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Introduction

We consider the stabilization of the bending and torsion of a
rectangular cantilever beam of moderate to high aspect ratio
using boundary actuation and sensing.

This is the first step to stabilizing the bending and torsion of a
wing, but in this study we ignore aerodynamic forces that act on
a wing.

We start with the model presented in Section 3.6 of the classic
treatise of Bisplinghoff, Ashley and Halfman. This is a linear
model which ignores the nonlinear interactions between the
bending and the torsion of the rectangular beam.

Later we shall consider a nonlinear extension of this linear model
where the bending of the beam increases its torsional rigidity
and the torsion of the beam increases its bending rigidity.
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Introduction

We use Linear Quadratic Regulation (LQR) to find a full state
feedback that stabilizes the bending and twisting using two
point actuators located at the root of the beam.

But full state feedback is not possble so we assume that the
deflection of the beam is measurable at a finite number of
locations and then to construct a Kalman filter to process these
measurements to obtain an estimate of the state of the beam.

In particular, we use two measurements to estimate the full
state, the vertical and angular velocity at the tip of the beam.

Then we use the estimate of the full state in place of the full
state in the LQR feedback. This form of dynamic compensation
is called Linear Quadratic Gaussian (LQG).
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Introduction

We show that if the full state feedback asymptotically stabilizes
the beam and if the error dynamics of the Kalman filter is
asymptotically stable then the LQG compensator asymptotically
stabilizes the beam.

My current and future project is to couple the model of the
beam with a model of the aerodynamic forces that a wing
generates using the state space models of the classical Wagner
or Theodorsen theory.

If time permits I will discuss the results to date.



Introduction

We show that if the full state feedback asymptotically stabilizes
the beam and if the error dynamics of the Kalman filter is
asymptotically stable then the LQG compensator asymptotically
stabilizes the beam.

My current and future project is to couple the model of the
beam with a model of the aerodynamic forces that a wing
generates using the state space models of the classical Wagner
or Theodorsen theory.

If time permits I will discuss the results to date.



Introduction

We show that if the full state feedback asymptotically stabilizes
the beam and if the error dynamics of the Kalman filter is
asymptotically stable then the LQG compensator asymptotically
stabilizes the beam.

My current and future project is to couple the model of the
beam with a model of the aerodynamic forces that a wing
generates using the state space models of the classical Wagner
or Theodorsen theory.

If time permits I will discuss the results to date.



Model

Let the y axis be the axis of rotation of the beam and suppose it
is attached to its support at y = 0 and its free end is at y = L.

Let h(y, t) be the vertical deflection of beam at location y and
time t and let α(y, t) be the angle of rotation of the beam
around the y axis at location y and time t.

According to Bisplinghoff, Ashley and Halfman, equations
(3-155) and (3-156), the free vibrations of a uniform beam are
governed by the two inertially coupled linear PDEs.
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Model

[
m −Sy
−Sy Iy

] [ ∂2h
∂t2

(y, t)
∂2α
∂t2

(y, t)

]
=

[
−EI ∂4h

∂y4 (y, t)

GJ ∂
2α
∂y2 (y, t)

]

where

L half span 15m
Lc chord 1m
EA elastic y-axis 0.5m
CG center of gravity 0.5m
m mass per unit span 0.75kg/m
EI bending rigidity 2 ∗ 104n m2

GJ torsion rigidity 104N m2

Sy static moment per unit span 0.025kg
Iy moment of inertia per unit span 0.1kg m

Constants from Hossein Modaress-Aval et al, 2019.
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Boundary Conditions
The bending boundary conditions at the free end of the beam
are

∂2h

∂y2
(L, t) = 0,

∂3h

∂y3
(L, t) = 0

and at the fixed end of the beam we assume that there is an
actuator that can deliver a bending moment

h(0, t) = 0,
∂2h

∂y2
(0, t) = B1u1(t)

The torsion boundary condition at the free end of the beam is

∂α

∂y
(L, t) = 0

and at the fixed end of the beam we assume that there is an
actuator that can deliver a torque

∂α

∂y
(0, t) = B2u2(t)
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First Order System
We wish to express the dynamics as a first order system so we
introduce a four vector valued variable

z(y, t) =
[
h(y, t) ∂h

∂t
(y, t) α(y, t) ∂α

∂t
(y, t)

]′
then the model becomes

M
∂z

∂t
= Dz(y, t)

where

D =


0 1 0 0

−EI ∂4

∂y4 0 0 0

0 0 0 1

0 0 GJ ∂2

∂y2 0



M =


1 0 0 0
0 m 0 −Sy
0 0 1 0
0 −Sy 0 Iy
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First Order System

Notice M is symmetric and invertible if mIy − S2
y 6= 0

M−1 =
1

mIy − S2
y


1 0 0 0
0 Iy 0 Sy
0 0 1 0
0 Sy 0 m





Linear Quadratic Regulator
First we seek a full state feedback law of the form

u(t) =

∫ L

0
K(y)z(y, t) dy

to stabilize the bending and torsion oscillations so we set up an
Linear Quadratic Regulator (LQR).

We choose a 4× 4 nonnegative definite matrix valued function
Q(y1, y2) that is symmetric in its arguments,
Q(y1, y2) = Q(y2, y1),

and a positive definite 2× 2 matrix R.

For any given initial condition z(y, 0) we seek to minimize by
choice of u(t) the quantity∫ ∞

0

∫∫
S
zT (y1, t)Q(y1, y2)z(y2, t) dA+ uT (t)Ru(t) dt

where S is the square [0, L]2 and dA = dy1dy2.
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Linear Quadratic Regulator
Let P (y1, y2) be a continuous 4× 4 nonnegative definite matrix
valued function that is symmetric in its arguments,
P (y1, y2) = P (y2, y1) and satisfies these homogeneous
boundary conditions for i, j = 1, . . . , 4

P2,j(0, y2) = 0, Pi,2(y1, 0) = 0

∂2P2,j

∂y2
1

(0, y2) = 0,
∂2Pi,2

∂y2
2

(y1, 0) = 0

∂2P2,j

∂y2
1

(L, y2) = 0,
∂2Pi,2

∂y2
2

(y1, L) = 0

∂3P2,j

∂y3
1

(L, y2) = 0,
∂3Pi,2

∂y3
2

(y1, L) = 0

∂P4,j

∂y1
(0, y2) = 0,

∂Pi,4

∂y2
(y1, 0) = 0

∂P4,j

∂y1
(L, y2) = 0,

∂Pi,4

∂y2
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These are just the homogeneous version of the boundary conditions
that z(y, t) satisfies.
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Linear Quadratic Regulator
If there is a u(t) such that z(y, t)→ 0 as t→∞ then by the
Fundamental Theorem of Calculus

0 =

∫∫
S
zT (y1, 0)M−1P (y1, y2)M−1z(y2, 0) dA

+

∫ ∞
0

∂

∂t

∫∫
S
zT (y1, t)M

−1P (y1, y2)M−1z(y2, t) dA dt

We bring the time differentiation inside the spatial integrals and obtain

0 =

∫∫
S
z
T

(y1, 0)M
−1
P (y1, y2)M

−1
z(y2, 0) dA

+

∫ ∞
0

∫∫
S
z
′
(y1, t)D

T
1 P (y1, y2)M

−1
z(y, t) dA

+

∫ ∞
0

∫∫
S
z
′
(y, t)M

−1
P (y1, y2)D2z(y2, t) dA

where Di is the matrix differential operator

Di =


0 1 0 0

−EI ∂4

∂y4
i

0 0 0

0 0 0 1

0 0 GJ ∂2

∂y2
i

0


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Integration by Parts
We integrate this by parts several times taking into account the
boundary conditions on z(y, t) and P (y1, y2).

Let P:,j(y1, y2) denote the jth column and Pi,:(y1, y2) denote
the ith row of P (y1, y2) then

0 =

∫∫
S
z
T

(y1, 0)M
−1
P (y1, y2)M

−1
z(y2, 0) dA

+

∫ ∞
0

∫∫
S
z
T

(y1, t)M
−1


−EI

∂4P2,:

∂y4
1

(y1, y2)

P1,:(y1, y2)

GJ
∂2P4,:

∂y2
1

(y1, y2)

P3,:(y1, y2)

 z(y2, t) dA dt

+

∫ ∞
0

∫∫
S
z
T

(y1, t)M
−1

×
[

−EI
∂4P:,2

∂y4
2

(y1, y2) P:,1(y1, y2) GJ
∂2P:,4

∂y2
2

(y1, y2) P:,3(y1, y2)

]
z(y2, t) dA dt

+

∫ ∞
0

∫ L

0
u

T
(t)B

[
EI

∂P2,:
∂y2

(y1, 0)

GJP4,:(y1, 0)

]
M
−1
z(y2, t) dy2 dt

+

∫ ∞
0

∫ L

0
z
T

(y1, t)M
−1

[
EI

∂P:,2
∂y2

(y1, 0 GJP:,4(y1, 0)
]
Bu(t) dy1 dt
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New Criterion

We add the right side of this last equation to the criterion to be
minimized to obtain an equivalent criterion to be minimized

0 =

∫∫
S
z
T

(y1, 0)M
−1
P (y1, y2)M

−1
z(y2, 0) dA

+

∫ ∞
0

∫∫
S
z
T

(y1, t)Q(y1, y2)z(y2, t) dA+ u
T

(t)Ru(t) dt

+

∫ ∞
0

∫∫
S
z
T

(y1, t)M
−1


−EI

∂4P2,:

∂y4
1

(y1, y2)

P1,:(y1, y2)

GJ
∂2P4,:

∂y2
1

(y1, y2)

P3,:(y1, y2)

 z(y2, t) dA dt

+

∫ ∞
0

∫∫
S
z
T

(y1, t)M
−1

×
[

−EI
∂4P:,2

∂y4
2

(y1, y2) P:,1(y1, y2) GJ
∂2P:,4

∂y2
2

(y1, y2) P:,3(y1, y2)

]
z(y2, t) dA dt

+

∫ ∞
0

∫ L

0
u

T
(t)B

[
EI

∂P2,:
∂y2

(y1, 0)

GJP4,:(y1, 0)

]
M
−1
z(y2, t) dy2 dt

+

∫ ∞
0

∫ L

0
z
T

(y1, t)M
−1

[
EI

∂P:,2
∂y2

(y1, 0 GJP:,4(y1, 0)
]
Bu(t) dy1 dt



Completing the Square
We wish to find a 2× 4 matrix valued function K(y) such that
the time integrand of the equivalent criterion is equal to a
perfect square of the form∫∫
S

(u(t)−K(y1)z(y1, t))
T R (u(t)−K(y2)z(y2, t)) dA

The terms quadratic in u(t) match so we equate terms bilinear
in uT (t) and z(y2, t).

This yields

−RK(y2) = B

[
EI

∂P2,:

∂y1
(0, y2)

GJP4,:(0, y2)

]
M−1

so we assume that

K(y2) = −R−1B

[
EI

∂P2,:

∂y1
(0, y2)

GJP4,:(0, y2)

]
M−1
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Riccati PDE

Then by equating terms bilinear in zT (y1, t) and z(y2, t) we
obtain the Riccati PDE for quadratic Fredholm kernel P (y1, y2)
of the optimal cost,

M
−1

[
−EI

∂4P:,2

∂y4
2

(y1, y2) P:,1(y1, y2) GJ
∂2P:,4

∂y2
2

(y1, y2) P:,3(y1, y2)

]

+


−EI

∂4P2,:

∂y4
1

(y1, y2)

P1,:(y1, y2)

GJ
∂2P4,:

∂y2
1

(y1, y2)

P3,:(y1, y2)

M
−1

+ Q(y1, y2)

= M
−1

[
EI

∂P:,2
∂y2

(y1, 0) GJP:,4(y1, 0)
]
BR
−1
B

[
EI

∂P2,:
∂y1

(0, y2)

GJP4,:(0, y2)

]
M
−1

This is an elliptic PDE with a quadratic nonlinearity.

Since we only assumed that P (y1, y2) is continuous this PDE
and its homogeneous boundary conditions are to be interpreted
in the weak sense.
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Fourier Analysis

Fourier methods are well-suited to solving weak PDEs.

But we don’t want to use eigenfunctions of the inertially
coupled beam and wave equations as they are too complicated.
Instead we use the uncoupled eigenfunctions of the fourth and
second order partial differential operators

−
∂4

∂y4
,

∂2

∂y2

subject to the appropriate boundary conditions.

All of the eigenvalues of these operators are nonpositive. Since
the temporal partial differential operator ∂2

∂t2
is second order this

implies that all of the eigenvalues of the inertially coupled beam
are imaginary.
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Fourth Order PDO

The partial differential operator − ∂4

∂y4 is self-adjoint when
subject to the appropriate boundary conditions

φ(0) = 0,
∂2φ

∂y2
(0) = 0,

∂2φ

∂y2
(L) = 0,

∂3φ

∂y3
(L) = 0

These are not the boundary conditions of a cantilever beam.

The eigenvalues are of the form νm = −β4
m where βm is the

mth positive root of tanβL = tanhβL.

There is exactly one root βmL ∈ [mπ, (m+ 1/2)π). As
m→∞ the mth root is quickly converging to (mπ + π

4
).



Fourth Order PDO

The partial differential operator − ∂4

∂y4 is self-adjoint when
subject to the appropriate boundary conditions

φ(0) = 0,
∂2φ

∂y2
(0) = 0,

∂2φ

∂y2
(L) = 0,

∂3φ

∂y3
(L) = 0

These are not the boundary conditions of a cantilever beam.

The eigenvalues are of the form νm = −β4
m where βm is the

mth positive root of tanβL = tanhβL.

There is exactly one root βmL ∈ [mπ, (m+ 1/2)π). As
m→∞ the mth root is quickly converging to (mπ + π

4
).



Fourth Order PDO

The partial differential operator − ∂4

∂y4 is self-adjoint when
subject to the appropriate boundary conditions

φ(0) = 0,
∂2φ

∂y2
(0) = 0,

∂2φ

∂y2
(L) = 0,

∂3φ

∂y3
(L) = 0

These are not the boundary conditions of a cantilever beam.

The eigenvalues are of the form νm = −β4
m where βm is the

mth positive root of tanβL = tanhβL.

There is exactly one root βmL ∈ [mπ, (m+ 1/2)π). As
m→∞ the mth root is quickly converging to (mπ + π

4
).



Fourth Order PDO

The partial differential operator − ∂4

∂y4 is self-adjoint when
subject to the appropriate boundary conditions

φ(0) = 0,
∂2φ

∂y2
(0) = 0,

∂2φ

∂y2
(L) = 0,

∂3φ

∂y3
(L) = 0

These are not the boundary conditions of a cantilever beam.

The eigenvalues are of the form νm = −β4
m where βm is the

mth positive root of tanβL = tanhβL.

There is exactly one root βmL ∈ [mπ, (m+ 1/2)π). As
m→∞ the mth root is quickly converging to (mπ + π

4
).



Fourth Order PDO

The corresponding orthogonal but not orthonormal
eigenfunctions are quickly converging to

Φm(y) ≈ sinβmy + d sinhβmy

where

d ≈
(−1)m+1

√
2

2

sinh(mπ + π
4
)

Note we are using the symbol m in two different senses. Previously we
used m for mass per unit span but now we are also using it as an
integer index.

The correct interpretation will be clear from context.
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Second Order PDO
The appropriate boundary conditions for the second order
operator

∂2

∂y2

are
∂θ

∂y
(0, t) = 0,

∂θ

∂y
(L, t) = 0

so the eigenvalues are

ηn = −(
nπ

L
)2

for n = 0, 1, 2, . . . .

The corresponding orthogonal but not orthonormal
eigenfunctions are

Θn(y) = cos
nπy

L
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Series Solution of the Riccati PDE

Suppose Q(y1, y2) is diagonal, Qi,j(y1, y2) = Qj,i(y1, y2) = 0
if i 6= j, and it has an expansion of the form

Q(y1, y2) =

∞∑
m=1


Qm,m1,1 0 0 0

0 Qm,m2,2 0 0

0 0 0 0
0 0 0 0

Φm(y1)Φm(y2)

+

∞∑
n=0


0 0 0 0
0 0 0 0
0 0 Qn,n3,3 0

0 0 0 Qn,n4,4

Θn(y1)Θn(y2)

We could consider more general Q(y1, y2) but to keep the
exposition relatively simple we do not.

Notice that the ranges of the indices m and n are different.
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Series Solution of the Riccati PDE
We also assume that the solution P (y1, y2) of the Riccati PDE
has a similar but more complicated expansion. When i, j = 1, 2

Pi,j(y1, y2) =

∞∑
m1,m2=1

Pm1,m2

i,j Φm1(y1)Φm2(y2)

When i = 1, 2 and j = 3, 4

Pi,j(y1, y2) =

∞∑
m1=1,n2=0

Pm1,n2

i,j Φm1(y1)Θn2(y2)

When i = 3, 4 and j = 1, 2

Pi,j(y1, y2) =

∞∑
n1=0,m2=1

Pn1,m2

i,j Θn1(y1)Φm2(y2)

When i, j = 3, 4

Pi,j(y1, y2) =

∞∑
n1=0,n2=0

Pn1,n2

i,j Θn1(y1)Θn2(y2)



Series Solution of the Riccati PDE
We plug these expansions into Riccati PDE and collect similar
terms to obtain an infinite dimensional algebraic Riccati
equation which has four coupled components.

The Φm1(y1)Φm2(y2) component is
νm2EIP

m1,m2
1,2 P

m1,m2
1,1 0 0

νm2IyEIP
m1,m2
2,2 IyP

m1,m2
2,1 0 0

0 0 0 0

νm2SyEIP
m1,m2
2,2 SyP

m1,m2
2,1 0 0



+


νm1EIP

m1,m2
2,1 νm1IyEIP

m1,m2
2,2 0 νm1SyEIP

m1,m2
2,2

P
m1,m2
1,1 IyP

m1,m2
1,2 0 SyP

m1,m2
1,2

0 0 0 0
0 0 0 0



+


Q

m1,m2
1,1 0 0 0

0 Q
m1,m2
2,2 0 0

0 0 0 0
0 0 0 0



=


EIP

m1,m4
1,2 Φ′m4

(0) GJP
m1,n4
1,4 Θn4 (0)

IyEIP
m1,m4
2,2 Φ′m4

(0) IyGJP
m1,n4
2,4 Θn4 (0)

0 0

SyEIP
m1,m4
2,2 Φ′m4

(0) SyGJP
m1,n4
2,4 Θn4 (0)

Γ

×
[
EIP

m3,m2
2,1 Φ′m3

(0) IyEIP
m3,m2
2,2 Φ′m3

(0) 0 SyEIP
m3,m2
2,2 Φ′m3

(0)

GJP
n3,m2
4,1 Θn3 (0) IyGJP

n3,m2
4,2 Θn3 (0) 0 SyGJP

n3,m2
4,2 Θn3 (0)

]
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Algebraic Riccati Equation
where

Γ =
1

mIy − S2
y

[
B2

1R
−1
1 0

0 B2
2R
−1
2

]

The Φm1(y1)Θn2(y2) component is


0 0 ηn2GJP

m1,n2
1,4 P

m1,n2
1,3

0 0 ηn2GJP
m1,n2
2,4 P

m1,n2
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0 0 Syηn2GJP
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2,4 SyP

m1,n2
2,3
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+
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Policy Iteration

We can approximately solve this algebraic Riccati equation by
policy iteration. This method could also be seen as value
iteration.

To find an initial estimate
(
Pm1,m2

i,j

)(0)
,
(
Pn1,n2

i,j

)(0)
of the

Fourier coeficients of the kernel P (y1, y2) of the optimal cost
we specify that(

Pm1,m2

i,j

)(0)
= 0 unless m1 = m2 and i = j(

Pn1,n2

i,j

)(0)
= 0 unless n1 = n2 and i = j(

Pm1,n2

i,j

)(0)
=

(
Pn1,m2

i,j

)(0)
= 0

and solve the thus simplified algebraic Riccati equations for(
Pm,mi,i

)(0)
and

(
Pn,ni,i

)(0)
.
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Policy Iteration

Succesive iterates are found by plugging
(
Pm1,m2

i,j

)(k)
and(

Pn1,n2

i,j

)(k)
into the right side of the algebraic Riccati equations

and plugging
(
Pm1,m2

i,i

)(k+1)
and

(
Pn1,n2

i,i

)(k+1)
into the left

side.

It is crucial that the estimates

P
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∞∑
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P

m1,m2
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∞∑
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P

m1,n2
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Φm1 (y1)Θn2 (y2)

+
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(
P

n1,m2
)(k)

Θn1 (y1)Φm2 (y2)

+
∞∑

n1,n2=1

(
P

n1,n2
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of the kernel of the optimal cost are continuous.
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Policy Iteration

If they are continuous then∫∫
S
zT (y1, 0)P (k)(y1, y2)z(y2, 0) dA

is bounded for any continuous initial condition z(y, 0) which
implies that the feedback with kernel

K(k)(y2) = −R−1B

 EI ∂P (k)
2,:

∂y1
(0, y2)

GJP
(k)
4,: (0, y2)

M−1

has moved all the closed eigenvalues into open left half plane.

This implies asymptotic stability but not exponential stability.
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Two Theorems
Theorem: The series for P

(0)
i,i (y1, y2) with i = 1, 2 converges

to a continuous function if there exist positive numbers q and
r > 8 such that ∣∣∣Qm,mi,i

∣∣∣ ≤ q

mr

Theorem: The series for P
(0)
i,i (y1, y2) with i = 3, 4 converges

to a continuous function if there exist positive numbers q and
r > 6 such that ∣∣∣Qn,ni,i ∣∣∣ ≤ q

nr

We believe that similar theorems are true for P
(k)
i,j (y1, y2) but

we really don’t need them to prove asymptotic stability becaues
value iteration implies that∫∫

S
z
T

(y1, 0)P
(k)

(y1, y2)z(y2, 0) dA ≤
∫∫
S
z
T

(y1, 0)P
(0)

(y1, y2)z(y2, 0) dA
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Approximating Finite Dimensional LQR

We construct a finite dimensional LQR whose algebraic Riccati
equation is a truncation of the above infinite dimensional
algebraic Riccati equation.

We choose an N > 0 and construct a linear system with state
ζ = [ζ1, ζ2, ζ3, ζ4]T where ζ1, ζ2, ζ3, ζ4 is each of dimension N.
So the finite dimensional state ζ is of dimension 4N.
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Approximating Finite Dimensional LQR
The dynamics is

ζ̇1 = ζ2

mζ̇2 − Syζ̇4 = F1ζ1 +G1u1

ζ̇3 = ζ4

−Syζ̇2 + Iyζ̇4 = F2ζ3 +G2u2

where

F1 = EI

 ν1 . . . 0
. . .

0 . . . νN

 , G1 =

 Φ′1(0)
...

Φ′N(0)


F2 = GJ

 η0 . . . 0
. . .

0 . . . ηN−1

 , G2 =

 Θ0(0)
...

ΘN−1(0)


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Approximating Finite Dimensional LQR

This finite dimensional system approximates the infinite
dimensional system in the following manner

z1(y, t) ≈
[

Φ1(y) . . . ΦN(y)
]
ζ1(t)

z2(y, t) ≈
[

Φ1(y) . . . ΦN(y)
]
ζ2(t)

z3(y, t) ≈
[

Θ0(y) . . . ΘN−1(y)
]
ζ3(t)

z4(y, t) ≈
[

Θ0(y) . . . ΘN−1(y)
]
ζ4(t)

Recall
z1(y, t) vertical displacement h(y, t)

z2(y, t) vertical velocity ḣ(y, t)
z3(y, t) angle of attack α(y, t)
z4(y, t) angular velocity of attack α̇(y, t)


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Example

We consider a N = 4 approximation which leads to a 16
dimensional system. We take Q to be a 16× 16 identity matrix,
R a 2× 2 identity matrix and all constants to equal 1 except
Sy = 1/2 so that M is invertible.

The 16 open and closed loop poles are

Open Loop Poles Closed Loop Poles
±3.61i −1.14± 3.50i
±20.67i −1.65± 20.51i
±7.24i −1.85± 7.24i
±10.87i −2.78± 10.87i
±14.50i −2.96± 13.25i
±66.75i −4.29± 66.72i
±139.14i −6.52± 139.11i
±237.84 −8.74± 237.00i


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Finite Dimensional State ζ(t)

Figure: Finite Dimensional State ζ(t)



Vertical Displacement h(y, t)

The control input at the root of the beam uses the ripples to
stabilize the vertical displacement of the tip.
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The control input at the root of the beam uses the ripples to
stabilize the vertical displacement of the tip.



Angle of Attack α(y, t)

Again the control input at the root of the beam uses the ripples
to stabilize the torsion at the tip.



Kalman Filtering
In the above discussion we made the unreasonable assumption
that it was possible to measure the full state z(y, t) at every
location y ∈ [0, L] and every time t ≥ 0 so we could use full
state feedback.

In reality we may only be able to measure some components of
the state at some locations and at some discrete times in the
present of noise.

We now develop a Kalman filter to estimate the state from the
noisy measurements of some components of the state at some
locations. We shall assume that the measurements are
continuous in time.

The case when the measurements are only available at discrete
times is mathematically simpler and the methods that we
present can be extended to such discrete time measurents.

Given the state estimate ẑ(y, t) we use it in place of the true
state z(y, t) in our feedback law.
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Model
We assume that we can approximately measure the vertical
velocity z2(L, t) and the angular velocity z4(L, t) at the tip of
the beam.

One way of doing this is by time integrating the outputs of two
accelerometers as was done in Banks, Smith et al.

We express the inertially coupled bending and twisting dynamics
in a more standard form. We also add a driving noise input
v(t) = [v1(t), v2(t)]T (wind gusts) and obtain

∂z

∂t
(y, t) = Az(y, t) + B(y)v(t)

where the partial differential operator is A = M−1D and

B(y) =


0 0

B11(y) B12(y)
0 0

B21(y) B22(y)


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Boundary Conditions

The appropriate boundary conditions are homgeneous

z1(0, t) = 0,
∂2z1

∂y2
(0, t) = 0

∂2z1

∂y2
(L, t) = 0,

∂3z1

∂y3
(L, t) = 0

∂z3

∂y
(0, t) = 0,

∂z3

∂y
(L, t) = 0



Optimal Estimate
Because of the linear, Gaussian assumptions we expect that the
optimal least squares estimate ẑ(y, t) of z(y, t) is a linear
functional of the past observations,

ẑ(y, t) =

∫ ∞
0
L(y, s)ψ(t− s) ds

=

∫ ∞
0
L(y, s)

([
z2(L, t)
z4(L, t)

]
+D

[
w1(t− s)
w2(t− s)

])
ds

for some 4× 2 matrix valued function L(y, s).

Given such a L(y, s) we define a 4× 4 matrix valued function
H(y, y1, s) by the partial differential equation

∂H
∂s

(y, y1, s) = H(y, y1, s)A1 − L(y, s)


0 0

δ(y1 − L) 0
0 0
0 δ(y1 − L)
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Boundary and Initial Conditions

This PDE is subject to the homogeneous boundary conditions

Hi,2(y, 0, t) = 0,
∂2Hi,2
∂y21

(y, 0, t) = 0

∂2Hi,2
∂y21

(y, L, t) = 0,
∂3Hi,2
∂y31

(y, L, t) = 0

∂Hi,4
∂y1

(y, 0, t) = 0,
∂Hi,4
∂y1

(y, L, t) = 0

for i = 1. . . . , 4

and the initial condition

H(y, y1, 0) = δ(y − y1)I4×4
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Integration by Parts

After integration by parts with respect to s and y1 we obtain a
formula for the estimation error z̃(y, t) = z(y, t)− ẑ(y, t),

z̃(y, t) = −
∫ ∞
0

∫ L

0
H(y, y1, s)B(y1)v(t− s) dy1 ds

−
∫ ∞
0
L(y, s)D

[
w1(t− s)
w2(t− s)

]
ds

Because v(t) and w(t) are standard white Gaussian noises, the
error covariance which we seek to minimize is∫ ∞

0

∫∫
S
H(y, y1, s)B(y1)BT (y2)HT (y, y2, s) dA ds

+

∫ ∞
0
L(y, s)DDTLT (y, s) ds
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Family of Adjoint LQRs

For each y ∈ [0, L] and for each pair of corresponding rows of
H(y, y1, s) and L(y, s) we have an LQR in adjoint form with
state the ith row of H(y, y1, s) and with control the ith row of
L(y, s), linear dynamics and quadratic criterion.

But we can leave this adjoint LQR in matrix form as the optimal
feedback gain K(y, y1) is the same for all rows,

L(y, s) =

∫ L

0
H(y, y1, s)K(y, y1) dy1

We are tying to estimate z(y, t) which explains the y
dependence.

But if the coefficient of the driving noise does not vary with y,
B(y) = B then H(y, y1, s) = H(y1, s) and K(y, y1) = K(y1).
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Kalman Filter
After some manipulations we can show that the optimal filter
takes the standard form as a copy of the original dynamics
driven by the innovations ψ̃(t)

d

dt
ẑ(y, t) = A(y)ẑ(y, t) +K(y, y)ψ̃(t)

where the innovations process is the difference between the
actual observations ψ(t) and what we thing they should be
given our optimal estimate of the state,

ψ̃(t) = ψ(t)−
[
ẑ2(L, t)
ẑ4(L, t)

]
We use the estimate ẑ(y, t) in place of the full state z(y, t) in
the feedback law we found before so then the control input is

u(t) =

∫ L

0
K(y)ẑ(y, t) dy

This is dynamic compensation.
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Error Dynamics

The error z̃(y, t) = z(y, t)− ẑ(y, t) dynamics is given by

d

dt
z̃(y, t) = Az̃(y, t)z(y, t)−K(y, y)

[
z̃2(y, t)
z̃4(y, t)

]

Notice that error dynamics is only depends on the error so we
can express the entire system in z(y, t) and z̃(y, t) and the
combined dynamics is upper block triangular.

If the full state feedback aymptotically stabilizes the system and
if the error dynamics of the Kalman filter is asymptotically
stable then the dynamic compensator aymptotically stabilizes
the system.
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Error



Vertical Displacement Estimation Error

Notice that the estimation error is smaller near the sensor at the
tip, y = 1.
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Current and Future Work
The next step is to add aerodynamic effects to the above to make the
beam into a wing.

The obvious question is whether LQR can be used to extend the
flutter boundary of a wing.

The classical aerodynamical models are those of Wagner and
Theodoresen. Wagner’s model is in the time domain and
Theodoresen’s is in the frequency domain.

They are related by the Laplace transform.

We expect to a state space realization of Wagner’s model which would
add two additional states to our four dimensional model.

Wagner’s model is valid for an airfoil, a wing section. We shall extend
to a model for a wing by introducing spanwise dependence.

Aerodynamical models are parameterized by the free stream air
velocity which we can treat as a static state. But then the model
becomes nonlinear.

We will treat this with nonLinear nonQuadratic Regulation (nLnQR).
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Wagner’s Model in State Space Form
The lift per unit span is

L = ρ∞πb
(
−ḧ+ U∞α̇− baα̈

)
+πρ∞U∞

(
−ḣ+ U∞α+ b

(
1

2
− a

)
α̇

)
−2πbρ∞U∞ψ

The moment per unit span is

Mec = ρ∞πb
2

(
−aḧ+
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1

2

)
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(
a2 +

1
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)(
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where ψ is the aerodynamic output.



Wagner’s Model in State Space Form
The lift per unit span is

L = ρ∞πb
(
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Wagner’s Aerodynamic Model
The aerodynamics state is ξ = [ξ1, ξ2]T .

ξ̇ = Aξ +Bw

ψ = Cξ +Dw

where

A =

[
0 1

−0.0137 −0.3455

]
, B =

[
0
1

]
C =

[
0.0068 0.1080

]
, D = 0.5

and the aerodynamic input is

w = −ḣ+ αU∞ + b

(
1

2
− a

)
α

Model from Hossein Modaress-Aval et al, 2019.
Constants from Brunton and Rowley, 2012.
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Wagner’s Aerodynamic Model

Wagner’s aerodynamic model is valid for an airfoil, a cross
section of a wing.

The usual approach is to divide the wing into sections and the
model is applied at the midpoint of each section. We will take a
different approach and treat all the variables as functions of y
and t. For example, ξ = ξ(y, t).

This will raise the state dimension from four to six. We redfine
the state to be

z(y, t) =
[
h(y, t) ḣ(y, t) α(y, t) α̇(y, t), ξ1(y, t) ξ2(y, t)

]T
But the aerodynamics introduces no new partial diffential operators so
we will expand in the same eigenfunctions Φm(y),Θn(y).
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