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Interested in modeling dynamical systems with shape states

▶ Time index, t ∈ T
▶ System state, Xt ∈ X : geometrical shape of an d-dimensional object (exterior

outline, skeleton, ...)

▶ Control input, ut ∈ Rp: p real control inputs.

▶ Uncontrollable external factors ϵt,
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Shape evolution with regime changes

▶ The state evolution occurs in a piecewise manner with K regimes,

Xt+1 = fk(t,Xt, ut, ϵt) for the kth regime, k = 1, ...,K. (1)

▶ Regime changes: Regimes change in the domain

Ω = T × X × Rp.

One can consider a partition of the domain,

Ω =

K⋃
k=1

Ωk,

with Ωk representing the kth regime.

▶ Change points: The boundaries delineating the regimes are referred to as change
points. They are assumed smooth.
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Objective

▶ Our major interest is the data-driven representation of the state evolution. It can
be potentially useful for data-driven control of the state evolution.

▶ Representation of the shape space and piece-wise state space,

Xt+1 = fk(t,Xt, ut, ϵt)

▶ Estimation of the change points (or Ωk) jointly with the component model in the
shape space.
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Primary Testbed: Additive Manufacturing

▶ Collaborator: Benji Maruyama, Autonomous Materials Lead, Materials &
Manufacturing Directorate at Air Force Research Laboratory

▶ Benchmark data and metrics
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Other Testbeds
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Major Challenges..
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Mathematical representations of shapes are not straightforward.

▶ Shape is defined as a property that is invariant to certain transformations such as
rotation, translation and scale.
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Shape Spaces are Non-Euclidean.

▶ Due to the need for invariance, the shape space is non-Euclidean. Shape spaces
are nonlinear spaces, not vector spaces.

▶ We cannot simply add, subtract shapes, or average shapes.

▶ Shape analysis requires tools from differential geometry to handle nonlinear nature
of shape representations.
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Shape space: Landmark-based approach...

Reference: Kendall et al. (2009)



11/33

Shape space: Contour-based approach...

Reference: Srivastava and Klassen (2016)
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Major challenges...

▶ The shape space X is infinite-dimensional and non-Euclidean. Modeling the state
evolution over time in an infinite-dimensional non-Euclidean space is challenging:
Addressed by the U. of Washington and Florida State U. Team.

▶ Change point detection in a high dimensional space is an extremely challenging
problem: Addressed by the U. of Florida Team.
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Main Outcome 1. State Evolution Modeling
with States in Riemannian Manifold
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Our Goal: Modeling Dynamic Shapes

▶ Develop statistical models for capturing shapes evolving over time.

▶ We model them as stochastic processes over time.
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Multiple flattening ideas...

Reference for idea (a): Yi et al. (2012)
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Transporting multiple tangent spaces to one reference tangent space...

▶ Take the parallel transport of
all tangent vectors to one
reference tangent space along
geodesic.

▶ So, all tangent vectors belong
to one vector space. We can
do PCA for dimensional
reductions and use vector
autoregressive models to
model their transitions.
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Details...

Let M denote infinite dimensional shape manifold, i.e. space of [qt]’s. For each t,

▶ Take the local reference shape Gt ∈ M.

▶ Take the tangent vector of Xt around Gt,

ωt = exp−1
Gt

(Xt) ∈ TGt(M).

▶ Perform the parallel transport ωt along the geodesic from TGt(M) and TGT
(M),

vt = Γt→T [exp
−1
Gt

(Xt)] ∈ TGT
(M).

We name this representation of a shape sequence as the single-hop transported vector
field (SH-TVF).
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Special Case: Velocity-Preserving Vector Field

▶ When one takes the local reference shape Gt = Xt−1,

vt = Γt→T [exp
−1
Gt

(Xt)] ∈ TGT
(M)

represents the local velocity of Xt.

▶ Integrating the velocity, we can create the vector representation of the original
shape sequence Xt,

µt =

T∑
i=1

vi.

▶ Property. Euclidean distance between µt−1 and µt = Geodesic distance between
of Xt−1 and Xt.

▶ Property. Derivative of the vector field µt= Derivative of the original shape
sequence Xt.

▶ One can completely construct the original shape sequence with the vector field.
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Our Approach: Space Evolution

▶ Start with the simplest possible.

▶ Perform PCA on {vt},
zt = Pvt.

▶ Fit a simple AR(1) model,

zt+1 = Akzt +Bkut + ϵt, (2)

where (Ak,Bk) is specific to control regime k = 1, ...,K.

▶ For the time being, we forget about regime changes and test the idea with single
regime.
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Numerical Example: 3D Print

▶ Printing a chess pawn sliced into 118 vertical layers

t=8 t=19 t=30 t=41 t=52 t=63 t=74 t=85 t=96 t=107 t=118

▶ After each layer is printed, the shape of the print result is recorded, which is Xt,
t = 1, 2, ..., 118.

▶ Three control inputs (ut): feed rate, flow rate, temperature

▶ Run 16 printing experiments and takes 16 shape sequences. Randomly split the 16
sequences into 70% training and 30% test datasets.

▶ With the training data, we learned the SH-TVF representations zt (the PCA
dimension 35 reserves 80% of the total variations).
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Representation Error = Shape geodesic distance between the actual print
and the reconstructed shape

Total Variation Reserved 50% 60% 70% 80% 90% 100%

PCA Dimension p 10 15 22 35 62 400
Error (in Shape Distance) 0.3338 0.2994 0.2629 0.2139 0.1544 0.0178*

Table: PCA Reconstruction Error. * The error for the 100% case should be theorectically zero.
The non-zero error number for the column with the 100% case could be regarded as a small
numerical error.
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SH-TVF Representation with p = 35

t=1

actual print
CAD model
PCA reconstruction

t=10 t=19 t=28 t=37 t=46

t=55 t=64 t=73 t=82 t=91 t=100

t=109 t=118
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Predictability.

▶ With the training data, we fit a simple linear state space equation,

zt+1 = Azt +But + ϵt. (3)

with single control regime.

▶ Applied the fitted model to predict shape sequences. The prediction error is
measured

Forecasting Step 1 2 3 4

Training Error 0.2418 0.2722 0.2965 0.3142
Test Error (Training: 14 seq, Test: 6 seq) 0.2581 0.3050 0.3371 0.3581

Table: Model Prediction Error versus PCA Error 0.2139. All errors are measured by the shape
geodesic distance.



24/33

Poor predictability for some sub regions suggests control regime changes.
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Main Outcome 2. Change Point Detection in
Shape State Space Model
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Goal: Detecting change points to delineate control regimes

▶ Offline change-point detection problem: To estimate control regimes
{Ωk, k = 1, ...,K} and the model parameters {Ak,Bk, k = 1, ...,K}.

zt+1 = Akzt +Bkut + ϵt, (t, zt,ut) ∈ Ωk. (4)

▶ Many change point detection methods are focused on detecting the changes in
the state zt, instead of the model parameters Ak and Bk (Hawkins, 2001).

▶ Detecting changes in Ak and Bk has been studied for univariate time series (Box
and Tiao, 1965; Gombay, 2008) but not for multivarite time series.
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First study the simplest setup..

▶ K = 2 with a single change-point t = r:{
zt+1 = A1zt +B1ut + ϵt 1 ≤ t ≤ r − 1,

zt+1 = A2zt +B2ut + ϵt r ≤ t ≤ T − 1.

The error terms ϵt are i.i.d. from Np(0, σ
2Ip)

▶ We aim to obtain estimates of the change-point location r, transition matrices
before and after the change point and the variance of the error terms.
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Maximum Likelihood Estimation

▶ Consider N training sequences with the ith sequence represented by

(zi,t,ui,t), i = 1, ..., N, t = 1, ..., T. (5)

▶ We aim to obtain MLEs for θ = {r,A1,B1,A2,B2, σ
2}.

▶ The log-likelihood of the change-point problem can be expressed as

l(θ) =− NTp

2
log σ2 − 1

2σ2

N∑
i=1

r−1∑
t=0

||zi,t+1 −A1zit −B1uit||22

− 1

2σ2

N∑
i=1

T−1∑
t=r

||zi,t+1 −A2zit −B2uit||22.

where || · ||22 is the l2-norm operator.
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Maximum Likelihood Estimation

▶ Conditioned on r, the MLE of A1,B1,A2,B2 can be expressed in the closed
form, e.g.,

(
vec(Ã1(r))

vec(B̃1(r))

)
=


(∑N

i=1

∑r−1
t=0 zitz

T
it

)T
⊗ Id

(∑N
i=1

∑r−1
t=0 uitz

T
it

)T
⊗ Id(∑N

i=1

∑r−1
t=0 zitu

T
it

)T
⊗ Id

(∑N
i=1

∑r−1
t=0 uitu

T
t

)T
⊗ Id


−vec

(∑N
i=1

∑r−1
t=0 zi,t+1z

T
it

)
vec
(∑N

i=1

∑r−1
t=0 zi,t+1u

T
it

),

▶ r̂ = argmin1≤r≤(T−1)

{∑N
i=1

∑r−1
t=0 ||zi,t+1 − Ã1(r)zit − B̃1(r)uit||22 +

∑N
i=1

∑T−1
t=r ||zi,t+1 − Ã2(r)zit − B̃2(r)uit||22

}
.

▶ After obtaining the change-point location r̂, MLE of other parameters can be
computed accordingly.
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Numerical Results
▶ Apply the proposed method to the 3d-print case, resulting in r̂ = 65.
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Summary...

▶ Shape sequence. Developed the SH-TVF representation of a shape sequence and
studied a piece-wise linear state space model over it.

▶ Regime changes. Started to work on the offline change point detection problem
with the simplest setup.

▶ Supported Graduate Students: Yanliang Chen (Florida State University), Zibo
Tian (U. of Florida)

▶ On-going Publications:
Chen et al. (2024) Statistical Emulators for Human Shape Sequences. To be
submitted soon to the journal Operations Research.
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Plan for the Next Year

▶ SH-TVF: Single-hop parallel transport versus multi-hop parallel transport

▶ State Space: Linear state space versus locally linear state space.

▶ Change points: single change point versus multiple changed-points (number of
change-points need to be estimated).

▶ Change points along one covariate versus multivariate change points.

▶ Offline change points versus online change points

▶ Study theoretical properties of the estimator(s) for the change-point location(s).
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