Attitude control and No-go theorems:
differential topology + hybrid systems

-Richard Montgomery,
Ricardo Sanfelice
U.C. Santa Cruz

&
Piyush P. Jirwankar
UC Santa Cruz

Research funded in part by
FA9550-23-1-0313






My favorite attitude control problem!

but we will work instead on:



State space for a rigid body in Euclidean 3-space.
Origin of the 3-space: the body’s center of mass.
Axes: parallel to the axes of an inertial frame.



g = gw

w=w X llw-+T



Kinematic control:

g=gu geG
Feedback: u = u(g).

Question: Can we continuosly feedback stabilize
the system to g = I = Identity?

Answer. NO !

This ‘No’ is No-go theorem 1.



Why not?
The flow of a smooth feedback stablizer |,

stabilizing to a desired point (“attitude”)
CONTRACTS the entire manifold onto that point.

SO(3) is not contractible.

Any compact manifold without boundary is not contractible.

—> SO0(3), along with all such manifolds,

does not admit a continuous feedback stabilizer
stabilizing to a point.



Uns '%CKMQ

u})[b({um
v 1
Try anyways
St = SO(2)
Use a gradient flow.
/& O‘QS}S}?J
Vo‘m"f

The entire circle minus the green point
flows down to the red point



To stabilize all of S! to mg , including
the unstable equilibrium, “hybridize”:
introduce a “logic element” q € Zy := {0,1}.

Replace S! by S x Zo.






We can use MORSE THEORY to copy
this example onto any manifold.

Theorem. Given a smooth connected manifold M
and a goal point mg € M there is a hybrid system
on M x Zs having (mg,0) as global attractor.



Construction:

Starting point. MORSE THEORY yields a function ¢ on
M whose unique global minimum is my and whose critical

point set is finite.

Result: A smooth flow on the manifold
for which the desired fixed point is
attractive and has basin of attraction

an open dense subset of M of full measure.
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Instead of a single unstable equilibrium we get
k unstable equilibria where k£ > 1 unless M is a sphere.




MORSE THEORY

Definitions

A critical point p of a function ¢ is
NON-DEGENERATE if the Hessian at p,
is full rank.

A Morse function is a function all
of whose critical points are non-degenerate.

Every smooth manifold admits a Morse function.

The critical points of a Morse function are ISOLATED
hence finite in number when M is compact.



Given M connected, desired point mg € M
choose a Morse function ¢ with mg as
its global minimum.

Let p1,pa,...,pr be the other
critical points of ¢

Off of the ‘bad set’ B = Ule W (p;)
every point of M flows by
m = —V¢(m)

to mg.

The W (p;) = stable manifolds of the p;
are embedded submanifolds of codimension > 1.

—> M \ B is open, dense, of full measure.



But we want ALL points to limit to my.

Design “gusts” blowing us past the
unstable critical points p; and
their unstable manifolds.

To do this use:

Morse Lemma. If p is a non-degenerate critical point
for ¢ and ¢(p) = ¢ then 3 coordinates

(i,Y;),1 <1< k,1<j<n-—kcentered at p e M
such that in these coordinates

P(i,Y;) :CJVZ%Z _ZyJQ















, —Vo(m), if ¢ =0 and m € Flow(0)
TN, —
Y(m), if g=1 and m € Flow(1)

Jump(0) := M \ Flow(0)

Jump(1l) := M \ Flow(1)

If g=0o0r g =1 and if m € Jump(q) then JUMP:

apply (m,q) — (m, q)
1:=0;0=1



Jump(0) CC Flow(1)

k

Flow(1l) = U U(p;) where U(p;) is a Morse nbhd of p;
i=1

Flow(1) \ Jump(0) = Flow(1) N Flow(0)



Theorem. The hybrid system on M X Zs just constructed
has a single global attractor, the point (mg,0), which is
Lyapunov stable.

Moreover, this stability property is robust with respect to
measurement and system errors.

Estimates regarding tolerances to measurement
and system errors specified in terms of

diam(Flow(1) N Flow(0)), ¢ and ||[Vg||.
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QUESTIONS??



“Instead of considering this hybrid system, why not consider the
equivalent situation [I THINK | of the discontinuous vector field obtained
by using the gust vector field in the Morse neighborhoods of the unstable
equilibria and the gradient vector field outside them?

“Wouldn’t the discontinuous v-field yield the same robustness and
global stability properties?

If so, what is the advantage here of the hybrid viewpoint over
simple discontinuous vector fields 7 ”

-anonymous program attendee MK



“Wouldn’t the discontinuous v-field yield the same W
global stability properties? YES!

Hybridizing allows the domains

of the gust and gradient flows to overlap.

The overlap is what yields robustness.

Without overlap, we can construct

chattering-type local attractors via designer’ noise,
equilibria which kill the global stability of m_0.



Apply to M = SO(3)
7> E,

/

2

p
E

£

exp(0FE;) = Rotation about axis of F
counterclockwise by 6 radians



WAY 1. Follow the above procedure.
Construct a Morse function on SO(3)

¢(R) =tr(PR) . P a fixed weight matrix

If P is symmetric with distinct eigenvalues then ¢ is Morse.
Example: P = diag(0,—1,—2)
Compute: d¢(R) =0 <= R is diagonal.
SO(3) N{diagonals} = Klein 4 -group.
= {diag(1,1,1),diag(—1,—1,1),
diag(l,—1,—1),diag(—1,—1,1)}
= {mo,p1,p2,p3}



Critical values of ¢: —(£0+1 4+ 2)

with an even number of minus signs

3
1
—1
—3 «Id

Four is the minimum number of critical points
a Morse function can have on SO(3):

bi(SO(3)) =1,i =0,1,2,3
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V@, d 'ISO'(#P/ 'q)':']é such +that

PRINB = ?

No-go Theorem 2. This problem has no solution.
Indeed if ¢ : SO(3) — SO(3) is any homeomorphism then
»(B)N B # 0.
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Proof. (B,S0(3)) = (RP?,RP?).

For j — 0, 1, 2,3: Hj = j(RPB,Zg) = Z2
with non-zero element [RP’] € H;

So [, B] = [B] # 0.

Intersection product Hy X Hy — Hy ;

[RP?] N [RP?] = [RP!]

But if 4(B) N B = () then [RP?] N [RP?] = 0,
Contradiction.



RewmarK

This homological “non-displacement theorem”
is the non-linear version of the basic (linear)
incident axioms of Projective geometry.

RIP3 = real projective 3-space.
Any two distinct planes intersect in a unique line.

Planes: RP? and its images under

projective transformations (linear transformation of R*
Lines: RP! and its and its images under

projective transformations



Piyush P. Jirwankar went ahead anyways...

and got it to work! How could that happen?

I got the quantifiers wrong!

3t>0vbeB  T,(b) ¢ B

Impossible, by "No-go theorem 2’

But what we need:

VoeBIt=t(b)>0 U, (b)¢B
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Alternatively

S® = unit quaternions

SO(3) =S°/ £ 1 = RP”®




However the critical points are in the wrong place:
They are Id, exp(wFEq), exp(mEs), exp(mEs3)
and exp(mE;) € B.

To knock them off of B just translate by almost
any element gg € SO(3).

f(R) = tr(goPR)
Any go such that

90, goexp(mE1), goexp(mEs)goexp(nEs) ¢ B



exp(ON) = Id.
exp(mN) = e
Tr(exp(ON)) =1+ 2cos(0).

exp(B3) = SO(3)
where B3 is the closed ball of radius .
Moreoever exp is a diffeo on the interior of this ball.

View (0, N) € [0,00) x S? as
spherical coordinates for R

—

(7, N) ~ (7, —N)

12

— SO(3) = (B?/ ~) = RP°



