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❑ Classic optimization:

❑ The area of convex optimization is rich, 

and the area of non-convex optimization 

is at the core of AI. 

❑ What if we have a sequence of functions 
to minimize? 

…

❑ In online optimization, we often assume that we do not know the current 

function until we select a solution, and so there is a delay. 
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❑ If we treat this as T separate problems, it becomes classic optimization.

❑ However, in sequential decision-making, the functions are related to each 

other:

✓ Gradual change in function:

✓ Gradual change in solution:

❑ In classic optimization, computational complexity is well studied through the 

notions of convex optimization, number of spurious solutions, etc.

❑ How to measure the computational complexity of a sequence of problems 

rather than a single one? 

Global minima
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❑ Motivating example: Time-varying optimal power flow

Average daily data for 
California in Jan. 2019

Many local minima at different times

Start at a local min, 
but tomorrow the 

same time, the 
solution is global.

Online trajectories converge 5
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❑ Examples of contours of a sequence of bivariate functions, showing regions of 

attraction of different local minima:

❑ Hard problem at time 2 and easy problem at time 5.

❑ Question: If there is a single easy problem in the sequence, will it break down 

computational complexity in the future of the sequence?
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❑ Assumed we have already solved:

❑ To solve                    ,  we do the following:

➢ Use a local search algorithm initialized at last optimal solution.

➢ Generate a number of random initial points and run local search.

➢ Select best solution obtained from random initialization and historical 

initialization.  

❑ More general case: Sequential decision-making subject to constraints

❑ Assume objective function is non-convex while feasible set is convex. 

❑ Our approach: ODE models of numerical algorithms 
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❑ Polyak-Łojasiewicz inequality for unconstrained problems: 

❑ This is more general than convex optimization but still makes the problem 

tractable.

❑  Proximal Polyak-Łojasiewicz inequality for constrained problems: 

    where 

❑ Control theory can be used to study the above inequality. 
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❑ Note that

❑ Gradient ODEs are well studied but projected gradient ODEs are less studied.

❑ Proximal-PL region: 

projected gradient flow system

Projection on tangent cone
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❑ Consider a subset of the discrete RoA contained in the proximal-PL region: 

❑ Consider a subset of the continuous RoA contained in the proximal-PL region: 

❑ We care about intersection of both ROA-type regions and call it a target region.

❑ By studying the projected gradient ODE, we proved quadratic growth over target 

region:

❑  Also, if projected gradient is initialized in the target region, we obtain a linear 

convergence for every iteration N:
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❑ Illustration of different types of regions of attractions: 

Grey region: Proximal-PL region Yellow region is where control 
theory is useful for analysis
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❑ In sequential decision-making, N cannot be chosen a large number since we 

need to move on whenever a new problem arrives:

Can’t fully 

optimize due 
to deadlines

Theorem: If the initial point is 

the target set of problem at some 

time t=k, the future points 

generated by Algorithm 1 will all 

remain in the target sets of 
problems at t=k+1,k+2,…,T.



Online Optimization 

13

❑ Define the notion of dynamic regret:

❑ We want to prove that the regret for a large T depends on the first time we 

observe an easy problem in the sequence.

❑ If the problem at time t=1 is easy, then 

❑ This is the first result in the literature in the non-convex case.

❑ Can we improve it by generating random initial points?

Solution returned by Algorithm 1 
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Main idea: To solve problem at 

time t, use the solution at time t-

1 and a number of randomly 

generated points since problem t 

could be far away from problem 
t-1. 

❑ We can relate regrets at two different times:

Probability due to 
random exploration

This measures how big the target set is compared to the feasible set
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❑ If this is 1 at a single time, 

the probability becomes 1 

and so the regret stops 

growing. 

❑ The value of this being 

close to 1 or 0 measures the 

complexity of a single 
problem

❑ The above formula shows how the complexity of each problem in the sequence 

affects the complexity of the entire sequence.

❑ A single problem in the sequence breaks down the complexity. 

❑ Our proofs depend on analysis of continuous-time ODEs.



Outline 

16

❑ Online optimization

➢  Introduce sequential decision-making

➢  Connection to projected gradient ODEs

➢  Study dynamic regret

❑ Online learning (joint work with Eduardo Sontag)  

➢ Study learning of nonlinear systems under adversaries

➢ Bounded and Lipschitz cases 



Adversarial attacks 

Online Learning 

17

Leaning x(t) from y(t) 
is studied in ML 

extensively

Measurements Dynamics 

x(t) is manipulated 
and existing tools in 

ML do not apply 
directly

?

Learning
(learn f, h and w)

Control
(optimal u)
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❑ Motivating example:

➢ Consumers report their demands to 

suppliers

➢ If the data is hacked, producers 

over-supply electricity

➢ This is an input-type attack and 

makes the dynamical system 
experience a cascading failure. 

➢ Due to complexity of smart grids, we 

do not have models of all EVs, 

DERs, social behavior, etc. and so 
we should learn the model and 

possible attacks together. 
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❑ We write the unknown dynamics as a sum of nonlinear basis functions:

❑ We use a non-smooth estimator: 

❑ We assume that the attacker can attack the input with probability p at each 
time, and that the attack value is arbitrary (as long as it is stealth) 

Vector of chosen 
basis functions

Unknown 
disturbances

Need to learn this
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❑ Bounded case:

❑ Theorem: For every 𝛿 < 1, with probability at least 1 − 𝛿 the estimator 
recovers the correct dynamics if 

❑ This is the first result in the literature saying that exact recovery is possible 

even when p goes to 1 meaning that the system is constantly under attack.

❑ Can the bound be improved significantly? No, there is a counter example with 

a high probability if 
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❑ Lipschitz case:

❑ Assume a stability-type condition:

❑ Theorem: For every 𝛿 < 1, with probability at least 1 − 𝛿 the estimator 

recovers the correct dynamics if 

❑ If stability is violated, there are counterexamples showing the failure of the 

estimator. 
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❑ Online optimization

➢  Connection to projected gradient ODEs

➢  Study dynamic regret

➢ On easy problem in the sequence breaks down the 
complexity of the sequence

❑ Online learning (joint work with Eduardo Sontag)  

➢ Study learning of nonlinear systems under adversaries

➢ Bounded and Lipschitz cases: First results in the literature
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