
Active Learning for Control-
Oriented Identification
Nikolai Matni
Department of Electrical and System Engineering, University of Pennsylvania

2024 AFOSR Dynamical Systems and Control Theory Review
Work supported by AFOSR YIP FA9550-24-1-0102



SysID

Experiment
Data Model

Synthesis
Controller

Agile Flight in Strong Wind Locomotion on Difficult Terrain Manipulation 



SysID

Experiment
Data Model

Synthesis
Controller

Agile Flight in Strong Wind 

Expensive 
Time-consuming 
Dangerous

“Useful” data from physical systems



SysID

Experiment
Data Model

Synthesis
Controller

UAVs in Combat Scenarios

Very Expensive 
Time-consuming Near Impossible
Very Dangerous

“Useful” data from military systems



Statistical Learning Theory for Nonlinear Control

Thrust 1: Single trajectory learning for nonlinear control systems 
•  Sharp (near mixing-free) rates even when learning from a single rollout

•  Ziemann, Tu, Pappas, M, Sharp Rates in Dependent Learning Theory: Avoiding Sample Size Deflation  
for the Square Loss, ICML 2024 Spotlight 


Thrust 2: Representation learning for nonlinear control systems 
•Use related cheap & big data to speed up learning in expensive data settings

•  Zhang, Lee, Ziemann, Pappas, M, Guarantees for Nonlinear Representation Learning: Non-identical   
Covariates, Dependent Data, Fewer Samples, ICML 2024


Thrust 3: Fundamental limits of learning to control nonlinear systems 
•  Build systems that are easy to learn to control, and design optimal learning algorithms

•  Lee, Ziemann, Pappas, M, Active Learning for Control-Oriented Identification of Nonlinear Systems,  
CDC 2024
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Experiments should maximize relevant information 
- Relevant: characterized by the downstream control task

Naive exploration policies are inefficient
Existing approaches only rigorously study

1) Tabular/linear/low-rank MDPs

2) Linear/kernelized dynamical systems

Otherwise apply heuristics 
motivated by asymptotic analysis

Xt+1 = Xt + Ut + Wt+
4

∑
i=1

σ(Xt − ϕi)Example: Consider two dimensional system
unknown centers

Gaussian kernel

ϕ1

ϕ2

ϕ3

ϕ4



Experiments should provide maximum information relevant to 
downstream control objective

Objective 1: propose end-to-end pipeline for learning to control a 
nonlinear dynamical system

Objective 2: provide finite sample guarantees verifying the 
effectiveness of the pipeline 
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 = J(π, ϕ) Eπ
ϕ [

T

∑
t=1

ct(Xt, Ut) + cT+1(XT+1)]
Want control policy  to minimize objective:Ut = πt(Xt)

- Expectation as  and  are RVs due to noise

-  from feedback policy  on 

- : dynamics in cost evaluation evolve under 

Xt Ut
Ut π Xt
ϕ Xt+1 = f(Xt, Ut; ϕ)+Wt

state input unknown parameters noise ∼ N(0,σ2
WI)

System dynamics: Xt+1 = f(Xt, Ut; ϕ⋆)+Wt



Suppose  is known - we would select   ϕ⋆ π⋆ = arg min
π∈Π⋆

J(π, ϕ⋆)

With an estimate , we can use certainty equivalence ̂ϕ π⋆( ̂ϕ) = arg min
π∈Π⋆

J(π, ̂ϕ)

Control Objective:  = J(π, ϕ) Eπ
ϕ [

T

∑
t=1

ct(Xt, Ut) + cT+1(XT+1)]
System dynamics: Xt+1 = f(Xt, Ut; ϕ⋆)+Wt



Use least squares over data: 

System dynamics: Xt+1 = f(Xt, Ut; ϕ⋆)+Wt

N experiment episodes, each run closed-loop under policy π𝖾𝗑𝗉 ∈ Π𝖾𝗑𝗉
Episode 1: use  to collect dataset  π1

𝖾𝗑𝗉 D1 = {X(1)
1 , U(1)

1 , …, X(1)
T , U(1)

T , X(1)
T+1}

Episode 2: use                               π2
𝖾𝗑𝗉 D2

⋮
Episode N: use                              πN

𝖾𝗑𝗉 DN

̂ϕ = arg min
ϕ ∑

(X,U,X+)∈𝖣𝖺𝗍𝖺

X+−f(X, U; ϕ)
2

Control Objective:  = J(π, ϕ) Eπ
ϕ [

T

∑
t=1

ct(Xt, Ut) + cT+1(XT+1)]

π⋆( ̂ϕ) = arg min
π∈Π⋆

J(π, ̂ϕ)Certainty equivalence: 

Experiment

SysID
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̂ϕ

Data



Central question: which experiments should we perform 
to achieve a controller with low cost?



Related Work
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• “Classical” Control Oriented Identification: Gevers 1993, Hjalmarsson, et. al, 
1996, many more. Importance of closed-loop identification  

• Active learning + finite sample guarantees: Mania et al 2020, Wagenmaker et 
al 2021, Wagenmaker et al 2023. Linear in the parameters, algorithmically 
complex 

We provide finite sample guarantees for  
general nonlinear models via a simple and interpretable algorithm 
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Excess cost

Wagenmaker et. al, 2023

J(π⋆( ̂ϕ), ϕ⋆) − J(π⋆(ϕ⋆), ϕ⋆)

 is the Hessian of  evaluated at H(ϕ⋆) J(π⋆( ̂ϕ), ϕ⋆) ϕ⋆

≈ ( ̂ϕ − ϕ⋆)⊤H(ϕ⋆)( ̂ϕ − ϕ⋆)

Excess cost characterized by weighted SysID error⟹

Let  be the least squares solution:
̂ϕ
̂ϕ = arg min

ϕ ∑
X,U,X+∈𝒟1∪…∪𝒟N

∥f(X, U; ϕ)−X+∥2

Then lim
N→∞

N( ̂ϕ − ϕ⋆) ∼ 𝒩(0,𝖥𝖨π𝖾𝗑𝗉(ϕ⋆)−1)

𝖥𝖨π(ϕ) =
Eπ

ϕ [∑T
t=1 Df(Xt, Ut; ϕ)Df(Xt, Ut; ϕ)⊤]

σ2
W

0

N = 10

N = 20

N = 40

̂ϕ − ϕ⋆



Excess cost J(π⋆( ̂ϕ), ϕ⋆) − J(π⋆(ϕ⋆), ϕ⋆)

Consider setting  as LS estimate using datasets  collected witĥϕ D1, …, DN π𝖾𝗑𝗉

𝖥𝖨π(ϕ) =
Eπ

ϕ [∑T
t=1 Dϕ f(Xt, Ut; ϕ)Dϕ f(Xt, Ut; ϕ)⊤]

σ2
W

 is the Hessian of H(ϕ) J(π⋆(ϕ), ϕ)

 depends on unknown   replace with coarse est. H(ϕ⋆)𝖥𝖨π𝖾𝗑𝗉(ϕ⋆)−1 ϕ⋆ ⟹ ̂ϕ−

Minimize the quantity  over 𝖳𝗋(H(ϕ⋆)𝖥𝖨π(ϕ⋆)−1) π

≈
𝖳𝗋(H(ϕ⋆)𝖥𝖨π𝖾𝗑𝗉(ϕ⋆)−1)

N



ALCOI: Given exploration budget of  episodes and an initial exploration policyN

πexp = arg min
π∈Π𝖾𝗑𝗉

𝖳𝗋(H( ̂ϕ−)𝖥𝖨π𝖾𝗑𝗉( ̂ϕ−)−1)

Play initial exploration policy for  episodes to 

collect data 

N/2
𝒟− = D1 ∪ …DN/2

Set  as least squares solution using data ̂ϕ− 𝒟−

Play  for  episodes to collect data 

 

π𝖾𝗑𝗉 N/2
𝒟+ = DN/2+1 ∪ … ∪ DN

Set  as least squares solution using data ̂ϕ+ 𝒟+

Return certainty equivalent policy π⋆( ̂ϕ+)
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Experiments

Targeted 
Experiments



Outline

Motivate Algorithm

Correctness Guarantees

Numerical Validation

Problem Formulation



Outline

Motivate Algorithm

Correctness Guarantees

Numerical Validation

Problem Formulation



Main Theorem (informal)

J( ̂π, ϕ⋆) − J(π⋆, ϕ⋆) ≤ C log
1
δ

min
π∈Π𝖾𝗑𝗉

𝖳𝗋(H(ϕ⋆)𝖥𝖨π(ϕ⋆)−1)
N

                                        Suppose  is sufficiently large. Then with 
probability at least , the algorithm’s output satisfies*

N
1 − δ

*Under smoothness assumptions on the dynamics and policy 
class, and identifiability conditions for the parameters 

Proof consists of novel identification error bound arising from the “delta 
method” (clever Taylor expansion) along with “learning with little mixing”



Main Theorem (informal)

J( ̂π, ϕ⋆) − J(π⋆, ϕ⋆) ≤ C log
1
δ

min
π∈Π𝖾𝗑𝗉

𝖳𝗋(H(ϕ⋆)𝖥𝖨π(ϕ⋆)−1)
N

                                        Suppose  is sufficiently large. Then with 
probability at least , the algorithm’s output satisfies*

N
1 − δ

Remark 1: Tight up to the log term when  is linear in  - probably in general?f ϕ

Remark 2: Bound captures interplay of hardness of control with hardness 
of identification divided by amount of data
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Random Alcoi

Illustrative example
Recall system Xt+1 = Xt + Ut+

4

∑
i=1

σ(Xt − ϕi)+Wt

ϕ1

ϕ4

ϕ2

ϕ3

ϕ4

ϕ1

ϕ2

ϕ3



Exploration 
phase

ALCOI 

Swing-up

Random

Exploration 
phase

Cartpole SwingUp Example



Future directions

Ongoing Extensions

Next steps

Partially Observed

Lower Bounds

Active Exploration for Multi-task 
Representation Learning

Choose both the task to collect data 
from and the exploration policy



Thank you!
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Relevant Papers 

• B. Lee, I. Ziemann, G. J. Pappas, N. Matni, Active Learning for Control-Oriented Identification of Nonlinear 
Systems,  IEEE Conference on Decision and Control, 2024 (to appear)


• T. TCK Zhang, B. Lee, I. Ziemann, G. J. Pappas, N. Matni, Guarantees for Nonlinear Representation 
Learning: Non-identical   Covariates, Dependent Data, Fewer Samples, International Conference on 
Machine Learning, 2024


• I. Ziemann, S. Tu, G. J. Pappas, N. Matni, Sharp Rates in Dependent Learning Theory: Avoiding Sample 
Size Deflation  for the Square Loss, International Conference on Machine Learning, 2024 (Spotlight)



