
Geometric Adjoint Sensitivity
Analysis for Lie Groups and PDEs

Melvin Leok
Mathematics, University of California, San Diego

Joint work with Ben Southworth and Brian Tran

AFOSR Dynamical Systems and Control Theory Review
BRICC, Arlington VA, August 2024

Funded by AFOSR FA9550-23-1-0279

mleok@ucsd.edu
http://mathweb.ucsd.edu/˜mleok/

NSF DMS-1813635 ●CCF-2112665 ●DMS-2307801
AFOSR FA9550-18-1-0288 ●FA9550-23-1-0279
DoD Newton Award ●Simons Fellowship



2

Introduction and Motivation

∎ Adjoint Systems

● Adjoint systems and their geometric discretization provide an effi-
cient method of computing the parametric sensitivity of maps from
a high-dimensional parameter space to a low-dimensional space.

● Such problems arise naturally in adjoint sensitivity analysis, adap-
tive mesh refinement, uncertainty quantification, automatic differ-
entiation, superconvergent functional recovery, optimal control, op-
timal design, optimal estimation, and the training of neural ODEs.

●Most of these applications involve adjoint systems that arise from
differential equations. We generalize to differential equations on Lie
groups, differential-algebraic equations, and evolutionary PDEs,
and how discretizations of the adjoint system can be constructed
so that discretization commutes with forming adjoints.
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Sensitivity Analysis

∎ Problem Statement

● Sensitivity analysis determines how an objective function, such
as a terminal or running cost, subject to the flow of an ODE or
DAE, with respect to a perturbation in the initial condition.

● Given a terminal cost C(q(tf)), and an ODE q̇ = f(q) on a man-
ifold M with initial condition q(0) = q0, the sensitivity question is
how does the cost change infinitesimally if the initial condition is
perturbed by δq0?
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Sensitivity Analysis

∎ Direct Method

● The direct method involves the variational equation,

q̇ = f(q), v̇ =Df(q)v,
which is an ODE on TM corresponding to the tangent lift of f .

● The sensitivity induced by δq0 is

δC(tf) = ⟨∇qC(q(tf)), v(tf)⟩,
where we have chosen the initial conditions q(0) = q0, v(0) = δq0.
● For many optimal control problems, we are interested in finding
the δq0 that induces a desired sensitivity δC(tf).
● Computing this involvesO(N) integrations of the variational equa-
tions, where N is the number of design parameters. This is pro-
hibitive when N is large.
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Sensitivity Analysis

∎ Adjoint Method

● The adjoint system is given by

q̇ = f(q), ṗ = −[Df(q)]∗p,
which is the cotangent lift of f ∈ X(M) to f̂ ∈ X(T∗M).
● The solution curves (q, p) of the adjoint system and (q, v) of the
variational system that cover the same base curve q satisfy an
adjoint-variational quadratic conservation law,

d

dt
⟨p, v⟩ = 0.

● Given Type II boundary conditions q(0) = q0, p(tf) = ∇qC(q(tf)),
the quadratic conservation law implies that δC(tf) = ⟨p(0), δq0⟩.
● This requires O(NC) integrations, where NC is the number of cost
functions. The adjoint methods is advantageous when NC ≫ N .
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Geometric Characterization of Adjoint Systems

∎ Formal Hamiltonians and Adjoint Equations

● The adjoint system can be viewed as a Hamiltonian system on
T∗M , in terms of a formal Hamiltonian H ∶ T∗M → R,

H(q, p) = ⟨p, f(q)⟩.

● The adjoint system is precisely the Hamilton’s equations for the
formal Hamiltonian with respect to Ω = dq ∧ dp, i.e., i

f̂
Ω = dH .

● The Hamiltonian flow is symplectic, and symplecticity implies the
quadratic conservation law. Symplecticity states that along a so-
lution curve of the adjoint system, d

dtω(V,W ) = 0, where V and
W are first variations to the adjoint system. For first variations
V = v ∂/∂q and W = p∂/∂p, we have that ω(V,W ) = ⟨p, v⟩,
which implies that ⟨p, v⟩ is preserved.
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Geometric Characterization of Adjoint Systems

∎ Type II Variational Principle

● Type I boundary conditions do not make sense for adjoint sys-
tems. In general, Type II boundary conditions do not make in-
trinsic sense, as one cannot specify a covector without specifying
a basepoint. But since adjoint systems cover an ODE, given q0,
integrating the ODE gives q1 = Φtf(q0).
● The intrinsic Type II variational principle is given by,

δ∫
tf

0
[⟨p, q̇⟩ −H(q, p)] = δ∫

tf

0
⟨p, q̇ − f(q)⟩dt = p(tf)δq(tf),

with Type II boundary conditions,

q(0) = q0, p(tf) = dC(q(tf))∣q(tf) = Φtf(q0).
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Geometric Characterization of Adjoint Systems

∎ Continuous Adjoint Systems for DAEs

● Consider a DAE,

q̇ = f(q, u), 0 = ϕ(q, u),
with dynamic variables q and algebraic variables u.

● The formal Hamiltonian is given by,

H(q, u, p, λ) = ⟨p, f(q, u)⟩ + ⟨λ,ϕ(q, u)⟩,
and the adjoint system is,

q̇ = ∂H
∂p
= f(q, u), ṗ = −∂H

∂q
= −[Dqf(q, u)]∗p − [Dqϕ(q, u)]∗λ,

0 = ∂H
∂λ
= ϕ(q, u), 0 = −∂H

∂u
= −[Duf(q, u)]∗p − [Duϕ(q, u)]∗λ.
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Geometric Discretization of Adjoint Systems

∎ Geometric Integration of Adjoint Systems for ODEs

● Sanz-Serna showed that discretization commutes with adjoints is
the adjoint system is integrated with a symplectic Runge–Kutta
method that covers the original Runge–Kutta method.

● This discretization preserves a discrete quadratic conservation law,
and the following diagram commutes,

ODE Discretize //

Adjoint

��

Runge–Kutta
discretization

Adjoint

��

Adjoint System Discretize
// Symplectic
partitioned RK

● Analogous to the Ross–Fahroo lemma in optimal control, where
dualization and discretization commutes for covector mappings.
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Geometric Discretization of Adjoint Systems

∎ Geometric Integration of Adjoint Systems for DAEs

●We extended this to index-one DAEs using presymplectic geometry,
and showed the index is the iterations necessary for the Gotay–
Nester–Hinds algorithm1 to reduce the presymplectic system.

Index 1 DAE ODE

Discrete DAE Discrete ODE

Presymplectic Adjoint
DAE System

Symplectic Adjoint
ODE System

Presymplectic Galerkin
Hamiltonian Variational

Integrator

Symplectic Galerkin
Hamiltonian Variational

Integrator

Reduce

Reduce

Adjoint Adjoint

Reduce

Reduce

Adjoint Adjoint

Discretize
Discretize

Discretize Discretize

1an alternating projection method for finding P ⊂ T ∗Q, such that: (i) Hamilton’s equations are consistent; (ii) they define a vector field tangent to P
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Geometric Discretization of Adjoint Systems

∎ Variational Discretization of Lagrangian Systems

●Discrete Lagrangian

Ld(q0, q1) ≈ Lexact
d (q0, q1) ≡ ext

q∈C2([0,h],Q)
q(0)=q0,q(h)=q1

∫
h

0
L(q(t), q̇(t))dt.

●Discrete Hamilton’s principle

δSd = δ∑Ld(qk, qk+1) = 0,
where q0, qN are fixed.

●Discrete Euler-Lagrange equation

D2Ld(qk−1, qk) +D1Ld(qk, qk+1) = 0,
which is equivalent to,

pk = −D1Ld(qk, qk+1), pk+1 =D2Ld(qk, qk+1).
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Geometric Discretization of Adjoint Systems

∎ Variational Discretization of Hamiltonian Systems

● A Hamiltonian H ∶ T∗Q → R is degenerate if the Legendre
transformation FH ∶ T∗Q→ TQ, (q, p) ↦ (q, ∂H/∂p), is non-
invertible. The formal Hamiltonian is degenerate.

● This obstructs the construction of variational integrators for degen-
erate Hamiltonian systems by traversing via the Lagrangian side.

H(q, p) FH //

��

L(q, q̇)

��

H+
d
(q0, p1) Ld(q0, q1)

FLdoo

● The goal is to construct discrete Hamiltonians directly,
so that the diagram commutes for hyperregular Hamiltonians.
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Geometric Discretization of Adjoint Systems

∎ Exact Discrete Hamiltonian

● The exact discrete Lagrangian is a Type I generating function,

Lexact
d (q0, q1) ≡ ext

q∈C2([0,h],Q)
q(0)=q0,q(h)=q1

∫
h

0
L(q(t), q̇(t))dt.

● Continuous Legendre transform to obtain L(q, q̇) = pq̇ −H(q, p).
● Discrete Legendre transform for a Type II generating function,

H+d,exact(qk, pk+1) =

ext
(q,p)∈C2([tk,tk+1],T ∗Q)
q(tk)=qk,p(tk+1)=pk+1

p(tk+1)q(tk+1) − ∫
tk+1

tk
[pq̇ −H(q, p)]dt.

● Choose an approximation space for Q (not T∗Q) and quadrature.
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Adjoint Systems on Lie Groups

∎ Adjoint Systems on Lie Groups I

●Many optimization and optimal control problem occur on Lie groups.

● Given an ODE ġ = F (g) on a Lie group G, the adjoint system is
an ODE on T∗G, and we can make sense of the Type II variational
principle globally via left or right trivialization.

●With respect to a left-trivialization of T∗G, (g, p) ↦ (g, µ) =
(g, g∗p) ∈ G × g∗, the adjoint system has the form,

ġ = F (g), µ̇ = −g∗ ⋅ [Df(g)]∗µ + ad∗f(g)µ,

where f(g) = g−1F (g).
●More generally, we developed a Type II variational principle for
any Hamiltonian system on T∗G.
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Adjoint Systems on Lie Groups

∎ Adjoint Systems on Lie Groups II

● The left-trivialized formal Hamiltonian is h(g, µ) = ⟨µ, f(g)⟩.
● The Lie–Poisson equations hold on G × g∗,

ġ = g ⋅Dµh(g, µ),
µ̇ = −g∗ ⋅Dgh(g, µ) + ad∗Dµh(g,µ)µ,

with Type II boundary conditions, g(0) = g0, µ(tf) = µ1.
∎ Geometric Discretization

● The discrete Lie–Poisson adjoint equations are,

(dτ−1∆tξk+1
)∗mk+1 − Ad

∗
τ(∆tξk)

(dτ−1∆tξk
)∗mk = −∆tg∗k[Df(gk)]∗mk+1,

ξk+1 = f(gk),
gk+1 = gkτ(∆tξk+1).
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Adjoint Systems for Evolutionary PDEs

∎ Adjoint Systems for Evolutionary PDEs

● Consider a semilinear evolution equation of the form,

q̇(t) = Aq(t) + f(t, q(t)), q(0) = q0.
● To view the adjoint system of this as an infinite-dimensional Hamil-
tonian system, we consider time-dependent Hamiltonian systems,

iXH
(Ω − dH ∧ dt) = 0,

where Ω is the pullback of the spatial symplectic form to spacetime.

● The adjoint Hamiltonian is H(t, q, p) = ⟨p,Aq + f(t, q)⟩.
● The adjoint system is

q̇ = Aq + f(t, q), ṗ = −A∗p − [Df(t, q)]∗p.
● As before, there is an adjoint-variational quadratic invariant.
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Adjoint Systems for Evolutionary PDEs

∎ Spatial Semidiscretization

● {φi}
dim(Xh)
i=1 is a basis for Xh, and {lj}

dim(Xh)
j=1 is a basis for X∗

h
.

● A Galerkin semidiscretization is specified by an approxima-
tion q(t) ≈ ∑iq

i(t)φi satisfying,
⟨lj, q̇i(t)φi − qi(t)Aφi − f(t,qk(t)φk)⟩ = 0, j = 1, . . . ,dim(Xh),
● Let M and K denote mass and stiffness matrices,

Mji = ⟨lj, φi⟩, Kji = ⟨lj,Aφi⟩,
and the semidiscretized semilinear term is

f j(t,q) = ⟨lj, f(t,qkφk)⟩.
Then,

M
d

dt
q =Kq + f(t,q).
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Adjoint Systems for Evolutionary PDEs

∎ Naturality of the Full Discretization

● The continuous, semidiscretization and full discretization, and their
quadratic conservation laws, are related as follows,

q̇ = g q̇ = g
ṗ = −[Dqg]∗p

d
dt⟨p, δq⟩ = 0

q̇ =M−1g
q̇ =M−1g

ż = −[Dqg]TM−Tz

q̇ =M−1g

ṗ = −M−T [Dqg]Tp
d
dt⟨p, δq⟩M = 0

qn+1 = Φ∆t(qn)
qn+1 = Φ∆t(qn)

zn+1 = T ∗SΦ−1∆t(zn)
qn+1 = Φ∆t(qn)

pn+1 = T ∗MΦ−1∆t(pn)
⟨pn+1, δqn+1⟩M
= ⟨pn, δqn⟩M

Adjoint

S (S,S∗)

AdjointS

AdjointM

Φ∆t (Φ∆t,T
∗SΦ−1∆t)

z=MTp

(Φ∆t,T
∗MΦ−1∆t)

AdjointS

AdjointM

similarity
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Application of Geometric Adjoint Sensitivity

∎ Training of Neural ODEs

● Residual and recurrent neural networks can be modeled as

xt+1 = xt + g(t, xt,W (t)),
and viewed as a discretization of an ODE, ẋ = g(t, x(t),W (t)).
● Symplectic discretization of the adjoint system of the neural ODE is
an alternative to backpropagation using automatic differentiation.
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Summary and Future Directions

● Adjoint systems have a Hamiltonian structure and Hamiltonian
variational integrators allow the direct and indirect approach to be
equivalent for DAEs and evolutionary PDEs. The geometric dis-
cretizations of the adjoint system can be constructed using Hamil-
tonian variational integrators.

● Such methods can be used to train physics-informed neural net-
works, and neural PDEs. Many novel structured neural network
architectures can be viewed as the discretization of an ODE with
geometric invariants, for which these methods are also applicable.

● It would be interested to study these properties in terms of Dirac
mechanics and geometry, and to consider the generalization to
multi-Dirac field theories and geometry for the geometric adjoint
sensitivity analysis of PDEs.
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