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Adaptive / Robust Control

Reach the objective under (some) 
lack of knowledge of dynamics

Objective might not be reachable

First decide on a reachable target, 
then plan how to get there

Maximal Understanding 
in the Face of Minimal Knowledge
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?
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Certifiable Capabilities
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Partially/imperfectly 
observed past trajectory

Partial novel 
transition model

Conservative estimate of 
completable tasks

Nominal transition 
model

Design knowledge Physical laws

Before/during 
provably learning online 
how to complete a task
(and ideally getting less 

conservative)



Disasters
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Change in dynamics
(e.g., physical damage)

Partial loss of control 
(e.g., adversarial 

takeover)

Actuator 
degradation



Loss of Control Authority

Two-player game:

P1 (“controller”) wishes to reach a state
P2 (“environment”/”adversary”) wishes to obstruct P1

Can P1 win? (Can P1 win for any state? Can P1 win if there is a time limit?)
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Uncontrolled system input
(not a disturbance)

“resilience”



Quantitative Resilience

Intuitively, a system is resilient if a player can counteract the adversary and 
still have some meaningful control authority

If the target state is in the guaranteed reachable set of the initial state 
(guaranteed with respect to all possible adversarial control inputs): 

it also matters how hard it is to reach the state compared to the system 
with nominal dynamics.
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The adversary chooses an input such 
that whatever the controller chooses, 

performance will be bad



Reach-Time Resilience

First idea: measure of performance – reach time

Resilience quotient = 0: no resilience; resilience quotient = 1: perfect 
resilience

Determining minimal time to reach a target even for nominal linear dynamics 
with input constraints is not simple (see last year)
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Energy Resilience
Determining minimal energy to reach a target (soft input constraints) for 
nominal dynamics is simple:  controllability Gramian

Step 0: Determine worst-case
minimal energy for reachability at
a particular time for disturbed dynamics

Slight problem: quotient of energies
goes to zero the closer we start to
equilibrium (player constantly fights the
adversary) – difference of energies
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for linear systems

R. Padmanabhan, C. Bakker, S. A. Dinkar, M. Ornik. How much reserve fuel: Quantifying the maximal energy cost of system disturbances. ArXiv preprint arXiv:2408.10913 [eess.SY], 2024.



Energy Resilience for Driftless Systems
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“Disturbances” in our scenario have structure, and faulty/hostile actuators 
still expend energy

For driftless (for now linear) systems, with a stabilization objective:

Optimal control input is constant (calculus of variations)

Worst-case malfunctioning actuation can be taken to be constant
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The stronger the adversary, the larger the energy
The stronger the controller, the smaller the energy 



Towards Nonlinearity 
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Almost driftless

General linear

Almost driftless: growth or magnitude bound on a nonlinear drift term

Idea: difficult to express optimal control input, possible to bound it
(first results this week)

Nonlinear (on a compact set) = linear + bound on a nonlinear term
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 Almost linearDriftless Nonlinear

Switched systems?



Disasters
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Change in dynamics
(e.g., physical damage)

Partial loss of control 
(e.g., adversarial takeover)
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Guaranteed Reachability on Manifolds
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After a change in dynamics, the system might not be able to reach its target 
using any control law

What is it certifiably capable of doing (even if we don’t yet know how)?
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Physical knowledge, 
a priori safety constraint?

T. Shafa, M. Ornik. Guaranteed reachability on Riemannian manifolds for unknown nonlinear systems. ArXiv preprint arXiv:2404.09850 [eess.SY], 2024.



Idea in Euclidean Space
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In theory, guaranteed reachability set is well-defined

In practice, how do compute it?

Idea: By finding all trajectories obtained by integrating guaranteed velocities

, we will obtain at least some (if not all) guaranteed 

reachable states

Velocities guaranteed at time     = velocities guaranteed at start time 
“modulo” maximal system wildness

Online “local System ID”

“Physics and design” = Lipschitz

Difficult, but one level easier to underapproximate



Challenge with Manifolds
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Velocities guaranteed at different times are 
no longer in the same space (          )

Lipschitz constant on      is nontrivial to define

Why not just embed everything 
into Euclidean space?
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• Doesn’t feel right
• Worse Lipschitz
• No full actuation

T. Shafa, M. Ornik. Guaranteed reachability on Riemannian manifolds for unknown nonlinear systems. ArXiv preprint arXiv:2404.09850 [eess.SY], 2024.



Velocities on Manifolds
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Idea still the same, but underapproximation of guaranteed velocities will 
depend on the:

Riemannian metric tensor/
Covariant derivatives/
Choice of connection

For flat manifolds, we recover
previous results 
for Euclidean spaces

Melkior Ornik – mornik@illinois.edu

T. Shafa, M. Ornik. Guaranteed reachability on Riemannian manifolds for unknown nonlinear systems. ArXiv preprint arXiv:2404.09850 [eess.SY], 2024.



Numerical Example
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Operating on          : difficult to meaningfully think about in Euclidean space, 
possibly useful for applications, and difficult to even draw the guaranteed 
reachable set
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T. Shafa, M. Ornik. Guaranteed reachability on Riemannian manifolds for unknown nonlinear systems. ArXiv preprint arXiv:2404.09850 [eess.SY], 2024.



Learn-Control Pipeline: “Glimmers of Autonomy”

Once we have established what the system is capable of doing, we still 
do not know how to do it

End-to-end planning, learning and control:

Task assignment: what task can be provably completed

Real-time learning: what do we need to know in order to be able to 
complete it: persistent excitation allows us to learn local dynamics

Assured control: complete the task
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Previous Work: Online “Local System ID”
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When the system is at state    , applying a constant control       and
observing the system response provides an approximation for

Control-affine systems: quickly sequentially applying affinely 
independent controls provides an approximation for the 
system dynamics at
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Guarantees in Online Planning
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Previously: If we know the local dynamics, we can choose a control input 
that appears to work well right now. Goodness function encodes trajectory 
quality: the higher its value, the better the direction of the system.

No guarantees! How to even choose the goodness function?

Step 1: choose a target guaranteed to be reachable

Step 2: guaranteed reachability computations also produce a 
guaranteed trajectory

Step 3: approximately follow the guaranteed trajectory
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Control Design
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Step 3a: perform online learning (a previous result bounds the distance 
from the trajectory)

Step 3b: choose a point on the trajectory and use a control input that 
currently approximately (with known error bounds) moves the system 
towards that point
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Y. Meng, T. Shafa, J. Wei, M. Ornik. Online learning and control synthesis for reachable paths of unknown nonlinear systems. ArXiv preprint arXiv:2403.03413 [math.OC], 2024.



Teaser: Learning from 
Multiple Partial Trajectories
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Multiple agents operating at the same time can collect data in parallel.

Can we obtain information about global (or “less local”) dynamics?

Arbitrarily many agents sampling arbitrarily close: trivial

Bounded number of agents:

Where to place them?

Interpolation with error bound quantification

With good placement, uncertainty does not grow indefinitely – long-term 
guarantees?
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Teaser: Complicated Objectives
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Only objective currently: reachability/stabilization

In progress (in some sense): safety, trajectory tracking

More complicated missions: hybrid (in some sense; even if the dynamics 
are not hybrid, the reachability specification/coordinate system might 
change)

First approach: set waypoints such that at each waypoint, the next 
waypoint is provably reachable (local guarantees, global heuristics)
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As means towards reachability, through self-designed 
waypoints



Medium-Term Goal (Last Year): Capabilities
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Combination of scenarios: e.g., partially unknown dynamics with partial loss 
of control (Some work already done: actuator degradation with disturbances)

End-to-end planning, learning and control:

Task assignment: what task can be provably completed

Real-time learning: what do we need to know in order to be able to 
complete it

Assured control: complete the task

(More) physics-based and design-based results: exploitation of significant 
unchanged prior knowledge for better estimation
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“Almost driftless” with disturbance

Multiple trajectories, manifolds



Long-Term Goals: Validation
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Using sensors and perception to recognize fault type and gather 
information

Fault detection; sensor fusion; state estimation

Complex missions in high-fidelity simulation

Concurrent sensing and actuation faults

Noise+hostile action

Onboard implementation

Time-delayed control

Real-time computation

ONR
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