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Population Games: Concept and Motivation

Framework for modeling noncooperative strategic interactions for large popula
tions of agents.

( . \
Basic tenets:

e Large number of nondescript agents grouped into populations.
e Agents select and repeatedly revise strategies.

e Fach strategy has a payoff (reward or cost).

e Payoff mechanism ascribes vector of payoffs.
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Population Games: Concept and Motivation

Textbook with many examples

William H. Sandholm

FExample: traffic assignment
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Population Games: Concept and Motivation

The Role of Population
Games and Evolutionary
Dynamics in Distributed

THE ADVANTAGES OF
EVOLUTIONARY GAME THEORY

NICANOR QUIJANO, CARLOS OCAMPO-MARTINEZ,
JULIAN BARREIRO-GOMEZ, GERMAN OBANDO,
ANDRES PANTOJA, and EDUARDO MOJICA-NAVA

ecently, there has been an

increasing interest in the con-

trol community in studying

large-scale distributed systems

Several techniques have been
developed 1o address the main challenges
for these systems, such as the amount of infor-
mation needed to guaranice the proper operation
of the system, the economic costs associated with the
rixuired communikation strcture, and the high compu-
tational burden of solving for the control inputs for large-
scale systerma

One way to overcome such problems is to use & mulli-

agent systems framework, which may be cast in game-the-
oretical terms; Gamw theory studies interactions between
self-interested agents and tackles the problem of Interac-
tion among agents using different trategies who wish to
maximize their welfare. For instance in |1, the conmections
are provided among games, optimization, and learning for
signal processing in networks Other approaches, in terms
of learning and games. can be found in [2]. In [3], distrib-
uted computation algerithms are developed based on gen-
eralized convex games that do not require full information
and where there is a dynamic change in terms of network

g al Ot bk

70 (EEE CONTROL STSTEMS MACAZINE 2 FEBRUARY 217

Control systems

topologies. Applicatons of game theory in control of opti-
cal networks and game-theoretic methods for smart grids
are described in [4]-[6]. Another appraach in game-theoret
lcal methods s to design protocols or mechanisms that
possess some destrable properties [7]. This approach leads
to a broad analysis of multiagent interactions, particularly
those involving negotiation and coordination problems [§]
Other game-theoretical applications to engincering are
reported in [9)

From a game-theoretical perspective, there are three
types of games: matrix games, continuous games, and

VS-S0 T KR

magazine, 2017

voltage-source inverters, are connected to loads through an
inverter. The magnitude and Frequency of the output voltage
are controlled by means of a droop-gain controller [64), For
maore details about this approach, see [26] and references
therein. An illustrative general scheme s presented in
Figure B for a microgrid with seven DGs (DG 1, DG 2, .,
DG 7) and several Ionds connected in a electrical topology
adapted from the IEEE 30-bus distribution system.

At the higher kevel of the microgrid control architec-
ture, is a control strategy that dynamically dispatches
active power setpoints. This controller has to generate the
power setpoints based on economic criteria. In this model,

the production costs of active power and load demands
are considensd as external inputs coming from the lower-
level control to the micrognid central controller, where the
dynamic dispatch based on replicator dynamics is being
executed. This fact implies that costs and load demands
could be ime varying, allowing the inclusion of renew-
able-energy resources, The main focus here is on the
higher level of the microgrid, where the dynamic dispatch
is executed The maximization of utility functions for the
EDP is adopted, including active power generation by
means of voltage-source mverters connected to DGs at &
lower level. The EDP can be formulated as
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FIGURE B A micrognd test system with sevan distnbuted generators and several loads. {a) An il strative general scheme of a micrognd
model adapted from an IEEE 30-bus distribution system and (b} a graph repmsenting the topalogy of the comemunication netwark
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Dynamic Economic Dispatch for Microgrids



Basic Formulation

Without loss of generality we consider a single population

Strateqy set for the population is {1,...,n}

Population state

x1(t) x;(t) is the portion of the population
selecting strateqy v at time t.

T, (t) We assume unit mass >, _, x;(t) =1



Basic Formulation

Without loss of generality we consider a single population

Strateqy set for the population is {1,...,n}

Population state

x(t) =

x1(t) x;(t) is the portion of the population
selecting strategy v at time t.

T, (t) We assume unit mass >, _, x;(t) =1

Example forn =3 and N = 100

(0.25] e strategy 1
gp(t*) = 10.25| e strategy 2
0.5 | e strateqy 3

population state at time t*

~
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Basic Formulation

_:cl(t)_ x;(t) is the portion of the population
selecting strategy v at time t.
CB(t) — . g 9Y
T, (t) We assume unit mass > ., _, x;(t) =1

strateqy profile set X% {az c R? ij =1 }
j=1




Basic Formulation

_le(t)_ x;(t) is the portion of the population
selecting strategy v at time t.
CE(t) — . g 9Y
T, (t) We assume unit mass > ., _, x;(t) =1

strateqy profile set X% {az c R? ij =1 }
j=1

4 R
The payoff of a population game is specified as follows, where F : X — R"
1s a continuously differentiable map.

p1(t)

pn.(t)

pi(t) is the payoff of strategy i at time t




Basic Formulation

Example: 3-strategy congestion game
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D; : X = R is delay as a C! increasing function of utilization in link i

strategy 1 /\ Fi(z) = =Di(z1 + x2) — D2(z1)

strategy 2 /l/ Fao(x) = =Di(z1 + x2) — Da(w2 + x3) — D5(2)

strateqy 3 \/ F3(z) = —Ds(x3) — Da(w2 + z3)



Mean Dynamaics

Deterministic approximation for large population limit (N — o0)

% , Population Game p 2
= p(t) = F (z(1)) )
e

3 s
IS s,
g : &
S mean_dynamics 3
s s
S Evolutionary Dynamics Model <
S ] 3
s @ z(t) = V(z(t),p(t)) (EDM) =

i
z(0)



Mean Dynamaics

Deterministic approximation for large population limit (N — o0)

% , Population Game p 2
5 p(t) = F (x(1) 3
e

3 s
IS s,
g : &
S mean_dynamics 3
s s
S Evolutionary Dynamics Model <
S ] 3
s @ z(t) = V(z(t),p(t)) (EDM) =

T
z(0)

me learning rule to EDM

t; = Vi(z,p) : Zaz]ﬂxp (ZT a:p)

reX, peR” 1<i<n
(probabilistic model of learning rule




Mean Dynamaics

§ Population Game p =S
= p(t) = F (2(1)) ;
5 mean dynamics Flow interpretation
s 3
S Evolutionary Dynamics Model |, <
§ x z(t) = V(x(t),p(t)) (EDM) [ S+

T

x(0)
inflow switching to strategy 1 outflow switching out of strateqy 1

tching to strateqy t tching out trateqy
n n
z; = Vi(x,p) == Zxﬂ};(ﬂ?,p) = Li (Zﬁj(ﬂf,p))

reX, peR" 1<i1<n



(EDM) Evolutionary dynamics model

The Stability of a Dynamic Model
of Traffic Assignment—An Application
of a Method of Lyapunov

MICHAEL J. SMITH
Department of Mathematics, University of York, Heslington, York, England

This paper considers a dynamic model of traffic assignment in
which drivers change their route choices to take advantage of
cheaper routes. Using a method due to Lyapunov, we show that
if the cost-flow function is monotone and there are no explicit
capacity restrictions then any solution trajectory of our dynamical
system converges to the set of Wardrop equilibria as time passes.

INTRODUCTION
THE: paper considers a dynamical model of route-choice. We apply a
method of Lyapunov to show that the set of Wardrop equilibria is
nonempty and that our dynamical model converges to the set of Wardrop
equilibria as time passes, whatever starting flow is chosen, provided the
cost-flow function is monotone and smooth.

The dynamical model considered here is an appropriate starting point
for a more wide-ranging study of stability in traffic assignment.

It is clear that stability questions are important in real life, and hence
that the traffic analyst should be concerned with dynamics even when
demand does not vary with time. For instance, unstable traffic equilibria
are unlikely to persist in practice and so the analyst should check on the
stability of his theoretical solutions to an assignment problem. Or, again,
the possibility of many solutions to an equilibrium problem forces the
analyst to consider the dynamics resulting from different starting, or
initial, assignments so as to determine whether there are multiple equi-
libria and, if so, to determine those equilibria which are likely to arise in
practice. As a final example, dynamical considerations are also essential
if it is thought that there is more than one equilibrium, that one
equilibrium is better (in some sense) than others, and that control
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j=1 j=1
reX, peR” 1<i<n

- ™
(Smith EDM) The Smith EDM is specified by
the following Smith IPC' learning rule:
T5m " (2,p) == [p; —pil+, PER", zeX
Vit (z, p) = Zfﬁj pi — pily — Z[pj — Pil+ | @i

j=1 j=1
N J




Nash Equilibria

[Avemge population payoff is a:T]:(xﬂ

Definition of NE for a game F:
[NE(I) = {zeX | 2TF(z) > 5T F(z), & € XB

Joh Nash



Nash Equilibria

{Avemge population payoff is ZIZ‘T.F(ZIS)J

Definition of NE for a game F:
[NE(I) = {zeX | 2TF(z) > 5T F(z), & € XB

,

J oh;v, Nash

e From Kakutani’s fixed point Theorem, NE(F) # ().

e Wardrop-type representation of Nash equilibria:

1<j<n

N]E(.F) = {CE ceXl|lz; >0 = .Fz(ib) = maXx .7-—3(:1:)}

e Finite sub-pop. do not gain from deviating from NE(F).

e Admit refinements based on evolutionary concepts, such as:

GESS(F):={zecX | (z—y) ' F(y) >0,y € X - {z}}



Nash Equilibria

LA'Uemge population payoff is xT]:(a:)J

Definition of NE for a game F:
[NE(I) = {zeX | 2TF(z) > 5T F(z), & € XB

John Nash
For potential games (F = V f) [Sandholm, J. Econ. Th., ’01]:
o NE(F) = KKT(f) := {z satisfies KKT for max,cx f(x)}.

o If the game is homogeneous of degree k # —1 and f is concave then NE(F)
is socially optimal.

o If z* € relint(GESS(F)) then 2/ DF(x2*)z < 0 for € TX — {0}, i.e., f is
locally concave at x* in X.

— 2" is local maximum of f.



Well-Behaved Learning Rules

mean population state

Population Game p

[Avemge population payoff is ZBT.F(QZ)J

pt) = F (x(t))

mean dynamics Definition of NE for a game F:

Evolutionary Dynamics Model |,
i(t) = V(z(t),p(t)) (EDM) |

Jfofind ovpsruruasagop

F):={zecX|2TF(z) > T F(z), % € XB

Z,
=

T
x(0)

Well-behaved learning rules sa,tzsfy

f Nash stationarity

V(z,p) =0 <= x € argmaxZ'p
L zeX Y
4 )

Positive correlation

V(z,p) # 0 <= p'V(x,p) >0




Well-Behaved Learning Rules

Tellegen-type interpretation of positive correlation

€ p'V(x,p) = Z(Pz —p;i)(;Tji(z,p) — x;Ti5(x, p))
\ i>j sz’ Iji
Bernard D. H. Tellegen N - (net flow from j to i) P /s
N Lj; s -
O @
- Usji N
e N

(potential difference)



Well-Behaved Learning Rules

Tellegen-type interpretation of positive correlation

p'V(z,p) = Z(pz — pi)(z;Tji(z,p) — z:Tij(x,p))
>3 Uy L

Bernard D. H. Tellegen (net flow from j to i)

D=0

(potential difference)

Sufficient condition for positive correlation

Ijini > (0 and (Ijz # 0 — Ijini > 0)




Well-Behaved Learning Rules

Tellegen-type interpretation of positive correlation

p'V(z,p) = Z(pz — pi)(z;Tji(z,p) — z:Tij(x,p))
>3 Uy L

Bernard D. H. Tellegen (net flow from j to i)

L

Tellegen’s theorem when: @2 @
KCL < =0 Uiji
(potential difference)

Sufficient condition for positive correlation

Ijini > (0 and (Ijz # 0 — Ijini > 0)




Well-Behaved Learning Rules

Well-behaved learning rules satisfy:

§ Population Game p =S
Nash stationarity : p(t) = F (2(t)) :
— 0 e 7 5 . s
Viz,p) =0 v CargmaxTp E] mean dynamics g
- N = 3
Positive correlation g Evolutionary Dynamics Model |, <
/ B &(t) =V(z(t),p(t)) (EDM) [ =
V(z,p) # 0 <= p'V(z,p) >0 -
) ’ 2(0)

Examples include:

e Pairwise comparison rules (with ¢;;(7) = 0if 7 <0, ¢;;(7) > 0 otherwise):

[733'(1‘,1?) = ¢ij(pj — Pz‘)]

e Imitation protocols in the interior of X (includes replicator v;;(7) = [7]+):

[ﬁj(x,p) = z;%i;(p; —pi)j

e Excess payoff target protocol (includes best response approximations):

[7?'3'(377]0) = ;;(P), Pj =p;— ﬂ?Tp]

e Hybrid rules formed as conic combinations.



Well-behaved rules € potential games

William H. Sandholm,” Potential Games with Continuous Player Sets,” Journal
of Economic Theory, Volume 97, Issue 1, 2001, Pages 81-108.

F 1s potential

A = opulation Game b .
Nash stationarity 3 szf)l:t ]-"(a:czt)) 3
V(z,p) =0 <= x € argmax T’ : :
— = S
P s ) & H F=Vf z
2\ S 3
Positive CO’I“’I"elat’l;O’n, S Evolutionary Dynamics Model |, %
, | a0 = Ve @) [TTS
V(z,p) # 0 <= p'V(z,p) >0 T
g z(0)

THEOREM

[ x(t) — NE(F) = KKT(f) }

t— 00

evolutionary Nash equilibrium learning



Well-behaved protocols € potential games

3

Population Game
p(t) = F (2(1))

~N

Nash stationarity
V(z,p) =0 <= x € argmaxi'p

L zeX ) &

/ . . . \

POS’[,t’[,’Ue CO’I"’I"@ZCLt’],O’I’I, Evolutionary Dynamics Model |,
i(t) =V(z(t),p(t)) (EDM) [

V(z,p) # 0 < p'V(z,p) >0 :
g z(0)

F=Vf

[ofind oysrurwaoiop

mean population state

8

[ z(t) — NE(F) = KKT(f) 1

t— 00

Proof:
G (@) = Vf(x(t)(t) = pt)V(x(t),p(t)),
where p(t) = F(x(t)). O

- )
Relevant observations:

e No need to precisely know 7.

e If f is concave then NE(F) = arg max,cx f(x).

- J




Ezxploring 0 passivity

u:[0,00) > U { } y:[0,00) =Y

uceZ andy € ¢, where  and % are the input and output sets.

B:u—y

We assume all elements of  and % are differentiable a.e.

We assume u(t) and y(t) have the same dimension, so we can write v’ (t)y(t)

TS, Fox MJ, Shamma JS. Population Games, Stable Games, and Passivity.
. Games. 2013; 4(4):561-583.

The system & is 0-passive when:

T
inf V() dt —
TS0 e /O BEpEE > —es




Allowing Dynamics In Payoff Mechanism

S:X—Dp

Payoff Dynamics Model
—>|  q(t) =G (q(t), u(?))
p(t) = H(q(t),u(t)) O

P

Evolutionary Dynamics Model
& z(t) = V(xz(t),w(t)) (EDM)

T

(0)

mean population state
Jodnd ousiuruiaop

Dynamics in the payoff mechanism allows:

e higher-order learning dynamics.
e modeling information dissemination.

e more flexible design (coupled dynamics).



Allowing Dynamics In Payoff Mechanism

S X p (Sandholm, 2001)
, Payoff Dynamics Model
—>| (1) =G (q(t), u(t))

p(t) = H (a(t), u(t)) ("M

Nash stationarity

‘ V(z,p) =0 < z € argmax@’'p
FEX

~
S

F=Vf

populat tat

Buolutionary Dynamics Model
a(t) = V(a(t), p(1)) (EDM)
T
z(0)

V(z,p) # 0 < p'V(z,p) >0

‘ Positive correlation ‘

z(t) — NE(F) = KKT(f)

t—o0

HJodod ousiunuiajap

Evolutionary Dynamics Model

mean population state

z #(t) = V(@(t), w(t)) (EDM) |G =p)
T Contractive Games
wil) (Hofbauer & Sandholm, 2009)
(¢~ )7 (Fla) — F(&)) <0
Dynamics in the payoff mechanism allows: @

e higher-order learning dynamics. S-passivity (Dynamic Payoffs)

(Fox & Shamma, 2013)
(Park, Martins, Shamma, tutorial 2019)

e more flexible design (coupled dynamics). (Arcak & Martins, 2021)

e modeling information dissemination.



Allowing Dynamics In Payoff Mechanism

Assuming well-defined F : X — R"
F(x) := limy_ o0 p(t),

S:X—Dp

& o =) Payoff Dynamics Model D g

S W0=5G010) ppu & for lim; oo u(t) =
: p(t) = H (a(0), u(0))

S <

< 3

S Evolutionary Dynamics Model s

27 | @) =V®),wt) EDM) [oop =

!
x(0)

Dynamics in the payoff mechanism allows:

e higher-order learning dynamics.
e modeling information dissemination.

e more flexible design (coupled dynamics).



Allowing Dynamics In Payoff Mechanism

Assuming well-defined F : X — R"
F(x) := limy_ o p(2),

S:X—Dp

v (u=2) Payoﬁ’ Dynamics Model D y f .
S —| @0 =6, uw) ] or limy_ ., u(t) = x
> (PDM) S o0
- (1) = H (g(t), u(t) .
\: % S. Park, N. C. Martins and J. S. Shamma, ”From Population Games to Payoff
%‘ = Dynamics Models: A Passivity-Based Approac,” 2019 IEEE 58th Conference
B E on Decision and Control (CDC), Nice, France, 2019, pp. 6584-6601.
S Evolutionary Dynamics Model =
3 . —5
S| i) = V@), w(t) EbM) [ -
Nash stationarity
T V(z,p)=0<=x € argrpeaécilp |

" | and l&l—& is 0 passwe]l

(EDM ) is & passive | ______

Dynamics in the payoff mechanism allows:|'\___"/Z — _ & 77"

e higher-order learning dynamics

e modeling information dissemination. v

e more flexible design (coupled dynamics). T (t) X N 4 ( Jl_ )
t— 00

evolutionary Nash equilibrium learning



d-Passivity And Coupling With Exogenous Dynamics

Y q(0)
v
(w=a)| 4(t) =G(q(t),u(?),y®)) | »

Coupled Dynamics
y(t) = D(y(t), z(t))

\ J

T Evolutionary Dynamics Model

mean population state
Jodnd suysiuiiajop

& T(f) - V(T(t) ’(U(t)) (EDM) (w = p)

x(0)

Goal: Given D and ”some structural knowledge” of V,
design G and H for which (x,y,q) is guaranteed to converge to
a desirable equilibrium set E*.




d-Passivity And Coupling With Exogenous Dynamics

Yy l q(0)
I

(w=a)| 4(t) =G(q(t),u(?),y®)) | »

Coupled Dynamics
y(t) = D(y(t), z(t))

opulation state
DUSIUIULIIIP

\ Progress made:

e N. C. Martins, J. Certorio, R. J. La,” Epidemic population
games and evolutionary dynamics,” Automatica, Volume 153,
2023. Discussed in last year’s review.

e J. Certorio, N. C. Martins and R. J. La, ” Epidemic Population
Games With Nonnegligible Disease Death Rate,” in IEEE Con-
trol Systems Letters, vol. 6, pp. 3229-3234, 2022.

e J. Certorio, N. C. Martins, R. J. La, M. Arcak, ”Incentive De-
signs for Learning Agents to Stabilize Coupled Exogenous Sys-
i tems,” to appear at CDC’24.




Generality of d-passive learning rules
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Passivity Tools for Hybrid Learning Rules in Large Populations

Jair Certoério®, Nuno C. Martins *, Kevin Chang ®, Pierluigi Nuzzo®, Yasser Shoukry ©

* Department of ECE and ISR, Unaversity of Maryland, College Park, MD, 20742, USA.
" Department of Electrical and Computer Engineering, University of Southern California, Los Angeles, CA, 90089, USA.

“Department of Electrical Engineering and Computer Science, University of California, Irvine, CA, 92697, USA.

Abstract

Recent work has pioneered the use of system-theoretic passivity to study equilibrium stability for the dynamics of noncoop-
erative strategic interactions in large populations of learning agents. In this and related works, the stability analysis leverages
knowledge that certain “canonical” classes of learning rules used to model the agents’ strategic behaviors satisfy a passivity
condition known as d-passivity. In this paper, we consider that agents exhibit learning behaviors that do not align with a
canonical clasa. Specifically, we focus on characterizing §-passivity for hybrid learning rules that combine elements from canon-
ical classes, Our analysis also introduces and uses a more general version of d-passivity, which, for the first time, can handle
discontinuous learning rules, including those showing best-response behaviors. We state and prove theorems establishing -
passivity for two broad convex cones of hybrid learning rules. These cones can merge into a larger one preserving d-passivity
in scenarios limited to two strategies. In our proofs, we establish intermediate facts that are significant on their own and could
potentially be used to further generalize our work. We illustrate the applicability of our results through numerical examples.

Key words: Distributed learning, evolutionary dynamics, system-theoretic passivity, multi-agent systems, asymptotic

stabilization.

1 Introduction

Developments in population games and evolutionary dy-
namics [1,2] have contributed to systematic methods to
model and analyze the dynamics of strategic noncoop-
erative interactions among large populations of learning
agents. Central to this approach is the use of learning
rules’ that model how agents update their strategies
over time based on the payoffs of those strategies, which
are in turn determined by a payoff mechanism, These
learning rules can be explicitly programmed in artificial
agents or rep t innate prefe sort led ratio-
nality in humans or other natural agents. This frame-
work is well-suited to distributed optimization [3] and
engineering systems |4, 5], where the payoff mechanisms

* This work was supported in part by AFOSR Grant
FAOGG0-23-1-0467 and NSF Grants 2139713, 2139781,
2139982, 2135361, and 1846524,

Email addresses: certorio€umd. edu (Jair Certério),
nmartinséund.edu (Nuno C. Martins), kcchang@usc. edu
(Kevin Chang), nuzzo@usc.edu (Pierluigi Nuzzo),
yshoukry®uci.edu (Yasser Shoukry).

! Often called revision protocols in the population game
literature,

might abstractly represent. the specifics of the agents' in-
teraction envir . such as in congestion games, or
are purposefully designed and impl d by a coor-
dinator to steer the population toward desired strategic
outcomes [6,7].

1.1 Studying Passiwity for Hybrid Learming Rules

System-theoretic passivity tools have been employed
to study how populations, adhering to certain learning
rules, achieve and maintain Nash equilibria—a process
often referred to as Nash equilibrium seeking. Pioneer-
ing work in [8] demonstrates that Nash equilibrium
seeking and convergence are achieved under contractive
payoff mechanisms if the learning rules are §-passive, a
concept inspired by classical notions of system-theoretic
passivity that has been generalized in [9, 10]. The con-
vergence results in these articles allow for dynamic pay-
off mechanisms and are not contingent upon the specific
learning rule employed, as long as it satisfies §-passivity,
often confirmed through structural analysis,

Recent research has shown that §-passivity can also
be used to systematically design dynamic payoff mech-
anisms to guarantee, vis Lyapunov analysis, global

Good news:

e O-passive rules form large convex cones.
— Include common hybrid rules.

e The cones include the best response rule.



Generality of 0-passive learning rules

arXiv:2407.02083v2 [math.DS] 16 Jul 2024

Passivity Tools for Hybrid Learning Rules in Large Populations

Jair Certoério®, Nuno C. Martins *, Kevin Chang ®, Pierluigi Nuzzo®, Yasser Shoukry ©

*Department of ECE and 1SR, Umversity of Maryland, College Park, MD, 20742, USA.

" Department of Electrical and Computer Engineering, University of Southern California, Los Angeles, CA, 90089, USA.

“Department of Electrical Engineering and Computer Science, University of California, Irvine, CA, 92697, USA.

Abstract

Recent work has pioneered the use of system-theoretic passivity to study equilibrium stability for the dynamics of noncoop-
erative strategic interactions in large populations of learning agents. In this and related works, the stability analysis leverages
knowledge that certain “canonical” classes of learning rules used to model the agents’ strategic behaviors satisfy a passivity
condition known as d-passivity. In this paper, we consider that agents exhibit learning behaviors that do not align with a
canonical clasa. Specifically, we focus on characterizing §-passivity for hybrid learning rules that combine elements from canon-
ical classes, Our analysis also introduces and uses a more general version of d-passivity, which, for the first time, can handle
discontinuous learning rules, including those showing best-response behaviors. We state and prove theorems establishing -
passivity for two broad convex cones of hybrid learning rules. These cones can merge into a larger one preserving d-passivity
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potentially be used to further generalize our work. We illustrate the applicability of our results through numerical examples.

Key words: Distributed learning, evolutionary dynamics, system-theoretic passivity, multi-agent systems, asymptotic

stabilization.

1 Introduction

Developments in population games and evolutionary dy-
namics [1,2] have contributed to systematic methods to
model and analyze the dynamics of strategic noncoop-
erative interactions among large populations of learning
agents. Central to this approach is the use of learning
rules’ that model how agents update their strategies
over time based on the payoffs of those strategies, which
are in turn determined by a payoff mechanism. These
learning rules can be explicitly programmed in artificial
agents or rep t innate p s or bounded ratio-
nality in humans or other natural agents. This frame-
work is well-suited to distributed optimization [3] and
engineering systems |4, 5], where the payoff mechanisms
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! Often called revision protocols in the population game
literature,

might abstractly represent. the specifics of the agents' in-
teraction environments, such as in congestion games, or
are purposefully designed and impl d by a coor-
dinator to steer the population toward desired strategic
outcomes [6,7].

1.1 Studying Passswity for Hybrid Learming Rules

System-theoretic passivity tools have been employed
to study how populations, adhering to certain learning
rules, achieve and maintain Nash equilibria—a process
often referred to as Nash equilibrium seeking. Pioneer-
ing work in [8] demonstrates that Nash equilibrium
seeking and convergence are achieved under contractive
payoff mechanisms if the learning rules are d-passive, a
concept inspired by classical notions of system-theoretic
passivity that has been generalized in [9, 10]. The con-
vergence results in these articles allow for dynamic pay-
off mechanisms and are not contingent upon the specific
learning rule employed, as long as it satisfies §-passivity,
often confirmed through structural analysis,

Recent research has shown that §-passivity can also
be used to systematically design dynamic payoff mech-
anisms to guarantee, vis Lyapunov analysis, global

Good news:

e O-passive rules form large convex cones.
— Include common hybrid rules.

e The cones include the best response rule.

Remaining challenge:
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V(z,p) #0 <= p'V(z,p) >0
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payoff mechanisms if the learning rules are d-passive. a
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vergence results in these articles allow for dynamic pay-
off mechanisms and are not contingent upon the specific
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Well-behaved learning rules satisfy:
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Nash stationarity
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Positive correlation
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|

|

| §-passivity does not hold
: for all well-behaved rules.
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Exploring Counterclockwise Dissipativity

(Sandholm, 2001)

y - 3 Population Game =
Nash stationarity 3 ;{g a:”;n(z(%?e §
V(z,p) =0 <= 2 € arg max &’ E 3
(z,p) gmax&'p n g Fovy :
Positive correlation 2‘ Evolutionary Dynamics Model §
) £ e | @0 =V(0).p() (EDM) e

V(z,p) # 0 < p'V(z,p) >0 T

z(0)

2(t) — NE(F)

t—o0

= KKT(f)

Contractive Games
(Hofbauer & Sandholm, 2009)

(x —2)1 (F(z) — F(&)) <0

J-passivity (Dynamic Payoffs)

(Fox & Shamma, 2013)

(Park, Martins, Shamma, tutorial 2019)
(Arcak & Martins, 2021)
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hlan learning rules (nln for d\um that capture Mr mle
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the avail.
W pnll- Is the

state of an
ary Nash equilibrium learning reters 1o the wnnw of this
state %0 the Nash equilibria sat of 1he payeft mechanism, Most
consider mam payoff mechanisms, such as

potential games. Recantly, methads using S-passivity and equilib.
vlun IM passivity (EIP) have introduced dynamic payolf

However, &-passhvity does not hold whea

hlﬂ rules exhibiting “imitation™ behavior, such as in replicator
aymla Comversely, EIP applies to the replicator dynamics but
rules. thmuow using counterclockwiss

Nash_cquilibeium_icarning to disticgsish it from Nash cquilibriven
seeking [9] that i u wsed more generally \vh:n the learming process
s oot using 4 ry dynumics, such
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Establishing this propery is cruacial becasse, when it holds, the Nash
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mechanisms unadl recemly. Of particular selevance is the focus on
memoryless payoff mechanisms st are poteasial games [11], Fol-
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or bounded ratioaality of humans and ocher natural agents.
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ruch a8 in cong gumes [3], or be
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Exploring Counterclockwise Dissipativity

u:[0,00) > U { } y:[0,00) =Y

uceZ andy € ¢, where  and % are the input and output sets.

B:u—y

We assume all elements of  and % are differentiable a.e.

We assume u(t) and y(t) have the same dimension, so we can write v’ (t)y(t)

W D. Angeli, 7Systems with counterclockwise input-output dynamics,” in IEEE
*8 T'ransactions on Automatic Control, vol. 51, no. 7, pp. 1130-1143, July 2006.

The system & is counterclockwise dissipative (CCW) when:

T

inf "Dy(t)dt > —
r>ouc J, w ()y(t) >




Ezxploring Counterclockwise Dissipativity

u:[0,00) > U { } y:[0,00) =Y

uceZ andy € ¢, where  and % are the input and output sets.

B:u—y

We assume all elements of  and % are differentiable a.e.

We assume u(t) and y(t) have the same dimension, so we can write v’ (t)y(t)

A. Lanzon and I. R. Petersen, ”Stability Robustness of a Feedback Intercon-
nection of Systems With Negative Imaginary Frequency Response,” in IEEE
Transactions on Automatic Control, vol. 53, no. 4, pp. 1042-1046, May 2008.

A linear time invariant system & with rational, proper and stable transfer func-
tion matrix G(s) is negative imaginary (NI) when:

i(Gw) = G (—jw)) = 0.

An NI system is CCW.




Exploring Counterclockwise Dissipativity

S:X—p

Payoff Dynamics Model
—>| (1) =G (q(t),u(t))
p(t) = H (q(t),u(t)) O

P

Evolutionary Dynamics Model
T z(t) = V(x(t),w(t)) (EDM)

mean population state

!

z(0)

(w=p)

Jodod dusiuruiaiop

Input and output sets

It suffices to consider Lipschitz continuous (w.r.t. time) population
state trajectories X, leading to the set

&z = {x : [0,00] = X | x is Lipschitz continuous }

It also suffices to consider Lipschitz continuous (w.r.t time) payoff
trajectories p, leading to the set

P = {p : [0,00] = R™ | p is Lipschitz continuous}.



Ezxploring Counterclockwise Dissipativity

S:X—p

Payoff Dynamics Model

P

i(t) = G (q(t), u(t))
p(t) = H (a(t), u(t)) FPM)

Evolutionary Dynamics Model

mean population state

i(t) = V(x(t), w(t)) (EDM)
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z(0)

(w=p)
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Well-behaved learning rules satisfy:

Ve

A\

Nash stationarity
V(r,p) =0<=x € argmagg(:i”p
re

Positive correlation

V(z,p) # 0 <= p'V(z,p) >0

)

Input and output sets

It suffices to consider Lipschitz continuous (w.r.t. time) population
state trajectories X, leading to the set

g = {x : [0, 0] — X | x 1is Lipschitz continuous }

It also suffices to consider Lipschitz continuous (w.r.t time) payoff
trajectories p, leading to the set

P = {p : [0,00] = R™ | p is Lipschitz continuous}.

Any well-behaved rule
leads to a CCW (EDM).

inf
T>0,pc?

/O p' (t)x(t)dt

>0




Exploring Counterclockwise Dissipativity

S:X—p

Payoff Dynamics Model
—>| () =G (q(t),u(t))
p(t) = H (q(t),u(t)) O

P

Evolutionary Dynamics Model

mean population state
Jodod dusiuruiaiop

z () = V(x(t), w(t)) (EDM) |(o=p
f
z(0)

Input and output sets

It suffices to consider Lipschitz continuous (w.r.t. time) population

state trajectories X, leading to the set

g = {x : [0, 0] — X | x 1is Lipschitz continuous }

It also suffices to consider Lipschitz continuous (w.r.t time) payoff
trajectories p, leading to the set

P = {p : [0,00] = R™ | p is Lipschitz continuous}.

int
T>O,XE% 0

A payoff mechanism § s CCW when the following holds:‘

T

z' (6)p(d)dt > —oo




CCW § and Well-Behaved Rules: Main Result

Well-behaved rules: F:x—p

) b Payoff Dynamics Model
q(t) = G (q(t), u(t))
p(t) = H (a(t), u(t)) M

5§ is CCW

Evolutionary Dynamics Model
i(t) = V(x(t), w(t)) (EDM)
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Positive correlation
V(z,p) # 0 <= p'V(z,p) >0
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evolutionary Nash equilibrium learning



CCW Payoff Mechanisms: Memoryless Case

potential

games

mean dynamics

Evolutionary Dynamics Model |,

mean population state
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CCW Payoff Mechanisms: Memoryless Case

potential contractive

games games

mean dynamics
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CCW Payoff Mechanisms: Memoryless Case

contractive
games

Population Game Y
p(t) = F (x(t))

potential
games

mean dynamics

fofind ous1us4979p

mean population state

Evolutionary Dynamics Model |,

ram I v<x<t>{p<t>> o) [ robust U bZ(]U/LtOU S
x(0)
e S0 (0 well-behaved e
' (EDM) EDM
T
inf x' (t)p(d)dt > —oc .
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CCW Payoff Mechanisms: Memoryless Case

mean dynamics

Evolutionary Dynamics Model |,

fofind ous1us4979p

x #(t) = V(z(t),p(t)) (EDM) [

i
(0)

Where are CCW
memoryless payoff
mechanism in this
picture?
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CCW Payoff Mechanisms: Memoryless Case

Theorem: A game is CCW if and only if it is potential

| contractive \
:g mean dynamics § ga’mes
; Evolutionary Dynamics Model |, é . .
s z(t) = V(x(t),p(t)) (EDM) [° =
RONE robust ubiquitous
x(0)
Where are CCW
memoryless payoff
mechanism in this .
r(t) — NE(F)

picture? e
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CCW Payoff Mechanisms: Dynamic Case

mean population state
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Payoff Dynamics Model
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CCW Payoff Mechanisms: Dynamic Case

ikddnd CCW
v (w=2) (P;zyoj];?y?c;mic(s)l)WUdel » g
S > () = t), u(t &
plt) = #(a(0)u(1)) PP 3
s | Set of CCW
f: Evolutionary Dynamics Model § 3’ /I:S a CO']’L’U@I‘
27 #(t) = V(x(t),w(t)) (EDM) [(w=p =
f cone.
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CCW Payoff Mechanisms: Dynamic Case
Set of CCW § s a convex cone.

EX AMPLE: For a potential game JF, a given time-constant g g 8

0,bin R", and A = A" in R™"*™, consider

q(t) = AM(Az(t) +b—q(t)), t>0, q(0)=0,
p(t) = F(z(t)) + kA(Az(t) + b — g(t))

where k is a real constant satisfying kA < 0.

, \ [The example could be used to model:
A payoff mechanism § is CCW
when the following holds: e potential games disturbed by NI dynamics;

T e anticipatory learning:
it S > —so S =
T>0,xcZ 0

e payoff information diffusion.




CCW Payoff Mechanisms: Dynamic Case

Simulation Example (3 strategies)
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learning rule TR Tomit
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Other Contributions In The Reported Period

Strategy-dependent Rates and
Erlang Revision Dynamics

v (Kara, Martins, 2023)

e (Kara, Martins, Arcak, 2022)

F=vf

(Sandholm, 2001)

Nash stationarity
V(z,p) = 0 <= z € arg Ipaggcfc'p
TE

m populati tat

Nash learning with
constrained switching
¥ (Kara, Martins, 2024)

Evolutionary Dynamics Model
#(t) = V(x(t),p(t)) (EDM)

Positive correlation, ‘

‘ V(x,p) # 0 < p'V(z,p) >0 -
z(0)

‘ 2(t) — NE(F) = KKT(f)

t—o0

Contractive Games Y Accepted or published
(Hofbauer & Sandholm, 2009)

(x —3)" (F(z) = F(7)) <0

g Coupled Dynamics

Y (Martins, Certorio, La, Arcak, 2024)
o-passivity (Dynamic Payoffs) (Martins, Certorio, La, 2023)
(Arcak & Martins, 2021)

Yy q(0)
(Park, Martins, Shamma, tutorial 2019) — L )
’ ’ ’ g oo 60 =G(e®) ut)y®) | »
(FOX & S hamma, 20 1 3) Coupled Dynamics é L p() =A(q(t), u(t), y(2)) §
9(t) = Dly(),2() | T
y g Evolutionary Dynamics Model 2
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