
1

Incentive Design in Dynamic
Systems

Vijay Gupta

Purdue University

Joint work with Pranoy Das, Mostafa Abdelnaby, Shivam Bajaj, Yagiz Savas, Ufuk Topcu

AFOSR PI Meeting, Fall 2024

Problem Considered

• Complexity of optimal contract design

• Design of strategies for participants in resulting Markov Stackelberg games

• Encoding objectives such as stability or robustness (as opposed to the system
operator being interested in social welfare)?

• Incentive / contract / mechanism / auction design (including sequential
incentives) has a long history

• Can we use such methods for coordinating behavior in dynamic systems?

Complexity of Sequential Incentive Design
Consider an agent whose behavior is modeled as an MDP with a reward function as
a function of a (possibly hidden) type:

ℛθ : 𝒮 × 𝒜 → ℝ

The principal knows the reward function for each type, but not the true type.

Principal offers incentive
δt(It, a)

Information available to
principal (state, action, and
incentive history)

Agent chooses action
at ∈ argmaxa (ℛθ⋆ (st, a) + δt(It, a))

Principal pays
st+1

δt(It, at)
Agent updates state

Problem Considered

min
γ∈Γ(ℳ)

max
θ∈Θ

𝔼π⋆[
∞

∑
t=1

δt(It, At) θ]
subject to: π⋆ = (d1, d2, d3, …)

∀t ∈ ℕ, ∀s ∈ S, dt(s) ∈ arg max
a∈𝒜 [ℛθ⋆(s, a) + δt(It, a)]

Prπ⋆

ℳ(Reach[B]) = max
π∈Π(ℳ)

Prπ
ℳ(Reach[B]) .

For an MDP ℳ, a set B of target states, and a set Θ of possible agent types, synthesize
 an incentive sequence Γ ∈ Ξ(ℳ) that leads the agent θ⋆ to a target state with maximum
probability at minimum expected cost, i.e.,

Incentive policy

Desired final state

• Myopic agent (could be relaxed to lookout over finitely many steps)

• Principal knows the MDP

Complexity Results
TABLE I: A summary of the presented results.

Problem Complexity Globally optimal solution Locally optimal solution

Behavior modification (BMP) PSPACE-hard — —

Non-adaptive behavior modification (N-BMP) NP-complete MILP Convex-concave procedure

Non-adaptive single-action behavior modification (NS-BMP) NP-complete MILP Convex-concave procedure

Behavior modification of a dominant type (BMP-D) P LP —

locally optimal solutions to the NS-BMP can be computed by
slightly modifying the methods developed to solve the N-BMP.

Finally, we consider the case in which the set of agent types
include a dominant type which always demands the principal
to offer an incentive amount that is higher than the ones
demanded by any other agent type. We prove that solving the
BMP instances that involve a dominant type is equivalent to
modifying the behavior of the dominant type. We show that
the behavior modification problem of a dominant type (BMP-
D) is in P, and present an approach based on a linear program
(LP) to solve the BMP-D.

V. OPTIMAL AGENT BEHAVIOR AND OPTIMAL INCENTIVE
SEQUENCES

In the BMP, we aim to synthesize an incentive sequence that
induces an optimal agent policy that reaches a target set with
maximum probability while minimizing the expected total cost
to the principal. To obtain a well-defined BMP, in this section,
we first precisely specify how the agent behaves when there
are multiple optimal policies. We then show that, in general,
an incentive sequence that minimizes the expected total cost
to the principal may not exist. Hence, we focus on ✏-optimal
incentive sequences where ✏>0 is an arbitrarily small constant.

A. Agent’s behavior when multiple optimal policies exist

For a given incentive sequence, the agent’s optimal policy
may not be unique. In the presence of multiple optimal poli-
cies, there are only two possible cases: either (i) there exists
an optimal policy that violates the reachability constraint in
(2d) or (ii) all optimal policies satisfy the constraint in (2d).

We first analyze case (i). Consider the MDP given in Fig. 1
(left). Let the agent’s reward function be R✓?(s1, a1)=0 and
R✓?(s1, a2)=�1. That is, in the absence of incentives, it is
optimal for the agent to stay in state s1 under action a1.

Suppose that the principal offers the stationary incentives
�(s1, a1)=0 and �(s1, a2)=1 to the agent. Then, we have

{a1, a2} = arg max
a2A(s1)

h
R✓?(s1, a) + �(s1, a)

i

which implies that the agent has multiple optimal policies.
Note that under the optimal stationary policy ⇡(s1)=a2, the
agent reaches the target state s2 with probability 1, whereas
under the optimal stationary policy ⇡(s1)=a1, it reaches the
target state s2 with probability 0. We assume that, in such a
scenario, the agent behaves adversarially against the principal.
Assumption: Under the provided incentive sequence, if there
exists an optimal policy following which the agent can violate
the constraint in (2d), then the agent follows such a policy.

s1 s2

a1, 0

a2,�1
s1 s2

a1, 0

a2,�1

a3,�1

Fig. 1: MDP examples to illustrate the agent’s behavior in the
existence of multiple optimal policies. Solid lines represent
deterministic transitions; dashed lines represent transitions
with equal probability. The initial state is s1. The type set ⇥
satisfies |⇥|=1, i.e., the principal knows the true agent type.
The target set is B={s2}. The tuples (a, r) next to the arrows
indicate the action a and the reward r.

We now analyze case (ii). Consider the MDP given in Fig.
1 (right). In this MDP, in addition to the actions a1 and a2, the
agent can take a third action a3 which leads the agent to the
states s1 and s2 with equal probability. Let the reward function
be R✓?(s1, a1)=0, R✓?(s1, a2)=�1, and R✓?(s1, a3)=�1.

Suppose that the principal offers the stationary incentives
�(s1, a1)=0, �(s1, a2)=2, and �(s1, a3)=2. Then, we have

{a2, a3} = arg max
a2A(s1)

h
R✓?(s1, a) + �(s1, a)

i
,

and the agent has multiple optimal policies. Under all its
optimal policies, the agent reaches the target state s2 with
probability 1. However, if the agent follows the stationary
policy ⇡(s1)=a2, the expected total cost to the principal is
equal to 2, whereas the stationary policy ⇡(s1)=a3 incurs the
expected total cost of 4. In such a scenario, we again assume
that the agent behaves adversarially against the principal.
Assumption: Under the provided incentive sequence, if all
optimal agent policies satisfy the constraint in (2d), then the
agent follows the policy that maximizes the expected total cost
to the principal.

B. Non-existence of optimal incentive sequences

We now illustrate with an example that, in general, there
may exist no incentive sequence �2�(M) that attains the
minimum in (2a)-(2d). Consider again the MDP given in Fig. 1
(left). In this example, without loss of generality, we can focus
on stationary incentive sequences to minimize the expected
total cost to the principal. The feasible set of stationary
incentive sequences is described by the set

{�(s, a) � 0 | �(s1, a2)� �(s1, a1) � 1 + ✏̃, ✏̃ > 0}

• The problem can be relaxed to finding approximately optimal solutions

• Feasible solutions can be constructed in a time polynomial in the size of the MDP

• Proof follows reduction of PSPACE-complete quantified satisfiability problem
(QSAT) to BMP (similar to reduction of QSAT to POMDP optimal control problems)

• Motivates looking at learning-based solutions to the problem

Savas, Topcu, Gupta, TAC 2024

Agents Controlling a Dynamical System
• More generally, we can consider the case when both principal and agent can

affect the state of the system directly

Principal

Still a Markov Stackelberg Game

• Markov game (with Nash equilibrium among players in response to given incentive)

• Stackelberg structure where incentive designer is the leader

Learning in a Stochastic Stackelberg Game

• Incentive design seeks to change the utility of an agent to elicit a desired
response

Leader
(Principal)

Follower
(Agent)

Reward / tax

Actions to optimize resulting utility functions

• Only recently have learning algorithms been identified even in a repeated static
game setting (Fiez et al 2020)

• For stochastic setting, algorithms known only for special cases (follower plays
deterministic strategy (Vorobeychik and Singh 2012), linear Markov games
(Zhong et al 2021), zero-sum games (Goktas et al 2022, Metz et al 2016) …)

Value Functions

Value Functions:• S = {s1, s2, ...sk} is a finite set of states with cardinal-
ity |S|;

• N = {l, f} is the set of players where player l is the
leader and player f is the follower;

• Al and Af are finite sets of actions for the leader and
follower respectively with dimensions Al and Af ;

• P is the probability transition function of the underlying
Markov game with P(s0|s, al, af) specifying the proba-
bility of the state at the next time step being s

0 given the
current state, leader’s actions and the follower’s action
by (s, al, af);

• Ri : S ⇥Al ⇥Af ! [0, 1], i 2 {l, f} are the per stage
reward functions of the leader and the follower;

• � is a discount factor;
• ⇢ 2 �(S), where �(S) denotes the probability simplex

over the elements of S , is the distribution of the state
at time t = 0 (also termed as the initial state s

0). Let
the probability of state s 2 S be given by ⇢(s).

At each stage (or time) ⌧ and corresponding state s
⌧ , the

players take joint actions (a⌧
l
, a

⌧

f
). They receive the rewards

Ri(s⌧ , a⌧l , a
⌧

f
)i 2 {l, f}. The state transitions to s

⌧+1 ⇠
P(s0|s⌧ , a⌧

l
, a

⌧

f
). The stage ⌧ + 1 then begins.

Given this game, the set of strategies for the leader and
the follower that we concentrate on are Markov stationary
policies. Specifically, we define the policies for the two
players as functions ⇡i : S ⇥ Ai ! �(Ai), i 2 {l, f}
where �(Ai) is a probability simplex in Ai dimensions over
the actions in the set Ai. Denote the actions a

⌧

i
selected

according to policy ⇡i as a
⌧

i
⇠ ⇡i.

Remark 1: In stochastic games, it is common to consider
Markov stationary policies for both the players [8], [22], [33]
and we make this assumption as well. While this restriction
may be limiting (e.g., [33] showed that the Stackelberg
equilibrium strategy for the leader need not be a Markov
stationary policy even if the follower policy is a Markov
stationary policy), this assumption considerably simplifies
the convergence analysis.

We define the discounted state visitation distribution d
⇡l,⇡f
s0

of a joint policy (⇡l,⇡f) given the initial state s0 2 S is
defined by

d
⇡l,⇡f
s0 (s) := (1� �)

1X

t=0

�
tP⇡l,⇡f (st = s|s0), 8s 2 S (1)

where P⇡l,⇡f is the Markov chain induced by the joint policy
(⇡l,⇡f). For any distribution ⇢ over S , we define d

⇡

⇢
as

follows:

8s 2 S : d
⇡l,⇡f
⇢ (s) := Es0⇠⇢[d

⇡l,⇡f
s0 (s)] (2)

The value functions Vi(⇡l,⇡f)(s) for the two players can
now be defined for a given initial state s

0 at time ⌧ = 0 and
given that the players play policies ⇡l,⇡f . Let ET [.] denote
expectation over all the trajectories T = {s⌧ , a⌧

l
, a

⌧

f
}⌧�0

with the actions a
⌧

l
⇠ ⇡l, a

⌧

l
⇠ ⇡f . The value functions for

the leader and the follower are given by

V̄l(⇡l,⇡f)(s) := ET

 1X

⌧=0

�
⌧Rl(s

⌧
, a

⌧

l
, a

⌧

f
)|s0 = s

�

V̄f (⇡l,⇡f)(s) := ET

 1X

⌧=0

�
⌧Rf (s

⌧
, a

⌧

l
, a

⌧

f
)|s0 = s

�
,

for a discount factor 0 < � < 1. For technical reasons, we
consider an entropy regularized version of the value function
of the follower as given by

V̄
�

f
(⇡l,⇡f)(s) := V̄f (⇡l,⇡f)(s) + �H⇡f (⇡l, s) (3)

with H⇡f (⇡l, s) defined as the discounted entropy of the
follower policy ⇡f when the leader policy is fixed to ⇡l, as

H⇡f (⇡l, s) := ET

 1X

⌧=0

��
⌧ log ⇡f |s0 = s,⇡l

�
. (4)

The maximum entropy objective has a number of conceptual
and practical advantages [17], [18]. First, it ensures that
the policy explores sufficiently while giving up on clearly
unpromising avenues. Second, the policy can capture mul-
tiple modes of near-optimal behavior. Experimentally, [30]
has shown that entropy regularized versions of Q-learning
and policy gradient improves learning speed over state-of-
art methods that optimize the conventional RL objective
function. We also define the value functions with respect to
an initial state distribution ⇢ rather than a given initial state
as

Vl(⇡l,⇡f)(⇢) :=
X

s2S
⇢(s)V̄l(⇡l,⇡f)(s)

V
�

f
(⇡l,⇡f)(⇢) :=

X

s2S
⇢(s)V̄ �

f
(⇡l,⇡f)(s).

For any policy ⇡l commited to by the leader, the best
response of the follower is the policy given by

B(⇡l) := argmax
⇡f2S

�(Af)

V
�

f
(⇡l,⇡f)(⇢).

The problem of computing a Stackelberg equilibrium can be
cast as a bi-level optimization problem [3], [9] as follows.
The optimal policy for the leader can be obtained through
the upper level problem given by

⇡
?

l
2 argmax

⇡l

Vl(⇡l, B(⇡l))(⇢),

while the follower policy for a given leader policy ⇡l can be
obtained through the lower level optimization problem given
by

⇡
?

f
= B(⇡l) 2 argmax

⇡f

V
�

f
(⇡l,⇡f)(⇢).

The problem we consider in this paper is to provide a two-
loop policy gradient based learning algorithm for the leader
and the follower to update their policies and determine the
convergence rate for the algorithm to a stationary point of the
value functions. Without any assumption on the second order
properties of Vl(⇡l, B(⇡l)), finding a stationary point of the

• S = {s1, s2, ...sk} is a finite set of states with cardinal-
ity |S|;

• N = {l, f} is the set of players where player l is the
leader and player f is the follower;

• Al and Af are finite sets of actions for the leader and
follower respectively with dimensions Al and Af ;

• P is the probability transition function of the underlying
Markov game with P(s0|s, al, af) specifying the proba-
bility of the state at the next time step being s

0 given the
current state, leader’s actions and the follower’s action
by (s, al, af);

• Ri : S ⇥Al ⇥Af ! [0, 1], i 2 {l, f} are the per stage
reward functions of the leader and the follower;

• � is a discount factor;
• ⇢ 2 �(S), where �(S) denotes the probability simplex

over the elements of S , is the distribution of the state
at time t = 0 (also termed as the initial state s

0). Let
the probability of state s 2 S be given by ⇢(s).

At each stage (or time) ⌧ and corresponding state s
⌧ , the

players take joint actions (a⌧
l
, a

⌧

f
). They receive the rewards

Ri(s⌧ , a⌧l , a
⌧

f
)i 2 {l, f}. The state transitions to s

⌧+1 ⇠
P(s0|s⌧ , a⌧

l
, a

⌧

f
). The stage ⌧ + 1 then begins.

Given this game, the set of strategies for the leader and
the follower that we concentrate on are Markov stationary
policies. Specifically, we define the policies for the two
players as functions ⇡i : S ⇥ Ai ! �(Ai), i 2 {l, f}
where �(Ai) is a probability simplex in Ai dimensions over
the actions in the set Ai. Denote the actions a

⌧

i
selected

according to policy ⇡i as a
⌧

i
⇠ ⇡i.

Remark 1: In stochastic games, it is common to consider
Markov stationary policies for both the players [8], [22], [33]
and we make this assumption as well. While this restriction
may be limiting (e.g., [33] showed that the Stackelberg
equilibrium strategy for the leader need not be a Markov
stationary policy even if the follower policy is a Markov
stationary policy), this assumption considerably simplifies
the convergence analysis.

We define the discounted state visitation distribution d
⇡l,⇡f
s0

of a joint policy (⇡l,⇡f) given the initial state s0 2 S is
defined by

d
⇡l,⇡f
s0 (s) := (1� �)

1X

t=0

�
tP⇡l,⇡f (st = s|s0), 8s 2 S (1)

where P⇡l,⇡f is the Markov chain induced by the joint policy
(⇡l,⇡f). For any distribution ⇢ over S , we define d

⇡

⇢
as

follows:

8s 2 S : d
⇡l,⇡f
⇢ (s) := Es0⇠⇢[d

⇡l,⇡f
s0 (s)] (2)

The value functions Vi(⇡l,⇡f)(s) for the two players can
now be defined for a given initial state s

0 at time ⌧ = 0 and
given that the players play policies ⇡l,⇡f . Let ET [.] denote
expectation over all the trajectories T = {s⌧ , a⌧

l
, a

⌧

f
}⌧�0

with the actions a
⌧

l
⇠ ⇡l, a

⌧

l
⇠ ⇡f . The value functions for

the leader and the follower are given by

V̄l(⇡l,⇡f)(s) := ET

 1X

⌧=0

�
⌧Rl(s

⌧
, a

⌧

l
, a

⌧

f
)|s0 = s

�

V̄f (⇡l,⇡f)(s) := ET

 1X

⌧=0

�
⌧Rf (s

⌧
, a

⌧

l
, a

⌧

f
)|s0 = s

�
,

for a discount factor 0 < � < 1. For technical reasons, we
consider an entropy regularized version of the value function
of the follower as given by

V̄
�

f
(⇡l,⇡f)(s) := V̄f (⇡l,⇡f)(s) + �H⇡f (⇡l, s) (3)

with H⇡f (⇡l, s) defined as the discounted entropy of the
follower policy ⇡f when the leader policy is fixed to ⇡l, as

H⇡f (⇡l, s) := ET

 1X

⌧=0

��
⌧ log ⇡f |s0 = s,⇡l

�
. (4)

The maximum entropy objective has a number of conceptual
and practical advantages [17], [18]. First, it ensures that
the policy explores sufficiently while giving up on clearly
unpromising avenues. Second, the policy can capture mul-
tiple modes of near-optimal behavior. Experimentally, [30]
has shown that entropy regularized versions of Q-learning
and policy gradient improves learning speed over state-of-
art methods that optimize the conventional RL objective
function. We also define the value functions with respect to
an initial state distribution ⇢ rather than a given initial state
as

Vl(⇡l,⇡f)(⇢) :=
X

s2S
⇢(s)V̄l(⇡l,⇡f)(s)

V
�

f
(⇡l,⇡f)(⇢) :=

X

s2S
⇢(s)V̄ �

f
(⇡l,⇡f)(s).

For any policy ⇡l commited to by the leader, the best
response of the follower is the policy given by

B(⇡l) := argmax
⇡f2S

�(Af)

V
�

f
(⇡l,⇡f)(⇢).

The problem of computing a Stackelberg equilibrium can be
cast as a bi-level optimization problem [3], [9] as follows.
The optimal policy for the leader can be obtained through
the upper level problem given by

⇡
?

l
2 argmax

⇡l

Vl(⇡l, B(⇡l))(⇢),

while the follower policy for a given leader policy ⇡l can be
obtained through the lower level optimization problem given
by

⇡
?

f
= B(⇡l) 2 argmax

⇡f

V
�

f
(⇡l,⇡f)(⇢).

The problem we consider in this paper is to provide a two-
loop policy gradient based learning algorithm for the leader
and the follower to update their policies and determine the
convergence rate for the algorithm to a stationary point of the
value functions. Without any assumption on the second order
properties of Vl(⇡l, B(⇡l)), finding a stationary point of the

• S = {s1, s2, ...sk} is a finite set of states with cardinal-
ity |S|;

• N = {l, f} is the set of players where player l is the
leader and player f is the follower;

• Al and Af are finite sets of actions for the leader and
follower respectively with dimensions Al and Af ;

• P is the probability transition function of the underlying
Markov game with P(s0|s, al, af) specifying the proba-
bility of the state at the next time step being s

0 given the
current state, leader’s actions and the follower’s action
by (s, al, af);

• Ri : S ⇥Al ⇥Af ! [0, 1], i 2 {l, f} are the per stage
reward functions of the leader and the follower;

• � is a discount factor;
• ⇢ 2 �(S), where �(S) denotes the probability simplex

over the elements of S , is the distribution of the state
at time t = 0 (also termed as the initial state s

0). Let
the probability of state s 2 S be given by ⇢(s).

At each stage (or time) ⌧ and corresponding state s
⌧ , the

players take joint actions (a⌧
l
, a

⌧

f
). They receive the rewards

Ri(s⌧ , a⌧l , a
⌧

f
)i 2 {l, f}. The state transitions to s

⌧+1 ⇠
P(s0|s⌧ , a⌧

l
, a

⌧

f
). The stage ⌧ + 1 then begins.

Given this game, the set of strategies for the leader and
the follower that we concentrate on are Markov stationary
policies. Specifically, we define the policies for the two
players as functions ⇡i : S ⇥ Ai ! �(Ai), i 2 {l, f}
where �(Ai) is a probability simplex in Ai dimensions over
the actions in the set Ai. Denote the actions a

⌧

i
selected

according to policy ⇡i as a
⌧

i
⇠ ⇡i.

Remark 1: In stochastic games, it is common to consider
Markov stationary policies for both the players [8], [22], [33]
and we make this assumption as well. While this restriction
may be limiting (e.g., [33] showed that the Stackelberg
equilibrium strategy for the leader need not be a Markov
stationary policy even if the follower policy is a Markov
stationary policy), this assumption considerably simplifies
the convergence analysis.

We define the discounted state visitation distribution d
⇡l,⇡f
s0

of a joint policy (⇡l,⇡f) given the initial state s0 2 S is
defined by

d
⇡l,⇡f
s0 (s) := (1� �)

1X

t=0

�
tP⇡l,⇡f (st = s|s0), 8s 2 S (1)

where P⇡l,⇡f is the Markov chain induced by the joint policy
(⇡l,⇡f). For any distribution ⇢ over S , we define d

⇡

⇢
as

follows:

8s 2 S : d
⇡l,⇡f
⇢ (s) := Es0⇠⇢[d

⇡l,⇡f
s0 (s)] (2)

The value functions Vi(⇡l,⇡f)(s) for the two players can
now be defined for a given initial state s

0 at time ⌧ = 0 and
given that the players play policies ⇡l,⇡f . Let ET [.] denote
expectation over all the trajectories T = {s⌧ , a⌧

l
, a

⌧

f
}⌧�0

with the actions a
⌧

l
⇠ ⇡l, a

⌧

l
⇠ ⇡f . The value functions for

the leader and the follower are given by

V̄l(⇡l,⇡f)(s) := ET

 1X

⌧=0

�
⌧Rl(s

⌧
, a

⌧

l
, a

⌧

f
)|s0 = s

�

V̄f (⇡l,⇡f)(s) := ET

 1X

⌧=0

�
⌧Rf (s

⌧
, a

⌧

l
, a

⌧

f
)|s0 = s

�
,

for a discount factor 0 < � < 1. For technical reasons, we
consider an entropy regularized version of the value function
of the follower as given by

V̄
�

f
(⇡l,⇡f)(s) := V̄f (⇡l,⇡f)(s) + �H⇡f (⇡l, s) (3)

with H⇡f (⇡l, s) defined as the discounted entropy of the
follower policy ⇡f when the leader policy is fixed to ⇡l, as

H⇡f (⇡l, s) := ET

 1X

⌧=0

��
⌧ log ⇡f |s0 = s,⇡l

�
. (4)

The maximum entropy objective has a number of conceptual
and practical advantages [17], [18]. First, it ensures that
the policy explores sufficiently while giving up on clearly
unpromising avenues. Second, the policy can capture mul-
tiple modes of near-optimal behavior. Experimentally, [30]
has shown that entropy regularized versions of Q-learning
and policy gradient improves learning speed over state-of-
art methods that optimize the conventional RL objective
function. We also define the value functions with respect to
an initial state distribution ⇢ rather than a given initial state
as

Vl(⇡l,⇡f)(⇢) :=
X

s2S
⇢(s)V̄l(⇡l,⇡f)(s)

V
�

f
(⇡l,⇡f)(⇢) :=

X

s2S
⇢(s)V̄ �

f
(⇡l,⇡f)(s).

For any policy ⇡l commited to by the leader, the best
response of the follower is the policy given by

B(⇡l) := argmax
⇡f2S

�(Af)

V
�

f
(⇡l,⇡f)(⇢).

The problem of computing a Stackelberg equilibrium can be
cast as a bi-level optimization problem [3], [9] as follows.
The optimal policy for the leader can be obtained through
the upper level problem given by

⇡
?

l
2 argmax

⇡l

Vl(⇡l, B(⇡l))(⇢),

while the follower policy for a given leader policy ⇡l can be
obtained through the lower level optimization problem given
by

⇡
?

f
= B(⇡l) 2 argmax

⇡f

V
�

f
(⇡l,⇡f)(⇢).

The problem we consider in this paper is to provide a two-
loop policy gradient based learning algorithm for the leader
and the follower to update their policies and determine the
convergence rate for the algorithm to a stationary point of the
value functions. Without any assumption on the second order
properties of Vl(⇡l, B(⇡l)), finding a stationary point of the

• S = {s1, s2, ...sk} is a finite set of states with cardinal-
ity |S|;

• N = {l, f} is the set of players where player l is the
leader and player f is the follower;

• Al and Af are finite sets of actions for the leader and
follower respectively with dimensions Al and Af ;

• P is the probability transition function of the underlying
Markov game with P(s0|s, al, af) specifying the proba-
bility of the state at the next time step being s

0 given the
current state, leader’s actions and the follower’s action
by (s, al, af);

• Ri : S ⇥Al ⇥Af ! [0, 1], i 2 {l, f} are the per stage
reward functions of the leader and the follower;

• � is a discount factor;
• ⇢ 2 �(S), where �(S) denotes the probability simplex

over the elements of S , is the distribution of the state
at time t = 0 (also termed as the initial state s

0). Let
the probability of state s 2 S be given by ⇢(s).

At each stage (or time) ⌧ and corresponding state s
⌧ , the

players take joint actions (a⌧
l
, a

⌧

f
). They receive the rewards

Ri(s⌧ , a⌧l , a
⌧

f
)i 2 {l, f}. The state transitions to s

⌧+1 ⇠
P(s0|s⌧ , a⌧

l
, a

⌧

f
). The stage ⌧ + 1 then begins.

Given this game, the set of strategies for the leader and
the follower that we concentrate on are Markov stationary
policies. Specifically, we define the policies for the two
players as functions ⇡i : S ⇥ Ai ! �(Ai), i 2 {l, f}
where �(Ai) is a probability simplex in Ai dimensions over
the actions in the set Ai. Denote the actions a

⌧

i
selected

according to policy ⇡i as a
⌧

i
⇠ ⇡i.

Remark 1: In stochastic games, it is common to consider
Markov stationary policies for both the players [8], [22], [33]
and we make this assumption as well. While this restriction
may be limiting (e.g., [33] showed that the Stackelberg
equilibrium strategy for the leader need not be a Markov
stationary policy even if the follower policy is a Markov
stationary policy), this assumption considerably simplifies
the convergence analysis.

We define the discounted state visitation distribution d
⇡l,⇡f
s0

of a joint policy (⇡l,⇡f) given the initial state s0 2 S is
defined by

d
⇡l,⇡f
s0 (s) := (1� �)

1X

t=0

�
tP⇡l,⇡f (st = s|s0), 8s 2 S (1)

where P⇡l,⇡f is the Markov chain induced by the joint policy
(⇡l,⇡f). For any distribution ⇢ over S , we define d

⇡

⇢
as

follows:

8s 2 S : d
⇡l,⇡f
⇢ (s) := Es0⇠⇢[d

⇡l,⇡f
s0 (s)] (2)

The value functions Vi(⇡l,⇡f)(s) for the two players can
now be defined for a given initial state s

0 at time ⌧ = 0 and
given that the players play policies ⇡l,⇡f . Let ET [.] denote
expectation over all the trajectories T = {s⌧ , a⌧

l
, a

⌧

f
}⌧�0

with the actions a
⌧

l
⇠ ⇡l, a

⌧

l
⇠ ⇡f . The value functions for

the leader and the follower are given by

V̄l(⇡l,⇡f)(s) := ET

 1X

⌧=0

�
⌧Rl(s

⌧
, a

⌧

l
, a

⌧

f
)|s0 = s

�

V̄f (⇡l,⇡f)(s) := ET

 1X

⌧=0

�
⌧Rf (s

⌧
, a

⌧

l
, a

⌧

f
)|s0 = s

�
,

for a discount factor 0 < � < 1. For technical reasons, we
consider an entropy regularized version of the value function
of the follower as given by

V̄
�

f
(⇡l,⇡f)(s) := V̄f (⇡l,⇡f)(s) + �H⇡f (⇡l, s) (3)

with H⇡f (⇡l, s) defined as the discounted entropy of the
follower policy ⇡f when the leader policy is fixed to ⇡l, as

H⇡f (⇡l, s) := ET

 1X

⌧=0

��
⌧ log ⇡f |s0 = s,⇡l

�
. (4)

The maximum entropy objective has a number of conceptual
and practical advantages [17], [18]. First, it ensures that
the policy explores sufficiently while giving up on clearly
unpromising avenues. Second, the policy can capture mul-
tiple modes of near-optimal behavior. Experimentally, [30]
has shown that entropy regularized versions of Q-learning
and policy gradient improves learning speed over state-of-
art methods that optimize the conventional RL objective
function. We also define the value functions with respect to
an initial state distribution ⇢ rather than a given initial state
as

Vl(⇡l,⇡f)(⇢) :=
X

s2S
⇢(s)V̄l(⇡l,⇡f)(s)

V
�

f
(⇡l,⇡f)(⇢) :=

X

s2S
⇢(s)V̄ �

f
(⇡l,⇡f)(s).

For any policy ⇡l commited to by the leader, the best
response of the follower is the policy given by

B(⇡l) := argmax
⇡f2S

�(Af)

V
�

f
(⇡l,⇡f)(⇢).

The problem of computing a Stackelberg equilibrium can be
cast as a bi-level optimization problem [3], [9] as follows.
The optimal policy for the leader can be obtained through
the upper level problem given by

⇡
?

l
2 argmax

⇡l

Vl(⇡l, B(⇡l))(⇢),

while the follower policy for a given leader policy ⇡l can be
obtained through the lower level optimization problem given
by

⇡
?

f
= B(⇡l) 2 argmax

⇡f

V
�

f
(⇡l,⇡f)(⇢).

The problem we consider in this paper is to provide a two-
loop policy gradient based learning algorithm for the leader
and the follower to update their policies and determine the
convergence rate for the algorithm to a stationary point of the
value functions. Without any assumption on the second order
properties of Vl(⇡l, B(⇡l)), finding a stationary point of the

Discounted entropy regularization

• Widely used in MDPs and games (Haarnoja et al 2018, Schulman et al 2017,
Mei et al 2020, Meritokopoulos and Sandholm 2016, Sun et al 2024, Aggarwal et
al 2024, …) due to many conceptual and numerical advantages

Sources of Difficulty

• The leader and follower problems are linked through the best response mapping.

• The non-smoothness and non-uniqueness of the best response mapping leads to
discontinuity in the landscape of value function at the leader.

• Each level may consist of different classes of optimization problems.

• Our contribution: We provide the first model free learning algorithm that provably
converges to a stationary point for the leader and an optimal best response for the
follower

Best response of follower

where

Inner loop

Outer loop

Identify

Proposed Algorithm
• Parametrize follower policy as softmax and leader policy as direct (softmax also

possible)

upper level optimization problem is the standard approach in
bilevel optimization [23].

Remark 2: Note that in the absence of regularization, the
follower might have multiple best response policies to the
policy of the leader in which case the best response is a set
and hence a mapping. However, they pick the policy that is
the best for the leader. The uniqueness of best response for
the entropy regularized follower is presented in IV-A.

III. PROPOSED ALGORITHM

We utilize the soft max parameterization [1], [5], [25]
for the follower policy and a direct parameterization for
the leader policy. Specifically, the policy of the players
is determined using a parameter ✓i 2 R|S|Ai , i 2 {l, f}.
Denoting the element of ✓i, i 2 {l, f} corresponding to the
state s 2 S and the j

th action of the player ai,j 2 Ai

by ✓i(s, ai,j), the policies for the leader and the follower
are given by specifying the probabilities of taking the action
ai,j , i 2 l, f given the state s as

⇡f (af,j |s) =
e
✓i(s,af,j)

P
af,j2Af

e✓f (s,af,j)
(5)

⇡l(al,j |s) = ✓l(s, al,j) s.t.
X

j2Al

⇡l(al,j |s) = 1. (6)

Since the parameters ✓i will evolve with time in the learning
algorithm, we denote the value of the parameter at time ⌧

by ✓
⌧

i
, i 2 {l, f}. To avoid notational clutter, we use ✓i and

⇡✓i interchangeably to denote the policies of player i. Sim-
ilarly, we use Vl(✓l, ✓f) (resp. V �

f
(✓l, ✓f)) and Vl(⇡✓l ,⇡✓f)

(resp. V �

f
(⇡✓l ,⇡✓f)) interchangeably to represent the value

functions, and B(✓l) and B(⇡l) interchangeably to represent
the best response function, as a function of ✓l, ✓f .

Remark 3: As is well known [1], any stochastic policy
can be represented using either of the soft max or direct
parametrizations. It is common in bilevel optimization liter-
ature to have an unconstrained lower level problem and a
constrained upper level problem [19], [37]. The parameteri-
zations used above lead to the parameter space ✓f 2 R|S||Af |

of the follower being unconstrained while for the leader,
the parameter space ✓l 2 �(Al)|S| ⇢ R|S||Al| is a convex
constrained set. As Appendix I shows, our results can be
extended to consider softmax policy parameterization for
both the players as well.

We consider a modified version of the Stackelberg policy
gradient algorithm from [34], as given in Algorithm 1. In the
algorithm, we define P�(Al)|S|(.) to be the projection onto
the probability simplex corresponding to the leader policy, ⌘t
and �t to be step sizes, ⇢ to be the distribution of the initial
states assumed to be specified such that ⇢(s) > 0 8s 2 S ,
and r✓l V̄l(., .)(µ) (resp. r✓fV

�

f
(., .)(µ)) as the gradient of

the value function of the leader (resp. follower) with respect
to its own policy for a given policy of the follower (resp.
leader).

The algorithm consists of two loops. For simplicity, we
call the loop in counter n for updating the follower parameter
as the inner loop and the loop in counter t for updating the

Algorithm 1 Loopy Direct Stackelberg Policy Gradient
Input parameters: Step sizes ⌘t, 8t 2 {0, 1, · · ·T},
�n, 8n 2 {0, 1, · · ·M}, distribution µ of initial states with
positive support for all s 2 S .
Initialize ✓

0
l
, ✓

0,0
f

, ✓0,M
f

for t = 0...T do
✓
t+1
l
 P�(Al)|S|

�
✓
t

l
+ ⌘tr✓l V̄l(✓tl , ✓

t,M

f
)(µ)

�

if t > 0 then, initialize ✓
t,0
f

= ✓
t�1,M
f

end if
for n = 0...M do

✓
t,n+1
f

 ✓
t,n

f
+ �nr✓fV

�

f
(✓t

l
, ✓

t,n

f
)(µ)

end for
end for
Output ✓

⇤
l
= ✓

T+1
l

, ✓
⇤
f
= ✓

T,M

f

leader policy as the outer loop. We will make the following
two technical assumptions in the remainder of the paper. The
first assumption implies that the best response function is
differentiable in the parameters of the policy of the leader
while the second assumption implies that the value function
of the leader when the follower is playing their best response
is a smooth function.

Assumption 1: For all 0 < � < 1, and
8✓l, ✓f ,r2

✓f
V

�

f
(✓l, ✓f)�1 exists.

Assumption 2: The best response B(⇡l) is LB�smooth,
i.e., 9LB > 0 such that for all leader policies ⇡1 6= ⇡2, we
have

kr✓lB(⇡1)�r✓lB(⇡2)k  LB k⇡1 � ⇡2k . (7)

IV. CONVERGENCE ANALYSIS

We now present the convergence analysis of Algorithm III
in three steps. In Section IV-A, we analyze the convergence
of the policy of the follower for a given leader policy. With
that result, we show in Section IV-B that the best response
function is Lipschitz in the leader policy. Finally, we analyze
the convergence of the leader policy in Section IV-C. For ease
of presentation, all proofs are provided in the Appendix.

A. Inner Loop Error Analysis

Within the inner loop, the policy ⇡✓l of the leader is fixed
and the follower policy is updated according to the iteration

✓
t,n+1
f

 ✓
t,n

f
+�nr✓fV

�

f
(✓t

l
, ✓

t,n

f
)(µ), n = 0, · · · ,M (8)

Following [36], we can identify this iteration as a gradient
ascent update for the policy parameter ✓t,.

f
as implemented on

a fictitious averaged MDP hS,R
⇡✓t

l
f

, Af ,P
⇡✓t

l , �, ⇢i where

R
⇡✓t

l
f

(s, af) :=
X

al2Al

⇡✓
t
l
(al|s)Rf (s, al, af) (9)

P⇡✓t
l (s0|s, af) :=

X

al2Al

⇡✓
t
l
(al|s)P(s0|s, al, af). (10)

In other words, to generate this averaged MDP, we average
the rewards and the probability transition function for the
original game with respect to the current policy ✓

t

l
of the

upper level optimization problem is the standard approach in
bilevel optimization [23].

Remark 2: Note that in the absence of regularization, the
follower might have multiple best response policies to the
policy of the leader in which case the best response is a set
and hence a mapping. However, they pick the policy that is
the best for the leader. The uniqueness of best response for
the entropy regularized follower is presented in IV-A.

III. PROPOSED ALGORITHM

We utilize the soft max parameterization [1], [5], [25]
for the follower policy and a direct parameterization for
the leader policy. Specifically, the policy of the players
is determined using a parameter ✓i 2 R|S|Ai , i 2 {l, f}.
Denoting the element of ✓i, i 2 {l, f} corresponding to the
state s 2 S and the j

th action of the player ai,j 2 Ai

by ✓i(s, ai,j), the policies for the leader and the follower
are given by specifying the probabilities of taking the action
ai,j , i 2 l, f given the state s as

⇡f (af,j |s) =
e
✓i(s,af,j)

P
af,j2Af

e✓f (s,af,j)
(5)

⇡l(al,j |s) = ✓l(s, al,j) s.t.
X

j2Al

⇡l(al,j |s) = 1. (6)

Since the parameters ✓i will evolve with time in the learning
algorithm, we denote the value of the parameter at time ⌧

by ✓
⌧

i
, i 2 {l, f}. To avoid notational clutter, we use ✓i and

⇡✓i interchangeably to denote the policies of player i. Sim-
ilarly, we use Vl(✓l, ✓f) (resp. V �

f
(✓l, ✓f)) and Vl(⇡✓l ,⇡✓f)

(resp. V �

f
(⇡✓l ,⇡✓f)) interchangeably to represent the value

functions, and B(✓l) and B(⇡l) interchangeably to represent
the best response function, as a function of ✓l, ✓f .

Remark 3: As is well known [1], any stochastic policy
can be represented using either of the soft max or direct
parametrizations. It is common in bilevel optimization liter-
ature to have an unconstrained lower level problem and a
constrained upper level problem [19], [37]. The parameteri-
zations used above lead to the parameter space ✓f 2 R|S||Af |

of the follower being unconstrained while for the leader,
the parameter space ✓l 2 �(Al)|S| ⇢ R|S||Al| is a convex
constrained set. As Appendix I shows, our results can be
extended to consider softmax policy parameterization for
both the players as well.

We consider a modified version of the Stackelberg policy
gradient algorithm from [34], as given in Algorithm 1. In the
algorithm, we define P�(Al)|S|(.) to be the projection onto
the probability simplex corresponding to the leader policy, ⌘t
and �t to be step sizes, ⇢ to be the distribution of the initial
states assumed to be specified such that ⇢(s) > 0 8s 2 S ,
and r✓l V̄l(., .)(µ) (resp. r✓fV

�

f
(., .)(µ)) as the gradient of

the value function of the leader (resp. follower) with respect
to its own policy for a given policy of the follower (resp.
leader).

The algorithm consists of two loops. For simplicity, we
call the loop in counter n for updating the follower parameter
as the inner loop and the loop in counter t for updating the

Algorithm 1 Loopy Direct Stackelberg Policy Gradient
Input parameters: Step sizes ⌘t, 8t 2 {0, 1, · · ·T},
�n, 8n 2 {0, 1, · · ·M}, distribution µ of initial states with
positive support for all s 2 S .
Initialize ✓

0
l
, ✓

0,0
f

, ✓0,M
f

for t = 0...T do
✓
t+1
l
 P�(Al)|S|

�
✓
t

l
+ ⌘tr✓l V̄l(✓tl , ✓

t,M

f
)(µ)

�

if t > 0 then, initialize ✓
t,0
f

= ✓
t�1,M
f

end if
for n = 0...M do

✓
t,n+1
f

 ✓
t,n

f
+ �nr✓fV

�

f
(✓t

l
, ✓

t,n

f
)(µ)

end for
end for
Output ✓

⇤
l
= ✓

T+1
l

, ✓
⇤
f
= ✓

T,M

f

leader policy as the outer loop. We will make the following
two technical assumptions in the remainder of the paper. The
first assumption implies that the best response function is
differentiable in the parameters of the policy of the leader
while the second assumption implies that the value function
of the leader when the follower is playing their best response
is a smooth function.

Assumption 1: For all 0 < � < 1, and
8✓l, ✓f ,r2

✓f
V

�

f
(✓l, ✓f)�1 exists.

Assumption 2: The best response B(⇡l) is LB�smooth,
i.e., 9LB > 0 such that for all leader policies ⇡1 6= ⇡2, we
have

kr✓lB(⇡1)�r✓lB(⇡2)k  LB k⇡1 � ⇡2k . (7)

IV. CONVERGENCE ANALYSIS

We now present the convergence analysis of Algorithm III
in three steps. In Section IV-A, we analyze the convergence
of the policy of the follower for a given leader policy. With
that result, we show in Section IV-B that the best response
function is Lipschitz in the leader policy. Finally, we analyze
the convergence of the leader policy in Section IV-C. For ease
of presentation, all proofs are provided in the Appendix.

A. Inner Loop Error Analysis

Within the inner loop, the policy ⇡✓l of the leader is fixed
and the follower policy is updated according to the iteration

✓
t,n+1
f

 ✓
t,n

f
+�nr✓fV

�

f
(✓t

l
, ✓

t,n

f
)(µ), n = 0, · · · ,M (8)

Following [36], we can identify this iteration as a gradient
ascent update for the policy parameter ✓t,.

f
as implemented on

a fictitious averaged MDP hS,R
⇡✓t

l
f

, Af ,P
⇡✓t

l , �, ⇢i where

R
⇡✓t

l
f

(s, af) :=
X

al2Al

⇡✓
t
l
(al|s)Rf (s, al, af) (9)

P⇡✓t
l (s0|s, af) :=

X

al2Al

⇡✓
t
l
(al|s)P(s0|s, al, af). (10)

In other words, to generate this averaged MDP, we average
the rewards and the probability transition function for the
original game with respect to the current policy ✓

t

l
of the

• A two loop algorithm

Inner Loop
• Start with the policy for the follower for given policy by leader

Two player stochastic game Averaged Markov decision process

upper level optimization problem is the standard approach in
bilevel optimization [23].

Remark 2: Note that in the absence of regularization, the
follower might have multiple best response policies to the
policy of the leader in which case the best response is a set
and hence a mapping. However, they pick the policy that is
the best for the leader. The uniqueness of best response for
the entropy regularized follower is presented in IV-A.

III. PROPOSED ALGORITHM

We utilize the soft max parameterization [1], [5], [25]
for the follower policy and a direct parameterization for
the leader policy. Specifically, the policy of the players
is determined using a parameter ✓i 2 R|S|Ai , i 2 {l, f}.
Denoting the element of ✓i, i 2 {l, f} corresponding to the
state s 2 S and the j

th action of the player ai,j 2 Ai

by ✓i(s, ai,j), the policies for the leader and the follower
are given by specifying the probabilities of taking the action
ai,j , i 2 l, f given the state s as

⇡f (af,j |s) =
e
✓i(s,af,j)

P
af,j2Af

e✓f (s,af,j)
(5)

⇡l(al,j |s) = ✓l(s, al,j) s.t.
X

j2Al

⇡l(al,j |s) = 1. (6)

Since the parameters ✓i will evolve with time in the learning
algorithm, we denote the value of the parameter at time ⌧

by ✓
⌧

i
, i 2 {l, f}. To avoid notational clutter, we use ✓i and

⇡✓i interchangeably to denote the policies of player i. Sim-
ilarly, we use Vl(✓l, ✓f) (resp. V �

f
(✓l, ✓f)) and Vl(⇡✓l ,⇡✓f)

(resp. V �

f
(⇡✓l ,⇡✓f)) interchangeably to represent the value

functions, and B(✓l) and B(⇡l) interchangeably to represent
the best response function, as a function of ✓l, ✓f .

Remark 3: As is well known [1], any stochastic policy
can be represented using either of the soft max or direct
parametrizations. It is common in bilevel optimization liter-
ature to have an unconstrained lower level problem and a
constrained upper level problem [19], [37]. The parameteri-
zations used above lead to the parameter space ✓f 2 R|S||Af |

of the follower being unconstrained while for the leader,
the parameter space ✓l 2 �(Al)|S| ⇢ R|S||Al| is a convex
constrained set. As Appendix I shows, our results can be
extended to consider softmax policy parameterization for
both the players as well.

We consider a modified version of the Stackelberg policy
gradient algorithm from [34], as given in Algorithm 1. In the
algorithm, we define P�(Al)|S|(.) to be the projection onto
the probability simplex corresponding to the leader policy, ⌘t
and �t to be step sizes, ⇢ to be the distribution of the initial
states assumed to be specified such that ⇢(s) > 0 8s 2 S ,
and r✓l V̄l(., .)(µ) (resp. r✓fV

�

f
(., .)(µ)) as the gradient of

the value function of the leader (resp. follower) with respect
to its own policy for a given policy of the follower (resp.
leader).

The algorithm consists of two loops. For simplicity, we
call the loop in counter n for updating the follower parameter
as the inner loop and the loop in counter t for updating the

Algorithm 1 Loopy Direct Stackelberg Policy Gradient
Input parameters: Step sizes ⌘t, 8t 2 {0, 1, · · ·T},
�n, 8n 2 {0, 1, · · ·M}, distribution µ of initial states with
positive support for all s 2 S .
Initialize ✓

0
l
, ✓

0,0
f

, ✓0,M
f

for t = 0...T do
✓
t+1
l
 P�(Al)|S|

�
✓
t

l
+ ⌘tr✓l V̄l(✓tl , ✓

t,M

f
)(µ)

�

if t > 0 then, initialize ✓
t,0
f

= ✓
t�1,M
f

end if
for n = 0...M do

✓
t,n+1
f

 ✓
t,n

f
+ �nr✓fV

�

f
(✓t

l
, ✓

t,n

f
)(µ)

end for
end for
Output ✓

⇤
l
= ✓

T+1
l

, ✓
⇤
f
= ✓

T,M

f

leader policy as the outer loop. We will make the following
two technical assumptions in the remainder of the paper. The
first assumption implies that the best response function is
differentiable in the parameters of the policy of the leader
while the second assumption implies that the value function
of the leader when the follower is playing their best response
is a smooth function.

Assumption 1: For all 0 < � < 1, and
8✓l, ✓f ,r2

✓f
V

�

f
(✓l, ✓f)�1 exists.

Assumption 2: The best response B(⇡l) is LB�smooth,
i.e., 9LB > 0 such that for all leader policies ⇡1 6= ⇡2, we
have

kr✓lB(⇡1)�r✓lB(⇡2)k  LB k⇡1 � ⇡2k . (7)

IV. CONVERGENCE ANALYSIS

We now present the convergence analysis of Algorithm III
in three steps. In Section IV-A, we analyze the convergence
of the policy of the follower for a given leader policy. With
that result, we show in Section IV-B that the best response
function is Lipschitz in the leader policy. Finally, we analyze
the convergence of the leader policy in Section IV-C. For ease
of presentation, all proofs are provided in the Appendix.

A. Inner Loop Error Analysis

Within the inner loop, the policy ⇡✓l of the leader is fixed
and the follower policy is updated according to the iteration

✓
t,n+1
f

 ✓
t,n

f
+�nr✓fV

�

f
(✓t

l
, ✓

t,n

f
)(µ), n = 0, · · · ,M (8)

Following [36], we can identify this iteration as a gradient
ascent update for the policy parameter ✓t,.

f
as implemented on

a fictitious averaged MDP hS,R
⇡✓t

l
f

, Af ,P
⇡✓t

l , �, ⇢i where

R
⇡✓t

l
f

(s, af) :=
X

al2Al

⇡✓
t
l
(al|s)Rf (s, al, af) (9)

P⇡✓t
l (s0|s, af) :=

X

al2Al

⇡✓
t
l
(al|s)P(s0|s, al, af). (10)

In other words, to generate this averaged MDP, we average
the rewards and the probability transition function for the
original game with respect to the current policy ✓

t

l
of the

Best Response for the Follower
• Gradient ascent for an MDP has been studied (Agarwal et al. 2019)

• The optimal response (best response) exists and is unique (Geist et al 2019)

• The gradient algorithm converges asymptotically to this optimal policy (Mei et al
2020)

• The gradient of the value function satisfies non-uniform Lozasiewicz condition

∂Vλ
f (πθt

l
, πθt,n

f
)(μ)

∂θt,n
f

2

≥ L(θt
l , θt,n

f)[Vλ
f (πθt

l
, π⋆

θt
f
)(ρ) − Vλ

f (πθt
l
, πθt,n

f
)(ρ)]

1
2

• The value function satisfies Reverse Lozasiewicz condition

∂Vλ
f (πθt

l
, πθt,n

f
)(ρ)

∂θt,n
f

2

≤ Δ . [Vλ
f (πθt

l
, π⋆

θt,n
f

)(ρ) − Vλ
f (πθt

l
, πθt,n

f
)(ρ)] .

Best Response for the Follower
• Gradient ascent for an MDP has been studied (Agarwal et al. 2019)

• The optimal response (best response) exists and is unique (Geist et al 2019)

• The gradient algorithm converges asymptotically to this optimal policy (Mei et al
2020)

• At the end of M iterations of the inner loop with a constant step size

θt,M
f − B(πθt

l
) ≤ χ . Δ . f(M, πθt

l
, θt,0

f , β),

f(M, πθt
l
, θt,0

f , β) = β
∞

∑
i=M

exp[− K(πθt
l
, θt,0

f , β)(i − 1)]

Positive and decreasing in M

• The best response function is c-Lipshcitz in leader’s policy where

c = λ |S | |Af | . Δ⋆

B(π1
l) − B(π2

l)
TV

≤ λ |S | |Af | . Δ⋆ π1
l − π2

l ∞

Policy of the Leader

• At the end of T iterates of the outer loop, Leader’s policy satisfies

min
t∈[T]

∇ ̂Vl(πt
θl
, πM

θf
) ≤ (

̂Vopt
l − ̂Vl(π0

l)

η2(1
η −

L ̂Vl

2)(T + 1)
+

𝒢(T, M, π0
θl
, π0

θf
, η, β)

(T + 1))
1
2

𝒢(T, M, π0
l , π0

θf
, η, β) = (ηL ̂Vl

χ . Δ)2
T

∑
t=0

f 2(M, πt
θl
, π0

θf
, β)

decreasing in M and increasing in T

• Provable convergence to a stationary point for the leader and an optimal best
response for the follower

• We also provide a finite sample analysis of the algorithm

• The algorithm does not require two time scales

Das and Gupta, TAC (Submitted)

Unknown Agent Types
• So far, we had action asymmetry but no information asymmetry

• Consider the agent to have knowledge of an MDP that it acts on, but the
principal to know neither the MDP nor the rewards of the agent with the timeline

II. PRELIMINARIES AND PROBLEM DESCRIPTION

A. Preliminaries

An MDP is a tuple M = {S, s0,A, P,R} where S is the
finite set of states, s0 2 S is the initial state, A is the finite
set of actions, and R : S ⇥ A ! R is the reward function.
Let A(s) denote the set of actions available in state s. Then,
P : S ⇥ A(s) ⇥ S ! [0, 1] is a transition function, i.e., on
taking action a 2 A in state s 2 S , the next state follows a
distribution p(·|s, a).

A policy ⇡ : S ! A is a function that determines an
action based on the state s 2 S . We now define the diameter
of an MDP.

Definition 1 (Diameter): Consider a Markov chain in-
duced by a policy ⇡ on MDP M and let T (s0|M,⇡, s) be
a random variable that denotes the first time step state s0 is
reached from state s. Then, the diameter of M is defined as

D(M) = max
s0 6=s

min
⇡

E[T (s0|M,⇡, s)].

Let st and at denote the state and action taken by the
agent at time t, respectively. Further, let rt be the reward
received by the agent at time t with mean r̄(st, at). Then,
the average reward obtained from policy ⇡ for MDP M is
defined as ⇢(M,⇡, s0) := limT!1

1
T E

PT
t=1 rt.

Let U denote a learning algorithm which always selects
action according to a stationary policy ⇡ : S ! A. Then,
⇢(M,U , s0) = ⇢(M,⇡, s0). Further, for MDPs with finite
diameter, the optimal average reward ⇢⇤(M) is independent
of the initial state and can be maximized by an appropriate
optimal policy ⇡⇤, i.e., ⇢⇤(M) := max⇡ ⇢(M,⇡, s) [16].
Finally, the optimal average reward satisfies

⇢⇤(M) + b(s) = r̄(s, a) +
X

s0

p(s0|s, a⇤)b(s0) 8s 2 S, (1)

where a⇤ = ⇡⇤(s) and b(s) is the bias of state s [16].
Next, we will review some classical results that will be

instrumental in analyzing our algorithm followed by the
problem description.

Lemma 2.1 (Theorem 2.1 in [17]): Let Xl :=
X1, X2, . . . , Xl be independent and identically distributed
random variables according to some probability distribution
P over the set {1, . . . , n}. Further, let P̂Xl denote the
empirical distribution of P . Then, for all � > 0,

P{||P � P̂Xl ||1 � �}  (2n � 2) exp(� l�2

2).

Lemma 2.2 (Remark 8 in [18]): The span of the bias b(s)
of the optimal policy ⇡ for any MDP M is upper bounded
by its diameter. Mathematically,

sp(b) := max
s

b(s)�min
s

b(s)  D(M).

B. Problem Description

We consider a principal-agent model in which the principal
aims to influence the actions of the agent through provision
of incentives. The agent is modeled as an MDP M with
a finite state space S and finite action space A. For ease

Fig. 1: Illustration of the sequence of events in one time step.
The principal first offers the set of incentives it(st) and then
the agent selects action at. The agent and the principal then
receives it(st, at) + rAt (st, at) and rPt (st, at), respectively.

of understanding, we assume that A = {0, 1}1 and that
A(s) = A 8s 2 S . At each time t, the agent takes an action
at 2 A and receives a fixed reward rAt (st, at) 2 RA, where
RA denotes a finite set of real numbers. Then, the state st
transitions to a new state st+1 according to the transition
probability p(st+1|at, st). We model the rewards received
by the agent as rAt (st, at) := atf(st), where f(st) denotes
a function of the state. Further, following the long line of
work starting with [18], we make the standard assumption
that M has a finite diameter.

The state and action of the agent determines the rewards
received by the principal. In particular, at each time t, the
principal receives a fixed reward rPt (st, at). To influence
the action selected by the agent, the principal offers a set
of incentives it(st) := {it(st, a), 8a 2 A}, where it(st, a)
denotes an incentive offered by the principal to the agent to
select action a 2 A. After time T , the accumulated reward
of the principal is

PT
t=0(r

P
t (st, at)�it(st, at)). We say that,

at time t, the principal prefers the agent to take action at if,
for every a0 2 A and a0 6= at, it(st, at) � it(st, a0) holds.
Figure 1 illustrates the sequence of events in one time step.

In this work, we consider a myopic agent that, given the
incentives it(st, a), 8a 2 A, selects an action that maximizes
its reward for the current time step. Formally,

at(it) := argmax
a2A

(rAt (st, a) + it(st, a)).

Let apref
t denote the action that the principal prefers at time

t. Then, the agent selects action at = apref
t , if the following

condition holds 8a 2 A:

rAt (st, a
pref
t) + it(st, a

pref
t) � rAt (st, a) + it(st, a). (2)

The principal does not know f(st) (and consequently the
rewards rAt (st, at)) and the transition probabilities of the
agent. However, the principal has the information of the
current state st of the agent, the actions taken by the agent
before time t, and RA. Further, at each time t, the principal
obtains an observation rAobs

t (st, at) of rAt (st, at) according
to some distribution with mean rAt (st, at).

Since the principal does not know the agent’s reward and
the transition matrix, the principal faces the exploration-
exploitation trade off. At each time t, a learning algorithm
U decides the next admissible set of incentives that must
be offered by the principal to the agent. To evaluate the

1The bound on the regret does not change for a general finite A

• The principal offers a set of incentives

it(st) := {it(st, a), ∀a ∈ 𝒜}

and accumulates reward over time T
T

∑
t=0

(rP
t (st, at) − it(st, at))

• The agent chooses an action

at(it) := argmaxa∈𝒜(rA
t (st, a) + it(st, a))

Principal Regret
• The principal does not know MDP or the reward function of the agent, but

receives a noisy unbiased observation of the agent reward

• Regret for the principal

• Can we achieve a sublinear regret?

Δ(ℳ, 𝒰, s0, T) = Tρ*(ℳ) −
T

∑
t=0

(rP
t (st, at) − it(st, at))

• Related works: Only one action chosen in a static environment (Ratliff and Fiez
2020, Gao et al 2022, Dogan et al 2023) or assume MDP known (Plambeck and
Zenios 2000)

Proposed Algorithm
Algorithm 1: Incentivized-UCRL2

1 for each epoch k � 1 do

2 Set tk = t.
3 for all (s, a) 2 S ⇥A do

4 Compute nk(s, a), ˆ̄rAk (s, a) and p̂k(s0|s, a).
5 Set ⌫k(s, a) = 0.
6 end

7 ⇡k = INCENTIVIZED EXTENDED VALUE
ITERATION(p̂k(s0|s, a), ˆ̄rAk (s, a), d1(s, a),

1p
tk

)
8 while ⌫k(s, a) < max{1, nk(s, a)} do

9 Determine action apref
t = ⇡k(st).

10 Offer it(st).
11 Obtain reward rPt and observe at and st+1.
12 Give it(st, at) 2 it(st).
13 Set ⌫k(s, a) = ⌫k(s, a) + 1.
14 end

15 end

performance of the learning algorithm, we define the regret
of an algorithm U after T time steps as follows:

�(M,U , s0, T) = T⇢⇤(M)�
TX

t=0

(rPt (st, at)� it(st, at)).

(3)
The aim of this work is to design an online algorithm for

the principal that provably guarantees sublinear regret as a
function of the time horizon. A key challenege here is that
to achieve sublinear regret, our algorithm must accurately
determine the incentive that must be offered to the agent at
every time step.

Let I denote the set of all possible incentives that the
principal can offer to the agent. Then, for well posedness
of the problem, we assume that RA ✓ I, meaning that for
any state-action pair and at any time t, the reward rAt (s, a)
received by the agent is at most the maximum incentive
that the principal can offer. Further, for ease of exposition,
we assume that rAt (st, at) 2 [0, 1] and it(s, a) 2 [0, 1] for
all (s, a) 2 S ⇥ A. Finally, to reduce notation overload,
we will omit the dependence on M,U , s0, and T from
�(M,U , s0, T).

III. PRINCIPLE’S LEARNING FRAMEWORK

In this section, we design and analyze a learning algorithm
that yields sublinear regret bound. The algorithm, defined in
Algorithm 15 and inspired from the classic UCRL2 algorithm
[18], is summarized as follows.

A. Incentivized UCRL-2 Algorithm

Algorithm Incentivized-UCRL2 (I-UCRL2) works on the
principle of optimism under uncertainty, requires a confi-
dence parameter 0 < � < 1 as the input, and proceeds
in epochs. At the start of every epoch k � 1, I-UCRL2
determines the estimate of the mean reward ˆ̄rAk (s, a) obtained
by the agent and the estimate of the transition probability
p̂k(s0|s, a) from the observations made prior to epoch k.

Algorithm 2: Incentivized Extended Value Iteration
1 Input: p̂k(s0|s, a), r̂Ak (s, a), d(s, a), ✏ =

1p
tk

.
2 while

maxs{uj(s)�uj�1(s)}�mins{uj(s)�uj�1(s)} � ✏
do

3 Sort s01, . . . , s0S such that uj(s01) � · · · � uj(s0S).
4 Set p(s1) = min{1, p̂(s0|s1, a) + 0.5d(s1, a)}.
5 Set p(s0j) = p̂(s0j |s, a), j = 2, . . . , |S| and l = |S|.
6 while

P
s0j2S p(s0j) > 1 do

7 Set p(s0l) = max{0, 1�
P

s0j 6=s0l
p(s0j)}.

8 Set l = l � 1.
9 end

10 Set j = j + 1 and compute ĩk(s, a).
11 uj(s) =

maxa{rPt (s, a)� ĩk(s, a) +
P

s0 p(s
0)uj�1(s0)}.

12 ⇡(s) = argmaxa{r
P
t (s, a)� ĩk(s, a) +P

s0 p(s
0)uj�1(s0)}.

13 end

14 return ⇡.

Specifically, let nk(s, a) be the total number of state-action
count prior to epoch k and let c(s0, s, a) be the number of
times state s transitions to s0 on taking action a. Then,

ˆ̄rAk (s, a) :=

Pt�1
⌧=0 r

Aobs
⌧ 1s⌧=s,a⌧=a

max{1, nk(s, a)}
,

p̂k(s
0
|s, a) :=

c(s0, s, a)

max{1, nk(s, a)}
.

Algorithm I-UCRL2 then constructs a set Mk of plau-
sible MDPs that are in the neighbourhood of MDP
cM(S,A, s0, p̂k, ˆ̄rAk) such that the mean rewards r̃Ak (s, a) and
transition probabilities p̃k(·|s, a) for all MDPs in Mk satisfy

||p̃k(·|s, a)� p̂k(·|s, a)||1  d1(s, a), (4a)

|r̃Ak (s, a)� ˆ̄rAk (s, a)|  d2(s, a), (4b)

where d1(s, a) :=
q

14|S| log (2|A|tk/�)
max{1,nk(s,a)} , d2(s, a) :=

q
7 log (2|S||A|tk/�)
2max{1,nk(s,a)} , and |Z| denotes the cardinality of some

set Z.
Once the set Mk is determined, the idea is to find an

optimal policy for the optimistic MDP M̃k 2 Mk. An
optimistic MDP M̃k satisfies ⇢⇤(M̃k) = supM2Mk

⇢⇤(M).
Since determining M̃k is not trivial [18], we consider an
extended MDP M+

k constructed with the same state space S

and a continuous action space A
0, where for each action a 2

A, each admissible transition probability p̃k(·|s, a) according
to (4a), and each admissible r̃Ak (s, a) according to (4b), there
is an action in A

0 with transition probability p̃(·|(s, a)) and
mean reward r̃A(s, a). Finding M̃k 2 Mk and finding a pol-
icy ⇡̃ such that ⇢(M̃k, ⇡̃, s) = maxM 02Mk,⇡,s0 ⇢(M

0,⇡, s0),
for all initial states s, corresponds to finding an average

Find empirical
functions from
data so far

1. Generate set of
plausible MDPs

2. Find optimal
policy of
optimistic MDP
in this set

Choose incentive
for the myopic
agent

Guarantees

• The algorithm converges

• The set of plausible MDPs contains the true MDP with high probability

ℙ{ℳ ∉ M(t)} <
δ

15t6

• The regret is sublinear with high probability

Δ(ℳ, I-UCRL2,s, T) ≤ 𝒪 D |𝒮 | |𝒜 |T log (T
δ)

• Ongoing work: multiple agents

Bajaj and Gupta, L-CSS (Submitted)

What Game are We Considering?

• Markov game (with Nash equilibrium among players in response to given incentive)

• Stackelberg structure where incentive designer is the leader

Learning Algorithms for NE

• Consider a stochastic game

⟨𝒩, 𝒮, (𝒜i)i∈𝒩, 𝒫, (ℛi)i∈𝒩,, γ, ρ⟩

where the agents want to maximize their expected value function

Vπ
i (ρ) = 𝔼s∼ρ[𝔼𝒯[

∞

∑
t=0

γtℛi(st, at
i , at

−i) |s0 = s, π−i]]
• Policies at NE satisfy

Vπ*i ,π*−i
i (ρ) ≥ Vπi,π*−i

i (ρ), ∀πi ∈ 𝒮Δ(𝒜i), ∀i ∈ 𝒩

• Even for static games, Milionis et al 2023 proved that there exists games where
any dynamical policy update process that admits a continuous flow will not
converge to the set of Nash equilibria for some initial conditions.

• For stochastic cases, some convergence results available for special structures
(e.g. zero-sum games (Daskalis et al 2020, Sayin et al 2022), identical interest
Markov games (Sayin et al 2022), Markov potential games (Mahewshwari et al
2022, Leonardos et al 2021, Fox et al 2022)

Quantal Response Equilibrium

• Consider again the entropy regularized version of the cost

Vπ
τ,i := Vπ

i + τℋi(ρ, π)

with the infinite horizon discounted entropy

ℋi(ρ, π) := 𝔼s0∈ρ,at∼π(.|st),st+1∼𝒫(.|st,at),t≥0[
∞

∑
t=0

− γt log πi(at
i |s)]

• Leads to Quantal Response Equilibrium

• Our contribution: The first algorithm to provably converge to QRE.

Vπ*i ,π*−i
τ,i (ρ) ≥ Vπi,π*−i

τ,i (ρ), ∀πi ∈ 𝒮Δ(𝒜i), ∀i ∈ 𝒩 .

Natural Policy Gradient

• For a single agent MDP, the NPG update rule for a parametrized policy is

θt+1 ← θt + η′￼(ℱθ
ρ)† ∇θVπθ

τ (ρ)
with the Fischer information matrix

ℱθ
ρ := 𝔼s∼dπθ

ρ ,a∼πθ(.|s)[(∇θlog πθ(a |s))(∇θlog πθ(a |s))T]
• Known to converge

∥Q⋆
τ − Qt+1

τ ∥∞ ≤ C1γ(1 − (1 − γ)η′￼τ)n, ∀n ≥ 0

if learning rate chosen as 0 < η′￼ ≤
(1 − γ)

τ

• In a game, each agent has to implement this algorithm, but that requires
estimating Q values

Proposed Algorithm

arXiv Template A Preprint

where Q⇡
t

⌧ is the soft Q� function of policy ⇡
(t) and Z

t(s) is the normalization factor in the policy space. An

alternate version of the 30 is given by setting a new learning rate ⌘ = ⌘
0

1��

⇡
(t+1)(a|s) =

1
Z (t)(s)

(⇡(t)(a|s))(1�⌘⌧) exp

⌘Q

⇡
t

⌧ (s,a)
!

(31)

which is often known as Q� NPG.

Convergence of Natural Policy Gradient In this section, we state a known result by Cen et al. [2022] on
the convergence rate of Natural Policy Gradient for entropy regularized MDP.

Consider the NPG following update rule:

⇡
(t+1)(a|s) =

1
Z (t)(s)

(⇡(t)(a|s))(1�⌘
0
⌧) exp

⌘
0

Q
⇡
t

⌧ (s,a)
!

(32)

Theorem 3.1 For any learning rate 0 < ⌘
0


(1��)
⌧

, the entropy-regularized NPG updates satisfy
���Q⇤⌧ �Qt+1

⌧

���
1
 C1�(1� (1��)⌘

0

⌧)n,8n � 0, (33)

where C1 := (1+⌧ logA1��) + 2⌧(1� ⌘⌧)
���log⇡⇤⌧ � log⇡(0)

���
1

The above theorem 3.1 will be crucial in the analysis of Algorithm 3.

Remark 1 In the rest of the paper, we will define our algorithm and provide convergence guarantees in the policy
space and not in the soft-max parameter space as defined in section 2.1. This will ease our analysis and allow us to
directly use known results on the convergence guarantees of Natural Policy gradient Cen et al. [2022].

Motivated by the works of Sun et al. [2024], Agarwal et al. [2021], Cen et al. [2022], we now present our
algorithm and it’s three variants

3.1 Algorithm 1: Best response independent Natural Policy Update

Algorithm 1 Best response independent Natural Policy Update

Input:Parameter d, learning rate ⌘, initialization joint policy ⇡
0

for t = 0,1,2, · · · do
Compute the optimal regularized Q-function Q

⇡
t

i
⇤,⇡

t

�i

⌧,i
(⇡t

i
,⇡

t

�i
) for every player i.

Update the policy:

8i 2N ,8(s,a) 2 S ⇥Ai :⇡
(t+1)
i

(a|s) =
1

Z
(t)
i
(s)

(⇡(t)
i
(a|s))(1�⌘⌧)

d

exp

⌘Q

⇡
t

i
⇤,⇡

t

�i

⌧,i
(s,a)

!
(34)

where Z (t)
i
(s) =

X

a
0
2Ai

exp

⌘Q

⇡
t

i
⇤,⇡

t

�i

⌧,i
(s,a

0

)
!

(35)

end for

3.2 Algorithm 2: Approximate best response independent Natural Policy Update

In many scenarios the optimal soft Q-values for each agent are only available approximately. To account for
inexactness of best response Q-value evaluation, we extend our theory and algorithm to accommodate the
following approximate update rule:

Let Q
⇡
Mt

i
,⇡

t

�i

⌧,i
(s,a) be an approximation for the optimal Q-value Q

⇡
t

i
⇤,⇡

t

�i

⌧,i
(s,a) of best response of player i to

⇡
t

�i
. Using this approximate Q-value, we present a variant of algorithm 1 in 3.1.

7

• If agents have access to the correct Q-functions, can prove that the policy
converges to an equilibrium

QRE − gap(π) = max
i∈𝒩

∥Bτ
i (π−i) − πi∥∞

≤ 2((1 − ητ)d + 2ηC−(τ) ∑
i∈𝒩

|𝒜i |)
t

QRE − gap(π0)

Proposed Algorithm

arXiv Template A Preprint

where Q⇡
t

⌧ is the soft Q� function of policy ⇡
(t) and Z

t(s) is the normalization factor in the policy space. An

alternate version of the 30 is given by setting a new learning rate ⌘ = ⌘
0

1��

⇡
(t+1)(a|s) =

1
Z (t)(s)

(⇡(t)(a|s))(1�⌘⌧) exp

⌘Q

⇡
t

⌧ (s,a)
!

(31)

which is often known as Q� NPG.

Convergence of Natural Policy Gradient In this section, we state a known result by Cen et al. [2022] on
the convergence rate of Natural Policy Gradient for entropy regularized MDP.

Consider the NPG following update rule:

⇡
(t+1)(a|s) =

1
Z (t)(s)

(⇡(t)(a|s))(1�⌘
0
⌧) exp

⌘
0

Q
⇡
t

⌧ (s,a)
!

(32)

Theorem 3.1 For any learning rate 0 < ⌘
0


(1��)
⌧

, the entropy-regularized NPG updates satisfy
���Q⇤⌧ �Qt+1

⌧

���
1
 C1�(1� (1��)⌘

0

⌧)n,8n � 0, (33)

where C1 := (1+⌧ logA1��) + 2⌧(1� ⌘⌧)
���log⇡⇤⌧ � log⇡(0)

���
1

The above theorem 3.1 will be crucial in the analysis of Algorithm 3.

Remark 1 In the rest of the paper, we will define our algorithm and provide convergence guarantees in the policy
space and not in the soft-max parameter space as defined in section 2.1. This will ease our analysis and allow us to
directly use known results on the convergence guarantees of Natural Policy gradient Cen et al. [2022].

Motivated by the works of Sun et al. [2024], Agarwal et al. [2021], Cen et al. [2022], we now present our
algorithm and it’s three variants

3.1 Algorithm 1: Best response independent Natural Policy Update

Algorithm 1 Best response independent Natural Policy Update

Input:Parameter d, learning rate ⌘, initialization joint policy ⇡
0

for t = 0,1,2, · · · do
Compute the optimal regularized Q-function Q

⇡
t

i
⇤,⇡

t

�i

⌧,i
(⇡t

i
,⇡

t

�i
) for every player i.

Update the policy:

8i 2N ,8(s,a) 2 S ⇥Ai :⇡
(t+1)
i

(a|s) =
1

Z
(t)
i
(s)

(⇡(t)
i
(a|s))(1�⌘⌧)

d

exp

⌘Q

⇡
t

i
⇤,⇡

t

�i

⌧,i
(s,a)

!
(34)

where Z (t)
i
(s) =

X

a
0
2Ai

exp

⌘Q

⇡
t

i
⇤,⇡

t

�i

⌧,i
(s,a

0

)
!

(35)

end for

3.2 Algorithm 2: Approximate best response independent Natural Policy Update

In many scenarios the optimal soft Q-values for each agent are only available approximately. To account for
inexactness of best response Q-value evaluation, we extend our theory and algorithm to accommodate the
following approximate update rule:

Let Q
⇡
Mt

i
,⇡

t

�i

⌧,i
(s,a) be an approximation for the optimal Q-value Q

⇡
t

i
⇤,⇡

t

�i

⌧,i
(s,a) of best response of player i to

⇡
t

�i
. Using this approximate Q-value, we present a variant of algorithm 1 in 3.1.

7

• If agents have access to the correct Q-functions, can prove that the policy
converges to an equilibrium

QRE − gap(π) = max
i∈𝒩

∥Bτ
i (π−i) − πi∥∞

≤ 2((1 − ητ)d + 2ηC−(τ) ∑
i∈𝒩

|𝒜i |)
t

QRE − gap(π0) + 2
ϕ(η, τ)δ

(1 − (1 − ητ)d − 2ηC−(τ)∑i∈𝒩 |𝒜i |)

approximate QπMt
i ,πt

−i
τ,i

QπMt
i ,πt

−i
τ,i

QπMt
i ,πt

−i
τ,i

Main Result

arXiv Template A Preprint

Algorithm 2 Approximate Best response independent Natural Policy Update

Input:Parameter d, learning rate ⌘, initialization joint policy ⇡
0

for t = 0,1,2, · · · do

Q
⇡
Mt

i
,⇡

t

�i

⌧,i
(⇡t

i
,⇡

t

�i
) is a �i approximation of Q

⇡
t

i
⇤,⇡

t

�i

⌧,i
(⇡t

i
,⇡

t

�i
) for every player i.

Update the policy:

8i 2N ,8(s,a) 2 S ⇥Ai :⇡
(t+1)
i

(a|s) =
1

Z
(t)
i
(s)

(⇡(t)
i
(a|s))(1�⌘⌧)

d

exp

⌘Q

⇡
Mt

i
,⇡

t

�i

⌧,i
(s,a)

!
(36)

where Z (t)
i
(s) =

X

a
0
2Ai

exp

⌘Q

⇡
Mt

i
,⇡

t

�i

⌧,i
(s,a

0

)
!

(37)

end for

3.3 Algorithm 3: Best response independent Natural Policy Update with inner loop Natural Policy

Gradient

In our third algorithm, we combine Natural Policy Gradient (NPG) to obtain an approximation for the best
response Q-value. This results in a two timescale algorithm. In the inner loop, the agents perform Natural
policy gradient while in the outer loop, they update according to the same update rule as in algorithm 2 in
3.2.

Algorithm 3 Best response independent Natural Policy Update with inner loop Natural Policy Gradient

Input:Parameter d, learning rate ⌘,⌘
0

, initialization joint policy ⇡
0

for t = 0,1,2, · · · do
Initialize 8i 2N , ⇡̂

0
i
= ⇡

t

i

for nt = 0,1,2, · · ·M do

do Natural Policy Gradient for each agent

8i 2N :⇡̂(nt+1)
i

(a|s) =
1

Z
(nt)
i

(s)
(⇡̂(nt)

i
(a|s))(1�⌘

0
⌧) exp

⌘
0

Q
⇡̂
nt

i
,⇡

t

�i

⌧,i
(s,a)

!
(38)

8i 2N :return Q-value associated with joint policy (⇡̂Mt

i
,⇡

t

�i
) (Say Q

⇡
Mt

i
,⇡

t

�i

⌧,i
(s,a)) . (39)

end for

Update the policy:

8i 2N ,8(s,a) 2 S ⇥Ai :⇡
(t+1)
i

(a|s) =
1

Z
(t)
i
(s)

(⇡(t)
i
(a|s))(1�⌘⌧)

d

exp

⌘Q

⇡
Mt

i
,⇡

t

�i

⌧,i
(s,a)

!
(40)

where Z (t)
i
(s) =

X

a
0
2Ai

exp

⌘Q

⇡
Mt

i
,⇡

t

�i

⌧,i
(s,a

0

)
!

(41)

end for

Remark 2 In the above algorithms, for each agent to update their policy independently, they needs to compute
their best response. To compute the best response for each agent i, they requires the knowledge of the averaged
MDP hS ,Ai ,P

⇡�i ,R
⇡�i

i
,� ,⇢i. So, after every joint update of the policies, the averaged MDP is made available to

player i or the policy ⇡�i is made available which along with the original game hN ,S , (Ai)i2N ,P ,Ri ,� ,⇢i allows
the computation for the averaged MDP for player i. The agents do not require the knowledge of other agent’s reward
functions or their individual policies (⇡i)i2N to update their own policies. This away agent’s reward function and
policy remain private information.

8

• Two timescale algorithm (inner loop does NPG while outer loop updates policy)

Das and Gupta, ICML (Submitted)

Scalability
• The algorithms considered so far require the follower agents to know global state

and actions, which is not scalable.

• However, if inherent structure in the game, scalablility can be ensured at the cost
of some performance degradation

P(s′￼|s, a) =
n

∏
i=1

P(s′￼i |s𝒩i
, a𝒩i

)

ri : 𝒮𝒩i
× 𝒜𝒩i

→ [0,rmax]

• Players execute independent natural policy gradient based only on k-hop
neighbors

θt+1
i,s𝒩κ

i
,ai

= θt
i,s𝒩κ

i
,ai

+
η

1 − γ
A

πθi,κ
i (s𝒩κ

i
, a𝒩κ

i
)

• Theorem: The modified independent natural policy gradient algorithm converges to
an -equilibrium policy where

ϵ =
rmax

1 − γ
γκ+1 .

ϵ

Scalability

ϵ• Job balancing example with 30 agents and reward based on deviation from
average load

ri(s𝒩κ
i
, a𝒩κ

i
) =

1

si − 1
|𝒩κ

i | ∑j∈𝒩κ
i

sj

if si ≠ 1
|𝒩κ

i |
∑j∈𝒩κ

i
sj

1 if si = 1
|𝒩κ

i |
∑j∈𝒩κ

i
sj

Abdelnaby and Gupta, L-CSS (Submitted)

Conclusion

• Incentive / contract / mechanism / auction design (including sequential
incentives) has a long history

• Complexity of optimal contract design

• In general, computationally complex

• Design of strategies for participants in resulting Markov Stackelberg games

• Learning algorithms for Markov Stackelberg games with or without
model known to principal

• Learning algorithms for Nash equilibrium in Markov games

• Scalable algorithms

• Encoding objectives such as stability or robustness (as opposed to the system
operator being interested in social welfare)?

• Can we use such methods for coordinating behavior in dynamic systems?

gupta869@purdue.edu

mailto:gupta869@purdue.edu

