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Project covers

1. Stabilization of ensemble PDEs (last year's presentation)
2. Neural operators for PDE control  (today)
3. Control of population dynamics PDEs  (next year)
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ML use here

Encode the map

\ model +— control gains

using ML, for existing (rigorous) model-based PDE control designs



ML use here

Benefit: 1000x speedup of implementation. Certifications retained.




Deep Neural Operators



DeepONet universal approximation THEOREM
(Lu, Jin, Karniadakis, 2021)
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DeepONet universal approximation THEOREM
(Lu, Jin, Karniadakis, 2021)

Let S be a continuous operator.

For every € > 0, there exists a (deep) neural operator S (dependenton ) s.t.

[S() =80 < e

V input functions (-) in a compact set of cont. functions.



Example of “nonlinear operator”

feedback: nonlin. mapping of

open-loop response h(t) +— closed-loop response



Example of “nonlinear operator”

feedback: nonlin. mapping of

open-loop response h(t) +— closed-loop response

We can find closed-loop response for EACH individual h(t),

but can we find a “once-and-for-all formula” for all h(t)?



Sensitivity & Komplementary sensitivity operators




Sensitivity & Komplementary sensitivity operators

S: h > £lo

1-L(h)

Operator input 4: plant impulse response function




Sensitivity & Komplementary sensitivity operators

S: h > £lo

1-L(h)

Operator output:

e S(h) = closed-loop impulse response to measurement disturbance



Sensitivity & Komplementary sensitivity operators

o —-L(h)
1-L(h)

K: h — h-8kh) = £

e K (h) = closed-loop impulse response to command



Sensitivity & Komplementary sensitivity operators

—-L(h)

° oK K-! =%| involution

K: h — £




Are S and K continuous operators?

Lipschitz constants

LS = CZB

Ly = (1 +BeB) eB

for all impulse response inputs h(t) that are Lo,-bounded by B over finite time



S~8 and K

2
X

Theorem. Forall B> 0 and € > 0, there exists a DeepONet K satisfying

K(h)(t) - K(h) ()| < e

forall ||kl < B andt € [0, T].



U
2

S and K

2
X

® %K produces approximate closed-loop impulse response

e for experimentally measured plant impulse response




Outline

1. Hyperbolic PDE: operators on fcns of one variable

2. Parabolic PDE: operators on fcns of two variables



Outline

3. Adaptive control — unknown functional coefficients



Hyperbolic benchmark



Hyperbolic PDE example: a pedagogical start
(mapping from/into fcns of one variable)

Simplest unstable PDE:

w(x,t) = ue(x,t) |+ p(x) u(0,t)

transport + recirculation = instability

2000
1000
w(x,1)
—1000

—2000

—3000




Question #1|in boundary control:

u(.,t) = U(t) boundary control
u(0,1) U@
boundary
control
Bx)

How to UNLINK domain-wide recirculation using only boundary actuation?




Answer: PDE backstepping design




Answer: PDE backstepping design

Backstepping operator, transforms u(x, 1) to w(x, 1):



Answer: PDE backstepping design

Backstepping operator, transforms u(x, 1) to w(x, 1):

boundary control

U= W(ﬁ) * u|x:l



Answer: PDE backstepping design

target system (transport PDE/delay)

Wy + BlcoutOT) (recirculation gone!)
0

Wy
w(l,t)



Adaptive Control for
Unknown Functional Coefficients

offline-online learning
combined



DeepONet with online parameter estimation

B(x) = unknown function



DeepONet with online parameter estimation

B(x) = unknown function

A~

Px, 1)

online-updated estimate , with projection to guarantee ||3(-, )||eo < B, V¢ > 0



DeepONet with online parameter estimation

B(x) = unknown function

A~

Px, 1)

online-updated estimate , with projection to guarantee ||3(-, )||eo < B, V¢ > 0

exact kernel K(p)
exact estimated kernel K (B)

approximate estimated kernel
(adaptive kernel) K (ﬁ)




Adaptive Controller

1 A A
U(r) = /0 KB (1 - y.1) uly, dy



Update law (ensemble/co-dim nonlinear ODE)

iﬁ("’ H=—»>0 — [ecxw(x t)—/lecy KB (y - x.t) w(y, dy| u(0,1)
o L+ w(n)? ) e ’
regulation

normalization regressor error



Update law

(ensemble/co-dim nonlinear ODE)

9 4 _ Y
B

—_— ——

normalization

where

w(x, )

lw()]?

1+ [lw(t))?

1 A A
[ecxw(x, t) — / eV K(P)(y—x,t) w(y,t)dy| u(0,t)

regulation
regressor error

u(x, 1) - /0 KB) (x - v.1) u(y, H)dy

I
/ e““w?(x, t)dx

0



Global stabilization &
pointwise-in-space regulation

Theorem.

I'(t) <R (epr(o) — 1)

1“(t):/01

W2 (x, 1) + (ﬁ(x) ~ B, t))2 dx




Global stabilization &
pointwise-in-space regulation

Theorem.

and
tlim u(x,t) =0 Vx € [0, 1]



Global stabilization &
pointwise-in-space regulation

Theorem. For all systems with [|f||.. < B and
e all operators K trained for any e € (O, (0] (ﬁ))



Global stabilization &
pointwise-in-space regulation

Theorem. For all systems with [|f||.. < B and

e all adaptation gains y € (0’ o (L))

1+B



Proof of Theorem

Perturbed target system

wr = Wy



Proof of Theorem *

Perturbed target system with w(l,t) =0
W = Wy

_ [(1 - ﬁ*) (7{ (/3’) - K (ﬁ))] w(0,t)  gain approximation error



Proof of Theorem

Perturbed target system with w(l,t) =0
Wy = Wy

_ [(1 _ ﬁ*) (7{ ([3’) - K (ﬁ))] w(0,t)  gain approximation error

+ [(1 - 12*) (/3 - /?)] w(0,1) parameter estimation error



Proof of Theorem

Perturbed target system

wr = Wy

(1) (3 7)o

(1) (=) o

|10 % (B)<)] (% (3]

gain approximation error
parameter estimation error

parameter update rate perturbation



Proof

Key inequality (for handling update rate perturbation)

) (7< (ﬁ))“ < e+ M(B) ‘

a A

Ensured by operator definition and training.



Proof

Lyapunov functional

V(o) = in (14 et lZ) + < Jp - Ao



Parabolic PDEs

(advancing to operators btw fcns of two variables)



Reaction-diffusion PDE (unstable)

U (x,t) = Uey(x,t) + A(x)u(x, t)



Reaction-diffusion PDE (unstable)

U (x,t) = Uey(x,t) + A(x)u(x, t)

Bkst transform

w(x,t) = u(x, t)—‘/oxk(x,y)u(y, t)dy




ki (6, y) — kyy(x,y) = AMy) k(x,y)

Kernel PDE

Bkst gain operator

A =




Adaptive Control of
Parabolic PDEs



Adaptive Control with DeepONet implementation

unknown function

A(x)

A(x,t) = online-updated estimate



Adaptive Control with DeepONet implementation

1 A A~
U = /O R (L, 1) uly, dy

K (1) takes ~1 millisecond to re-evaluate at each timestep in real time on an old laptop



Update law

d » Y 1.

—AMx, t) = ——— [w(x, t)—/ K(A)(y,x,t) w(y, t)d u(x,t)

ot 1+|w()]? x J R B
regulation

normalization regressor error



Update law

9~ L
Sy =—7~L— [w(x, £) — / R (g, x,t) w(y, H)dy| ulx,t)
ot L+ [lw@)ll x —_
regulation
normalization regressor error

where

w(x,t) = u(x,t)—/.x’f((i)(x,y,t) u(y, t)dy
0



u(x,t)

50000

40000

30000

20000

10000

open loop

u(x,t)




u(x,t)

50000

40000

30000

20000

10000

u(x,t)

A(x,1)

80

60

40

20

online learning
over by 0.35 sec )




u(x,)

50000

40000 open loop

30000

u(x,t)

20000

10000

online learning

over by 0.35 sec )
: \ \\\\gi”\\\\ii\\\\(/////////// 80 [
= :i(:; : . ',/\\\\\\\\\\\“\\;\\\\\i\;;\\%;%\’\”llf// ,i: 60
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PERTURBED target system

wi(x,t) = wy(x, t)

—2% (‘7( (/T) (x,x,1) — K (/i) (x, x, t)) u(x,t)
_ /0 i (00 = a4y = A, 0) (% (7) oy 1) = K () o)l )y

gain approximation error
+ (A(x) - i(x, t)) u(x, t) — ‘/Ox ()L(y) - i(y, t)) K (/i) (x,y,t) u(y, t)dy

param. estim. error

- / o, (7% (i)) (x, 1, 1) u(y, t)dy param. update rate perturbation
0



Global stabilization &
pointwise-in-space regulation

Theorem.

I'(t) <R (epr(o) — 1)

1“(t):/01

limu()=0 Ve [01]

W (x, 1) + (A(x) ~Ax, t))2

and

dx



Recap

® Speedup in producing PDE gains ~1000x

® Training price? Minutes.

* | Enabled: adaptive control of PDEs with unknown parameters




Future?

Generalizations to:

e 2D, 3D
® coupled + ensemble PDEs

® applications



NEXT TOPIC — Population Dynamics

“Aging” predator-prey:



NEXT TOPIC — Population Dynamics

“Aging” predator-prey:
oxi(at)  oxi(at)
o8 da
oxy(at) _8x2(a, t) ~ 1
ot da fOA ga(a)xi(a, t)da

A
(/ gi(a)xy(a, t)da + u(t) )xl(a, 1) predator kills prey
0

+ u(t) )xz(a, t) prey nourishes predator



NEXT TOPIC — Population Dynamics

“Aging” predator-prey:

oxi(a,t)  dxi(a,t)

A
(/ gi(a)xy(a, t)da + u(t) )xl(a, 1) predator kills prey
0

ot ada
t 1
9x:(a. 1) = -G = + u(t) |x(at) prey nourishes predator
ot da Jy g2(@)xi (o t)da

Birth boundary conditions:
A
000 = [ k@ (anda
0

A
xz(O,t)=/0 k>(a)xy(a,t)da



NEXT TOPIC — Population Dynamics

“Aging” predator-prey:

oxi(a,t)  dxi(a,t)
o da

A
(/ gi(a)xy(a, t)da + u(t) )xl(a, 1) predator kills prey
0 Kiis

oxy(a,t)  oxz(a,t)
a da

1 ,
3 + u(t) |x2(a,t) prey nourishes predator
Jo 92(e)x1(et, t)dax

Birth boundary conditions:
A
000 = [ k@ (anda
0

A
xz(O,t)=/0 k>(a)xy(a,t)da

ecology e epidemiology e opinion dynamics e amortization of assets (in DoD)



NEXT TOPIC — Population Dynamics
“Aging” predator-prey:

ax) (a, t ax1 (a, t A
xi(a,1) =— xi(at) (/ gi(a)xy(a, t)da + u(t) )xl(a, t) predator kills prey
A s

ot da

axy(a,t axy(a, t 1
x2;a ) __ xza(a ) _ . + u(t) |x2(a,t)  prey nourishes predator
t a Jy g2(@)xi (o t)da

Birth boundary conditions:
A
xl(O,t)=/ ki(a)xi(a,t)da
0
A
xz(O,t)=/ ky(a)x2(a, t)da
0
ecology e epidemiology e opinion dynamics e amortization of assets (in DoD)

Hard: common input



Open loop — Oscillation (an order of magnitude)

Prey Density z1(a,t) Predator Density x2(a,t)

4000 200

150
100
50

2000




Closed loop — Settle to setpoint

(overpopulation transient necessitated by control positivity constraint)

Predator Density z2(a, t)

Prey Density z1(a,t)

*
i

1250
1000
750
500
250

Dilution u(t)
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