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Topic

Current effort includes:

Complex-valued diffusion processes and representations of Schrödinger
equation solutions under Coulomb potentials.

Isolation of complexity, and rapid solution of certain first-order HJ PDE
problems (and associated control problems).

Applications in astrodynamics.
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Complexity

Classical computational methods for dynamic programming were grid based.

This induced the dreaded curse-of-dimensionality that limited the
development of realistically-useful computational tools from the time of the
“discovery” of dynamic programming in the 1950s to recent times.

The complexity of computation is bounded below by a function of the
complexity of the representation of the solution.

In general, function complexity has no rigorous relation to domain-space
dimension.

In the LQ/LQG case with state in IRn, the value function may at any

time by represented by (n+1)(n+2)
2 real numbers.

A scalar brownian path on [0, 1] cannot be represented by a finite
number of real numbers.

The curse-of-complexity is a more appropriate description of the effect.

This effort addresses problems of high-dimensionality with relatively low
complexity.

Will consider the particular case where the problem is primarily
linear-quadratic, but has a “low-dimensional” nonlinearity.
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Problem Definition and Goal

Problem definition:

ξ̇s = A ξs + L0f (M0ξs) + σ us , ξt = x ∈ IRn,

J̃t(x , u)
.

=

∫ T

t

`(M0ξs) + 1
2ξ
′
s C ξs + 1

2 |us |
2 ds,

W̃t(x)
.

= stat
u∈U [t,T ]

J̃t(x , u).

f : IRk → IR` and ` : IRk → IR are both nonlinear.

M0 ∈ IRk×n and (L0)′ ∈ IR`×n are projections onto lower-dimensional spaces.

Although the state lives in IRn, the nonlinearities may operate on a
significantly lower-dimensional space.

We will exploit this.

September 18, 2023 4 / 33



Section 1:

Background on Staticization
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Staticization

Staticization is the search for stationary (static) points of functionals.

Let ȳ ∈ GY where GY is an open subset of a Hilbert space. We say

ȳ ∈ argstat
y∈GY

F (y) if lim sup
y→ȳ ,y∈GY

|F (y)− F (ȳ)|
|y − ȳ |

= 0,

If f is differentiable and GY is open, then
argstaty∈GY F (y) = {y ∈ GY |Fy (y) = 0}.

Define set-valued stat by

staty∈GYF (y)
.

=
{
F (ȳ)

∣∣∣ ȳ ∈ argstat
y∈GY

{F (y)}
}

if argstat{F (y) | y ∈ GY} 6= ∅.

If there exists a s.t. staty∈GYF (y) = {a}, then staty∈GY F (y)
.

= a.

Staticization subsumes minimization, maximization and saddle-point
searches for C 1 functionals.
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Staticization-Based Representation for the Gravitational

Potential

Classic gravitational potential energy
expression for bodies at x and origin
with masses m and m0:

−V (x) =
Gm0m

|x |
.

Inverse norm is difficult.
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Additive inverse of potential as optimized quadratic (with Ĝ
.

= (3/2)3/2G ).

−V (x) =
Ĝm0m

|x |
= Ĝm0m sup

α∈[0,∞)

{
α− α3|x |2

2

}
.

Argument is convex cubic on [0,∞); replace sup with stat:

−V (x) = Ĝm0m stat
α∈[0,∞)

{
α− α3|x |2

2

}
.
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Staticization-based extension of Coulomb potential to C3

Although min and max are valid only for real-valued functionals,
staticization is valid for complex-valued functions.

For use in a certain diffusion representation, the Coulomb potential must be
extended to C3, and nonetheless has stat representation:

−V (x) =
µc√
xT x

=µ̂ stat
α∈H+

[
α− α3(xT x)

2

]
,

where H+ .
=
{
α = re iθ | r > 0, θ ∈ (−π/2, π/2]

}
.
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Part 2:
Application to Our Problem
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Problem Definition and Goal

Recall our problem: ξ̇s = A ξs + L0f (M0ξs) + σ us , ξt = x ∈ IRn,

J̃t(x , u)
.

=

∫ T

t

`(M0ξs) + 1
2ξ
′
s C ξs + 1

2 |us |
2 ds,

W̃t(x)
.

= stat
u∈U [t,T ]

J̃t(x , u).

Note: stat subsumes minimization, maximization, minimax solution.

f : IRk → IR` and ` : IRk → IR are both nonlinear.

M0 ∈ IRk×n and (L0)′ ∈ IR`×n are projections onto lower-dimensional spaces.

Although the state lives in IRn, the nonlinearities operate on a
lower-dimensional subspace.

We will exploit this.
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Flowchart of the (Apparently) Required Mathematics

Quite a large number of major steps are required to obtain this particular
form.

Approach requires Hamilton-Jacobi methods, stat-quad duality technique
and a variety of tools from functional analysis.
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Step 1.
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Problem Definition and the HJ PDE

Recall problem: ξ̇s = A ξs + L0f (M0ξs) + σ us , ξt = x ∈ IRn,

J̃(t, x , u)
.

=

∫ T

t

`(M0ξs) + 1
2ξ
′
s C ξs + 1

2 |us |
2 ds,

W̃ (t, x)
.

= stat
u∈U [t,T ]

J̃(t, x , u).

Use staticization and viscosity-solution theories =⇒ W̃ is the viscosity
solution of the associated HJ PDE.
This implies existence of such a solution.{

0 = −Us + H̃(x ,∇xU), (s, x) ∈ (t,T )× IRn,

U(T , x) = 0, x ∈ Rn ,

H̃(x , p)
.

= −
[

1
2 x
′ C x + p′ Ax − 1

2 p
′ σ σ′ p + `(M0x) + [(L0)′p, ]′ f (M0x)︸ ︷︷ ︸

.
= Ñ(M0x,(L0)′p)

]

All the nonlinearities reside in Ñ.
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Stat-Quad Duality Application

Take the stat-quad dual of Ñ:

Ñ(M0x , (L0)′p) = stat
(a,b)∈Rk+`

{
Θ̃(a, b) + Q1(x , p, a, b)

}
∀ (x , p) ∈ IR2n,

Θ̃(a, b) = stat
(x,p)∈IR2n

{
Ñ(M0x , (L0)′p)− Q1(x , p, a, b)

}
∀ (a, b) ∈ Rk+`,

where Q1(x , p, a, b)
.

= − c1

2 |M
0x − a|2 − c2

2 |(L
0)′p − b|2.

Note that Θ̃ is a function on k + ` dimensional space – not on IRn.
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Stat-Quad Duality Application

Employing the stat-quad dual yields

0 = −
{
Us + 1

2x
′Cx + (∇xU)′Ax − 1

2 (∇xU)′Γ̃∇xU

+ stat
(a,b)∈Rk+`

[
Θ̃(a, b)− c1

2 |M
0x − a|2 − c2

2 |b|
2 + c2(∇xU)′L0b

]}
U(T , x) = 0 x ∈ IRn ,

where Γ̃
.

= σσ′ + c2L
0(L0)′.

Minor detail: The purple term appears because of the (L0)′p term in Q1.
(Recall Q1(x , p, a, b) = − c1

2 |M
0x − a|2 − c2

2 |(L
0)′p − b|2

a, b are staticizing-controllers.

All of the nonlinearities are now confined to a control-cost term in the
running cost.

September 18, 2023 15 / 33



Stat-Quad Duality Application

Let Γ̃ = B̃ ′B̃. We obtain

− 1
2 (∇xU)′Γ̃∇xU = stat

v∈IRn
{(∇xU)′B̃v + 1

2 |v |
2}

This yields

0 = −
{
Us + 1

2x
′Cx + (∇xU)′Ax + stat

v∈IRn

[
(∇xU)′B̃v + 1

2 |v |
2
]

+ stat
(a,b)∈Rk+`

[
Θ̃(a, b)− c1

2 |M
0x − a|2 − c2

2 |b|
2 + c2(∇xU)′L0b

]}
a, b and v are staticizing controllers.

Above is a separated staticization case, (analogous to Isaacs cond.); hence:

0 = −
{
Us + 1

2x
′Cx + (∇xU)′Ax + stat

(a,b,v)∈IRk+`+n

[
(∇xU)′B̃v

+ 1
2 |v |

2 + Θ̃(a, b)− c1

2 |M
0x − a|2 − c2

2 |b|
2 + c2(∇xU)′L0b

]}
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Step 3.
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Stat-Control Verification Result

Recall: 0 = −
{
Us + 1

2x
′Cx + (∇xU)′Ax + stat

(a,b,v)∈IRk+`+n

[
(∇xU)′B̃v

+ 1
2 |v |

2 + Θ̃(a, b)− c1

2 |M
0x − a|2 − c2

2 |b|
2 + c2(∇xU)′L0b

]}
.

Extend viscosity-solution verification methods to the staticization case.

Under sufficient smoothness (C 1!), the HJ PDE problem solution is the
value of the following control problem:

ζ̇s = Aζs + B̃νs + c2L
0βs , ζt = x ∈ IRn,

J̆(t, x , ν, α, β)
.

=

∫ T

t

1
2ζ
′
sCζs + 1

2 |νs |
2 + Θ̃(αs , βs)− c1

2 |M
0ζs − αs |2

− c2

2 |βs |
2 ds

W̆ (t, x)
.

= stat
(ν,α̃,β̃)∈L2(t,T ;Rn+k+`)

J̆(t, x , ν, α, β).

Aside: This implies uniqueness of the HJ PDE problem solution.
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Step 4. Classical Functional Analysis

The above problem takes the form

J̆(t, x , ν, α, β) = f1(α, β; t, x) + 〈f2(α, β; t, x), ν〉L2 + 1
2 〈ν, B̄3(t)ν〉L2 ,

W̆ (t, x)
.

= stat
(ν,α̃,β̃)∈L2(t,T ;Rn+k+`)

J̆(t, x , ν, α, β).
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Step 5.
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Iterated-Stat Reordering

One can generally reorder minimization [maximization] operations.

The ability to reorder differentiation can be misleading with regard to stat,
where d

dx
d
dy f (x , y) = d

dy
d
dx f (x , y).

Consider f (x , y) = y(x2 − 1).

stat
x∈IR

stat
y∈IR

y(x2 − 1) = stat
(x,y)∈IR2

y(x2 − 1) = 0,

stat
y∈IR

stat
x∈IR

y(x2 − 1) does not exist.

Cases where stat may be reordered are where the function is quadratic in at
least one argument, or where it is Morse in at least one argument, both with
additional conditions.
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Employing Iterated Staticization Results

We use iterated-staticization theory.

Convert stat(ν,α̃,β̃)∈L2(t,T ;Rn+k+`) into stat(α̃,β̃)∈L2(t,T ;Rk+`) statν∈L2(t,T ;Rn).

J̆(t, x , ν, α, β) = f1(α, β; t, x) + 〈f2(α, β; t, x), ν〉L2 + 1
2 〈ν, B̄3(t)ν〉L2 ,

W̆ (t, x)
.

= stat
(α̃,β̃)∈L2(t,T ;Rk+`)

W α̃,β̃(t, x),

where W α̃,β̃(t, x)
.

= stat
ν∈L2(t,T ;IRn)

J̆(t, x , ν, α, β)

= stat
ν∈L2(t,T ;IRn)

{f1(α, β; t, x) + 〈f2(α, β; t, x), ν〉L2 + 1
2 〈ν, B̄3(t)ν〉L2},

Note the LQ form of that last stat argument.
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Step 6.
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DRE Extraction

We have

W̆ (t, x)
.

= stat
(α̃,β̃)∈L2(t,T ;Rk+`)

W α̃,β̃(t, x),

W α̃,β̃(t, x) = stat
ν∈L2(t,T ;IRn)

{f1(α, β; t, x) + 〈f2(α, β; t, x), ν〉L2 + 1
2 〈ν, B̄3(t)ν〉L2},

We can solve the inner LQ problem!

The DRE-based solution may be written as

W α̃,β̃(t, x)= 1
2x
′Ptx + x ′qα̃,β̃t + r α̃,β̃t ,

Ṗt = −Sc1 − A′ Pt − Pt A + Pt Γ̃Pt , PT = 0n×n, (control-independent!),

q̇µt = [Pt [Γ̃− A′]qα̃,β̃t −
[
(M0)′, L0[Pt

]
Ĉµt , qα̃,β̃T = 0n×1

ṙµt = (qα̃,β̃t )′Γ̃qα̃,β̃t + µ′t Ĉµt − 2
[
c2(qα̃,β̃t )′L0I2µt + Θ̃(µt)

]
, r α̃,β̃T = 0,

N.B.: Here, we’ve used µt in place of (α̃′t , β̃
′
t)
′ for readability.

September 18, 2023 24 / 33



DRE Extraction

We have

W̆ (t, x)
.

= stat
(α̃,β̃)∈L2(t,T ;Rk+`)

W α̃,β̃(t, x),

W α̃,β̃(t, x)= 1
2x
′Ptx + x ′qα̃,β̃t + r α̃,β̃t

Ṗt = −Sc1 − A′ Pt − Pt A + Pt Γ̃Pt , PT = 0n×n, (control-independent!),

q̇µt = [Pt [Γ̃− A′]qα̃,β̃t −
[
(M0)′, L0[Pt

]
Ĉµt , qα̃,β̃T = 0n×1

ṙµt = (qα̃,β̃t )′Γ̃qα̃,β̃t + µ′t Ĉµt − 2
[
c2(qα̃,β̃t )′L0I2µt + Θ̃(µt)

]
, r α̃,β̃T = 0,

The problem is (finally!!!) reduced to:

W̆ (t, x) = 1
2x
′Ptx + stat

(α̃,β̃)∈L2(t,T ;Rk+`)
{x ′qα̃,β̃t + r α̃,β̃t }.
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Pointwise Solution

Recall that we only need to solve

W̃ (t, x)
.

= stat
(α̃,β̃)∈L2(t,T ;Rk+`)

{x ′qα̃,β̃t + r α̃,β̃t }.

Space variable, x , is only a parameter.

Pointwise in x , one need only solve integral equation

Ĉ (α̃s , β̃s)−∇Θ̃(α̃, β̃) = c2(L0I2)′qα̃,β̃s + Ĉ (Φ̄T ,sD̄s)′x (1)

+

∫ s

t

Ĉ (Φ̄τ,sD̄s)′(−Γ̃qα̃,β̃τ + c2L
0I2(α̃τ , β̃τ )) dτ, a.e. s ∈ (t,T ),

where qα̃,β̃s =

∫ T

s

Φ̄s,τ D̄τ Ĉ (α̃τ , β̃τ ) dτ ∀ s ∈ [t,T ]. (2)

The curse of dimensionality is removed, and replaced by the curse of
complexity (possibly as effective dimensionality).

Equations (1)–(2) are an indexed set of integral equations – not a PDE.
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Pointwise Solution Method Details

For each x , we solve (1)–(2), i.e.,

Ĉ (α̃s , β̃s)−∇Θ̃(α̃, β̃) = c2(L0I2)′qα̃,β̃s + Ĉ (Φ̄T ,sD̄s)′x

+

∫ s

t

Ĉ (Φ̄τ,sD̄s)′(−Γ̃qα̃,β̃τ + c2L
0I2(α̃τ , β̃τ )) dτ, a.e. s ∈ (t,T ),

where qα̃,β̃s =

∫ T

s

Φ̄s,τ D̄τ Ĉ (α̃τ , β̃τ ) dτ ∀ s ∈ [t,T ].

Our solution method:
Equivalent to a two-point boundary value problem.
Due to low-dimensionality of the reduced-complexity problem, there
was no need to curse-of-dimensionality-free methods for examples so
far considered.
This is a contraction for (α̃, β̃) if T is sufficiently small.

That solution is efficiently propagated to larger T by a function-valued
ODE (over fixed longer interval with s,T ∈ (0, T̄ ).

Notably, we have guaranteed convergence to the unique correct
solution.
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Pointwise Solution Method Details (continued)

The scalar-α case (L0 = 0, M0 ∈ IR1×n) yields fixed-point problem

α̃T
s −

1

c1
∇Θ̃(α̃T

s ) =M0Φ̄′T ,sx − c1M
0
[ ∫ s

0

D ′σ,s(M0)′α̃T
σ dσ

+

∫ T

s

Ds,σ(M0)′α̃T
σ dσ

]
∀ s ∈ [t,T ].

The α̃T
· ODE is

dα̃T
s

dT
=
[
1− 1

c1
Θ′′(α̃T

s )
]−1
{
M0Φ̄′T ,s Ā

′x − c1M
0D̄T ,s(M0)′α̃T

T

− c1

∫ T

0

M0D̄σ,s(M0)′
dα̃T

σ

dT
dσ
}
.

ODE solved on fixed longer interval with s,T ∈ (0, T̄ ).
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Pointwise Solution Method Details (continued)

Propagated α̃ solutions, scalar running-cost nonlinearity case:
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A k-dimensional nonlinearity in an n-dimensional systemgenerates a
2k-dimensional nonlinear control problem that may be solved with
curse-of-dimensionality methods.
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Stat Expansions: Graphs for Heuristics

One has discrete-stat over finite sets of functions.
Discrete stat-quad dual converges to the stat-quad dual as the density of the
functions approaches the continuum.

Nasty example below.
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Example

Space dimension: n = 5.

One-dimensional nonlinearity in running cost; no nonlinearity in dynamics.

Θ̃(α, β) = Θ̃(α) = −k
√
ε+ α2. Yields a nonconvex running cost.

Solution on any plane in 45 secs on a 5 y.o. surface pro ('1500 grid points).

Requires additional 150 secs to obtain backsubstitution errors in the original
HJ PDE there.
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Example

Figure: E1: Value function Figure: E2: Relative backsubs errors

Figure: E3: Projections of state trajectories Figure: E4: Projections of state trajectoriesSeptember 18, 2023 32 / 33



Thank you.
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