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Problem Considered

® |ncentive / contract / mechanism / auction design (including sequential
iIncentives) has a long history
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® Can we use such methods for coordinating behavior in dynamic systems?

e Complexity of optimal contract design
® Design of strategies for participants in resulting Markov Stackelberg games

® Encoding objectives such as stability or robustness (as opposed to the system
operator being interested in social welfare)?



Complexity of Sequential Incentive Design

Consider an agent whose behavior is modeled as an MDP with a reward function as
a function of a (possibly hidden) type:

Ryg: XA =R

The principal knows the reward function for each type, but not the true type.
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Problem Considered

For an MDP ./, a set B of target states, and a set ® of possible agent types, synthesize

an incentive sequence I € Z(.Z) that leads the agent 0™ to a target state with maximum
probability at minimum expected cost, i.e.,

min max E” Z ol,A)|0

__.yET (M) 0O
. .A“’— - B
Incentive policy subject to: 7* = (d,, d>, ds, ...)
Vie N,Vs € S, d(s) € argmax [9?9*(& a) + oL, a)]
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Pr /%(Reach[B]) = max Pr /%(Reach[B]).
neEll(A) K
>
Desuwred final state

® Myopic agent (could be relaxed to lookout over finitely many steps)

® Principal knows the MDP



Complexity Results

Problem Complexity Globally optimal solution
Behavior modification (BMP) PSPACE-hard —
Non-adaptive behavior modification (N-BMP) NP-complete MILP
Non-adaptive single-action behavior modification (NS-BMP) NP-complete MILP
Behavior modification of a dominant type (BMP-D) P LP

® The problem can be relaxed to finding approximately optimal solutions
® Feasible solutions can be constructed in a time polynomial in the size of the MDP

® Proof follows reduction of PSPACE-complete quantified satisfiability problem
(QSAT) to BMP (similar to reduction of QSAT to POMDP optimal control problems)

® Motivates looking at learning-based solutions to the problem

Savas, Topcu, Gupta, TAC 2024



Agents Controlling a Dynamical System

® More generally, we can consider the case when both principal and agent can
affect the state of the system directly
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Still a Markov Stackelberg Game

® Stackelberg structure where incentive designer is the leader

Leader
announces

policy before
game starts

® Markov game (with Nash equilibrium among players in response to given incentive)
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Learning in a Stochastic Stackelberg Game

® |ncentive design seeks to change the utility of an agent to elicit a desired

Leader
(Principal)

response

Reward / tax
Follower
(Agent)

Actions to optimize resulting utility functions

® Only recently have learning algorithms been identified even in a repeated static
game setting (Fiez et al 2020)

® For stochastic setting, algorithms known only for special cases (follower plays
deterministic strategy (Vorobeychik and Singh 2012), linear Markov games
(Zhong et al 2021), zero-sum games (Goktas et al 2022, Metz et al 2016) ...)



Value Functions

Value Functions:

‘7l(77l777f)(3) = [y Z’YTRZ(STMZT,CL})!SO =3
- 17=0 -

Vi(m,me)(s) = ET{ZVRJC(ST,@M;);SO = s]
7=0

Discounted entropy regularization

ET[Z —~7 logmy|s® = s, Wl]

7=0

® \Widely used in MDPs and games (Haarnoja et al 2018, Schulman et al 2017,
Mei et al 2020, Meritokopoulos and Sandholm 2016, Sun et al 2024, Aggarwal et
al 2024, ...) due to many conceptual and numerical advantages



Sources of Difficulty

Identify
Outer loop 71'{ € arg max Vl (Tl'l) = Vl (71'1, B(ﬂl))
s

where

e A = () VA () () 2 V7 (m, mp ) ()}

Best response of follower

The leader and follower problems are linked through the best response mapping.

The non-smoothness and non-uniqueness of the best response mapping leads to
discontinuity in the landscape of value function at the leader.

Each level may consist of different classes of optimization problems.

Our contribution: We provide the first model free learning algorithm that provably
converges to a stationary point for the leader and an optimal best response for the
follower



Proposed Algorithm

® Parametrize follower policy as softmax and leader policy as direct (softmax also
possible)

=
7Tf af,- S) = .
4 Zaf,jE.Af eef(s,af’J)
mi(ajls) = 0i(s,a;) st. Y mlayls) =1
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® Atwo loop algorithm

Algorithm 1 Loopy Direct Stackelberg Policy Gradient

Input parameters: Step sizes n:,Vt € {0,1,---T},
Bn,¥n € {0,1,--- M}, distribution y of initial states with
positive support for all s € S.

Initialize 07, (9(}’0, 9?@’M

for t =0...T do
07— Paga,yisi (0F + mvel%(@f,f}’M)(u))
if ¢ > 0 then, initialize 67" = 65"
end if

for n =0...M do
0L 02" + BV, VP (6], 07™) (1)
end for
end for

Output 0f = 0/ ,0% =6,



Inner Loop

® Start with the policy for the follower for given policy by leader

Environment Environment
Fix leader policy

Action » State Action
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Best Response for the Follower

Gradient ascent for an MDP has been studied (Agarwal et al. 2019)

The optimal response (best response) exists and is unique (Geist et al 2019)

The gradient algorithm converges asymptotically to this optimal policy (Mei et al

2020)

The gradient of the value function satisfies non-uniform Lozasiewicz condition
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Best Response for the Follower

® Gradient ascent for an MDP has been studied (Agarwal et al. 2019)
® The optimal response (best response) exists and is unique (Geist et al 2019)

® The gradient algorithm converges asymptotically to this optimal policy (Mei et al
2020)

® At the end of M iterations of the inner loop with a constant step size

H ef,M_B(ﬂ-@f) H S)(A f(Ma ﬂ@fa 9;’0315)9

fM. 74, 6,°. ) = B )" exp| — K(my 6. )i = 1)
=M

AN

Positive and decreasing in M

® The best response function is c-Lipshcitz in leader’s policy where

H B(x)) - B(x?) H EVINIVIVYRYS H xl — 2 H :



Policy of the Leader

® At the end of T iterates of the outer loop, Leader’s policy satisfies

min

— Vl(ﬂlo) ?(TaMaﬂglaﬂgarlaﬂ))%
re|T]

VVl(ﬂQZ ﬂgf) || ( LVI)(T_|_ : | T+ D

G(T. M, 2, 7.1, ) = (L1 A>22f2<M 7y, 79 B)

N\

decreasing in M and increasing in T

® Provable convergence to a stationary point for the leader and an optimal best
response for the follower

® \We also provide a finite sample analysis of the algorithm

® The algorithm does not require two time scales
Das and Gupta, TAC (Submitted)



Unknown Agent Types

® So far, we had action asymmetry but no information asymmetry

® Consider the agent to have knowledge of an MDP that it acts on, but the
principal to know neither the MDP nor the rewards of the agent with the timeline

.|. _____ —|- ————— —|—> Principal offers i, (s;)

t t+1 Agent selects a;

Agent receives i (S¢, A;)

® The principal offers a set of incentives
i.(s) := {i(s,a),Va € A}

and accumulates reward over time T
T
P c
Y (s a) = i(s. a)
=0

® The agent chooses an action

a(l,) := argmax _ ﬂ(r;“(st, a) +i(s,,a))



Principal Regret

® The principal does not know MDP or the reward function of the agent, but
receives a noisy unbiased observation of the agent reward

® Regret for the principal

AM, U, 50, T) = Tp*(M) — Z (rf (5. a) — ifs, )
=0
® Can we achieve a sublinear regret?

® Related works: Only one action chosen in a static environment (Ratliff and Fiez
2020, Gao et al 2022, Dogan et al 2023) or assume MDP known (Plambeck and

Zenios 2000)



Proposed Algorithm

Algorithm 1: Incentivized-UCRL?2
1 for each epoch k > 1 do

2 Set t, = t.
3 | forall (s,a) €S x A do Find empirical
4 Compute ’I”Lk-(S, CL), 77;64(8, CL) and ]3]{;(8/‘8, CL). > functions from
5 o) = 0. data so far
6 end
7 . = INCENTIVIZED EXTENDED VALUE
ITERATION(py (8’|, a), i (s, a), d1 (s, a), Lt) - 1. Gene_rate sehol
. Vir plausible MDPs
8 while v4(s,a) < max{1,nx(s,a)} do _ :
. . pref 2. Find optimal
9 Determine action a; = 7g(st). _
10 Offer i;(s¢). pOII_Cy_ 01_:
11 Obtain reward r; observe a; and s;,1. optimistic MDP
12 Give ’it(St, (Zt) & it(St). |n thIS Set
13 Set vi(s,a) = vi(s,a) + 1.
14 end
15 end

Choose incentive
for the myopic
agent



Guarantees

The algorithm converges

The set of plausible MDPs contains the true MDP with high probability

P & M(p) < =

1516

The regret is sublinear with high probability

A, I-UCRL2,s, T) < O

Ongoing work: multiple agents
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What Game are We Considering?

® Stackelberg structure where incentive designer is the leader

Leader
announces

policy before
game starts

® Markov game (with Nash equilibrium among players in response to given incentive)
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Learning Algorithms for NE

® Consider a stochastic game
<‘/V9 CS)? (‘Q[i)ieﬂ/a @9 (%i)ie/l/,’ Vs p>

where the agents want to maximize their expected value function

o .-
‘/lﬂ(p) = [ESN,O [Eg* Z }/t‘%i(‘gt? al’ta ail’) | SO = 9, ﬂ_l’

= L l.:O A
® Policies at NE satisfy

Vi"i(p) > VEi(p), YV, € SAT) Vi€ N

® Even for static games, Milionis et al 2023 proved that there exists games where
any dynamical policy update process that admits a continuous flow will not
converge to the set of Nash equilibria for some initial conditions.

® For stochastic cases, some convergence results available for special structures
(e.g. zero-sum games (Daskalis et al 2020, Sayin et al 2022), identical interest
Markov games (Sayin et al 2022), Markov potential games (Mahewshwari et al
2022, Leonardos et al 2021, Fox et al 2022)



Quantal Response Equilibrium

® Consider again the entropy regularized version of the cost
VZ. := VI + 2 (p, m)

with the infinite horizon discounted entropy

o s
%i(pa 71') = [ESOEp,aINE(.|St),S,+1~<@(.|St,at),tZO Z o }/t lOg ﬂi(ait | S)
L t:O .

® | eads to Quantal Response Equilibrium
ij i(p) > Vf"’ﬁi(p),‘v’ﬂi e SAI) Yie .

o1

® Qur contribution: The first algorithm to provably converge to QRE.



Natural Policy Gradient

® For a single agent MDP, the NPG update rule for a parametrized policy is
0,01 < 6,+n(F) VaVi(p)

with the Fischer information matrix

gg — [ESNdZH,CZNﬂg(.lS) (Vgl()g 71'9(61 | S))( V@lOg 71'9(61 | S))T

® Known to converge

10X — 0|, < Cyy(1 = (1 — Pyt ¥n > 0

. . _ 0=y
if learning rate chosenas 0 <z <

T

® In a game, each agent has to implement this algorithm, but that requires
estimating Q values



Proposed Algorithm

Algorithm 1 Best response independent Natural Policy Update

Input:Parameter d, learning rate 7, initialization joint policy 7’
t t

fort=0,1,2,--- do
T %,TC

Compute the optimal regularized Q-function Q ;" ™
Update the policy:

(i, 7’ .) for every player i.

et

(nit)(als))(l—qr)d exp (WQT,li 1(5, a))

Vie N,V(s,a) e S x A; iﬂgm)(“'s) ~ 0
z(s)

t* t V4
where Z;t)(s) = Z exp(q Q,Zii "i(s,a ))
a/eAi

end for

® |f agents have access to the correct Q-functions, can prove that the policy
converges to an equilibrium

ORE — gap(n) = Qax 1B/ (7_;) — ]|

< 2((1 -y +2nC_(z) ) | oA, ) ORE — gap(n’)

ieN



Proposed Algorithm

Algorithm 1 Best response independent Natural Policy Update

Input:Parameter d, learning rate 1, initialization joint policy 7
fort=0,1,2,--- do gpproximate

Compute the regularized Q-functio 7, 1) for every player i. e
Update the policy: Qﬂi. g
/i
1 Ay
Vie N,Y(s,a) €S x A; "™ (als) = - (7" (als)) =10 exp( a7 s, a))
Q”thv”ii Z; (s)
(1) gl
where Z; '(s) = Z exp| 7 (s,a)

)
a EAZ'

end for

® |f agents have access to the correct Q-functions, can prove that the policy
converges to an equilibrium

ORE — gap(n) = Qax 1B (w_;) — ]|

< 2((1 — )¢ 4+ 2nC_(7) Z KA > ORE — gap(n®) + 2 ¢, 7)6
ieN (1 — (1 —nf)d_ZnC_(T)Ziem|ﬂi|>



Main Result

Input:Parameter d, learning rate 7,7 , initialization joint policy 7"
fort=0,1,2,--- do
Initialize Vi € N, 7%? = nf
for n,=0,1,2,---M do
do Natural Policy Gradient for each agent

1 (M 1y ’ A?t’ t—i
o, )(nﬁ” (als)) 0 eXp(fv Qi <s,a>)
) S
1

Vie N :ﬁgntﬂ)(als) =

Myt
Vi € N:return Q-value associated with joint policy (7%?42 ' .) (Say Q:”'i "Si(s,a)) .

end for
Update the policy:

Vie N,V (s,a)e S x A, :n§t+1)(a|s) =

Mp ¢ ,
where Zi(t)(s) = Z exp(nQZii "i(s,a ))

a/E.Ai

end for

® Two timescale algorithm (inner loop does NPG while outer loop updates policy)

Das and Gupta, ICML (Submitted)



Scalability

The algorithms considered so far require the follower agents to know global state
and actions, which is not scalable.

However, if inherent structure in the game, scalablility can be ensured at the cost
of some performance degradation

P(s’| s, a) —HP(S |s/,/,aﬂ/)

S/deﬂ — [0,r

max]

Players execute independent natural policy gradient based only on k-hop
neighbors

41 _ pt n
Ql S/VKCZ HiaS/l/;?aai + 1 - }/A (S'/’/';Ca a/’/f)

Theorem: The modified independent natural policy gradient algorithm converges to
an e-equilibrium policy where




Scalability

° Jotgj balancing example with 30 agents and reward based on deviation from
average load

1 |
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i~ T Ljews

F i(S/V;@ a/V;f) =
. 1
1 if 5. = . S
SNV ZJG/V%“ J
0.08
0.06
T
>
¢ 0,04
>
0.02 |
)
2!
O | | | |
0 2 4 6 8 10

Kappa Value
Abdelnaby and Gupta, L-CSS (Submitted)



Conclusion

® |ncentive / contract / mechanism / auction design (including sequential
iIncentives) has a long history

® Can we use such methods for coordinating behavior in dynamic systems?

e Complexity of optimal contract design
® |n general, computationally complex
® Design of strategies for participants in resulting Markov Stackelberg games

® | earning algorithms for Markov Stackelberg games with or without
model known to principal

® | earning algorithms for Nash equilibrium in Markov games
® Scalable algorithms

® Encoding objectives such as stability or robustness (as opposed to the system
operator being interested in social welfare)?
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