 5 Z [’rkl[ﬁk 751131: dt = 0 o
k=1 k,I=1

Previously derived in e.g., [Hol15].

Ruiao Hu, Imperial College London Homogenisation for SALT August 26, 2024 11/19



Modified SALT closure II.

Noting that ur = Ad=, U; and a; = a;=¢, we can define a random, time dependent
Lagrangian £=: Q x [0, T] x X(D) x V* — R by

(*(4,3) == ((Ad=T,3=) VueX(D), VaeV".

The variational principle

d

0 el
de

Sz(ge,t) =
e=0

d L=
= — 0= (Te,t,3c,¢) dt,
de 6:0/0 ( t t)

yields the random coefficient Euler-Poincaré equations

A% 4 £79€ dt = %€ o3 dt,
dét + Egtﬁt dt = 0,
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Equivalence of Euler-Poincaré equations

Proposition (Equivalence of Euler-Poincaré equations)

Let a,3, u,d,?, 0= and = be defined as before. Then, the random coefficient

Euler-Poincaré equations

AL +adi, 2L dt = 2£ o5, dt,
d§t+[,utatdt—0,

and the stochastic Euler-Poincaré equations are equivalent

dfe +ady, 2= dt + Z adf, $= o dW/ + 3 Z adrk,[gk e di =

dar + Lo,a; dt + Z Le,arodWE+ 1 Z Lruge, ¢paedt =0.
k=1 k,I=1

oL
b Qatdt,
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Deterministic closure

Assumption (Alternative limit of slow map)

@ g° —p g converges as ¢ | 0 and 3 a non-random u; € X, such that,

9:8.(X) = 1e(g.(X)), &o(X) =X.

From £, we may define,

L:[0,T] x X(D) x V* - R, L(t,u,3) :=E[(Ad=1,3Z)] .

Proposition

The variational principle

d
0=7e

=, d
5_(ge,t) = E

e=0

T
/ L(tvﬂﬁfagﬁyf)dt:
e=0+/0

yields the deterministic Euler-Poincaré equations

SL _ SL
atéut + C”t 5y dar ©ar
afat —+ ;Cu!at = 0,
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@ Homogenisation of Lagrangian trajectories
@ Stochastic variational closures

© Example

«O» «Fr « o



Example: Euler's equation I.

For Euler's equation, the Lagrangian is given by

- _ - = 1 - - - = 1 — N =
f(:t*U,:t*D):/ Eg(:t*u,:t*u):t*D: 5/(:tg)(uv U)=e.D,
D D

where we constrain the mean density D = dV € Den(D). The corresponding random
coefficient equations are

(d+ Lzar) =F (Ee0)” =d (A=) 2ol dt —dp)
(d+ Lzar)D=0.

Evaluating D = dV/, we have the incompressibility condition £z(dV) = 0.

The equivalent stochastic equations in terms of u = =t and D = =,.D are
du’ + Loyu” dt + kz'<lz:§kllb odWf + 1 kﬁjl Louge, equ’ dt =d (3 |u* dt — Zedp) dt,
dD + £,Ddt + kilﬁng odW¢ + 3 kz:(jlﬂrk,[gk,gllodt =0.

Evaluating D = dV/, we have the incompressibility condition of u and & when
=, ¢ SDiff(D),
LodV = Le,dV =0.
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Example: Euler’'s equation II.
Kelvin circulation dynamics

For a given initial material loop ¢y, one has conservation of the circulation integral of
=i (Z:.T:)" and o,

' —_—k = — ' 1—* - - = —
d¢ :t(:t*ut)b = 56 d (Eztg(:t*ua:f*u)dt_dp) =0,
8¢ gt
d¢ UE = ¢ d (lg(ut, Ut) dt — Et*dp) dt =0.
v 8t &t 2

Vorticity dynamics

Let w: = du} = d(Z:.T:)" € A%(D) be the vorticity of the drift velocity one-form and let
the vorticity associated with mean velocity one-form be w; = d=; Ul ==fw;. The
vorticity dynamics are

(d+ Lz, a¢)we =0,

K K
Z i1
dwt+£utwt dt“r ﬁgkwtoth —+ 5 E L‘,rk/[gkyg/]wtdtzo.
k,l=1

k=1
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Concluding remarks

What have we seen?
@ Homogenisation of fast 4+ slow decomposition of Lagrangian trajectory.
@ Two equivalent forms of the SALT Euler-Poincaré equations.

@ The example of Euler's fluid equation is given.

What’s next?
@ Generalise to arbitrary Lie groups.

@ Consider the same treatment for Rough advection by Lie Transport (RALT) where
=; is the solution to the RDE,

d=.= ' = ngdzk

@ How can SALT/RALT be extended to geometric control theory?
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