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Plan:

+ Attractors form an order-theoretic lattice.
+ This structure forms a sheaf over a parametrized family of systems.

+ Sheaf cohomology can detect bifurcation.

combinatorial and topological tools.

p: XXTH > XforT=RorZ

¢P(x,0) = xand p(x,s + 1) = Pp(¢p(x,s),t) forallx € Xand t,s > 0.



Attractors
U C Xis an attracting neighborhood if ¢p(cl U, ¢) C int(U) for all > £, > 0.

A C Xis an attractor if A = w(U) for some attracting neighborhood.

The set of all attractors Att(¢)) is a bounded, distributive lattice: N
AVA'=AUA'andAANA"= w(ANA’. (Kalies, Mischaikow, VanderVorst 2013)

w: (ANbhd(¢), U, N ) — (Att(¢), V , A ) is a surjective homomorphism.  w(U) = ) cl(¢(U, [t,0)))
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Morse decompositions

Via Birkhoff’s theorem, a finite sublattice of attractors is dual to a poset of invariant sets
called a Morse decomposition. (Kalies, Mischaikow, VanderVorst 2021)

All recurrent dynamics is contained in the Morse sets, ie. the system is gradient-like
outside of the Morse sets. The connecting orbits respect the order on the Morse sets.
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Combinatorial dynamics

« Multivalued map ~ directed graph & : P = 2MOP on a finite cell complex .

« F is an outer approximation of f: X — X on the realization X = | 2| if

fU|E]) Cint|F(&)| forall éE € X

Recurrent components: poset RC of maximal subgraphs
for which every vertex is reachable from every other vertex
and contains at least one edge

AN For an outer approximation: the (chain-) recurrent set of f
'\ is contained in the realization | Ugc R| < f is gradient-

like on | Uge R|C.




Combinatorial order theory (Kalies, Mischaikow and VanderVorst 2021)

Morse graph: MG(&) is the Hasse diagram of RC.

Attractor lattice: Att(F) is the finite, distributive lattice of downsets in X of RC.
g e At(F)iff F(A) =A.

Translation to classical dynamics: for an outer approximation & of f,

« The maximal invariant sets inside the realizations of elements in MG(%) form a
Morse decomposition for f.

« The maximal invariant sets inside the realizations of elements in Att(%) form a
finite sublattice of attractors for f.

NOTE: a multivalued map & is an outer approximation for an infinite family of maps.
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Homological dynamics and the Conley index

« Extend F: Q1P = 9P 7. = I inductively and define

« The Conley index of the pair of attractors &/, C &/, is the shift equivalence class of
F: H(d |, dy) - H(A |, A ), which is WeII deflned if H.(&) =0foral £ € 2.

 This agrees with the classical definition when & is an outer approximation.

Homological Conley Index Classical Dynamical
+ | > Systems
something Information

* Nontrivial Conley index = existence of a nonempty, isolated invariant set.

» Algebraic topology in the form of homology is sufficiently powerful to allow us to obtain many
qualitative results of interest for applications from purely combinatorial information.
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Re contains a fixed point

Rs has trivial index”

R4 contains a period-3 orbit
Rs has trivial index

R> contains an attractor with
chaotic dynamics

R1 contains a nontrivial
attractor

Multistability
Morse Decomposition
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Plan:

¥ Global dynamics has an algebraic structure.

+ Attractors form an order-theoretic lattice.
+ This structure forms a sheaf over a parametrized family of systems.
+ Sheaf cohomology can detect bifurcation.

- Efficient, applicable computational frameworks can be built from

combinatorial and topological tools.



Dynamic Signatures Generated by Regulatory Networks
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Nonlinearities?

Step

= —yz1 +7r11(x1)r12(22)

—Yox2 + 12,1 (21)r2,2(22)

Sigmoid: Hill, tanh, arctan, ...
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DSGRN creates a database of 1600
semi-algebraic sets that partition
parameter space organized in a graph
based on codimension-1 boundaries.

Viga,  ifx<bij—hi;
rij(@) = q Lij(x), 05 —hij <ax<0ij+hi
Vi 5,2, if x > 9%"]' + h@j

Vij,2 — Vij,1

Vi1t Vi
_[/ZL7 (m) — 7‘7.]71 + Zv]’Q

V11,1 = 37, V11,2 = 1.4

V1,21 = 10.7, v122 =0.1
V211 =92, 1912 =0.2
V221 =062, 1922 =14
011 =64, 012=506
021 =111, 622 =18
hi1=0.3, h12=0.35

ha1 = 0.6, hao=0.3
1=1, 1o=1

Parameter space:

(0,00)18



Plan:

Global dynamics has an algebraic structure.

+ Attractors form an order-theoretic lattice.
+ This structure forms a sheaf over a parametrized family of systems.
+ Sheaf cohomology can detect bifurcation.

Efficient, applicable computational frameworks can be built from

combinatorial and topological tools.



Sheaves

« Sheaves attach data to the topology of a space in a consistent way.

« A sheaf & over a topological space A assigns data §(U) to each open set
U c A, and assigns to each inclusion of open sets U c V a restriction map

Pucy: (V) - SU) such that p,., =idy,and pycy ° pyew = puew for U c V. w.

 Why do attractors have a sheaf structure?

« Given (¢, A) there is an attracting neighborhood N
for A, and attracting neighborhoods are robust, ie.
N is an attracting neighborhood for all y near ¢.

e NOTE: Attractors are not robust! &




Attractor sheaves (Dowling, Kalies, VanderVorst 2023)

ANbhd, Att: DS — BDLat are functors. v

1.0+

w . ANbhd — Att is a natural transformation.

0.5}F

Attractors form a BDLat-valued sheaf. X oo}

II[Att] = {(¢,A) | A € Att(¢p)} with the appropriate .
topology is an etale space (== sheaf). - |
0

=10 -0.5 0.0 0.5 1.0

(¢,A) — ¢ is alocal homeomorphism z: TI[Att] — DS. A

For parametrized family ¢. over A, ¢z TI[Att] = {(4, $,,A) | A € Att(g)}.

Conjugacy Invariance Theorem: Let X, Y be compact metric spaces. Let ¢., yx: A — DS be
families of dynamical systems on X, Y respectively, parametrized over A. If ¢, Y are conjugate, then
gb;lH[Att] and l/J*_IH[Att] are homeomorphic.



Attractor sheaf cohomology P i

Sheaf cohomology is a tool that characterizes obstructions | ................................... s ? .\

for local sections to lift to global sections == bifurcation! | ________________________ N
Three technical issues: / /

[1] Etale space to sheaf: TT[Att] == SA, R /

A section is a continuous map o: U — II[Att] on an \;¥ \ —
open set U such that 7 o ¢ = 1d,. I | Stalks I

15

SAY(U) = {sections o: U — TI[Att]}
Global sections: o: A — TI[Att]. o /-/ '

[2] Sheaf cohomology requires a sheaf with values X ool
in an abelian category. BDLat is not abelian.
BDLat — BoolAlg — BoolRing | )

-1.0F

0.5

[3] What is sheaf cohomology exactly? =T

1.0
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) Global dynamics has an algebraic structure.

+ Attractors form an order-theoretic lattice.
+ This structure forms a sheaf over a parametrized family of systems.
+ Sheaf cohomology can detect bifurcation.

- Efficient, applicable computational frameworks can be built from

combinatorial and topological tools.



Cellular sheaves

e Given a cell complex X, let FP(Z’) denote the face poset of X'. Then a cellular sheaf with
values in a category C is a functor F: FP(X) — C.

« Foreachcelloc € I, F assigns an object FG € C, the stalk over o.

« For pairs 6 < 17, ie. cis a face of 7, F gives restriction maps F ., F, — F_so that for

» Sheaf over topological space + (locally) finite collection of open sets == cellular sheaf with
the nerve as the cell complex.

« Cellular sheaf cohomology is computed using Cech cohomology with Z, coefficients.
e (Ghrist and Riess 2022)

» Convergence theorems for attractor sheaves (Dowling 2023)



“Saddle-node”: f(x) =x+0.2(—=x’+ (4 +0.50)(x*—x)) SN: 1 =0, x =2

H(F) = 7, H(F) = Z; HY(F) =73
Local sections
after bifurcation

Local sections
before bifurcation

Global sections

Cellular sheaf of outer approximations
over the nerve of a uniform subdivision

of parameter interval [—1,2].



Monostable - Bistable - Monostable: hysteresis or isola?

T [T11]
X | X jTI ...... {
% | TR
A A
HO(CSDAtt) — Z% HO(CS)Att) — Z%

Global sections Global sections



Cusp bifurcation in DSGRN

@ . Cia+0n %<6
Xp=—nxt

71, X, > 0
251+ 0y Xy < 6

X ==+ {
@ 21 x> 0y

Parameter space is (0,00)3,
which consists of 9 regions.

Use sheaf cohomology to check whether there is
hysteresis on a closed curve, ie. Monostable-

Bistable-Monstable along a single global section.

/o

Codimension-2 bifurcation

)



9 parameter regions in (0,00)°

Cusp bifurcation?

£y <€+ 6 <1nbp
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Rigorous verification (Lessard and Pugliese 2024)

Reduce to a 2-dimensional subspace:

Xl—

X2_

p=p1+s:(p—p)+5(p3—p;) 0<s,+s,<1
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Verified cusp bifurcation at approximately:
s; = 0.176282044953037 and
s, = 0.177039860011836
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What next?

 Develop sheaf cohomology signatures that are searchable in the DSGRN
database that are indicators of certain types of bifurcations

 Hysteresis - switching behavior in a network
- Update a 2021 study of hysteresis in 3-node networks

* Definition of hysteresis

- Higher codimension bifurcations
- Swallowtail bifurcation (codimension-3)

* Relationship to connection matrices and transition matrices
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Alex Dowling, Johns Hopkins
Marcio Gameiro, Rutgers
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