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DURIP: Automation in the LAB
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DURIP: Automation in the LAB

https://drive.google.com/file/d/1uUcQvRaHXQamtOix5xneZPXNFABYLd7z/view?usp=sharing
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Current Project

Objective: Develop a data-guided framework for learning and control of higher
order structure, function, and dynamics in complex systems. This would provide
a new approach for understanding and intervention/control in complex systems
such as cell reprogramming toward accelerated wound healing or disease

recovery.



Outline

Completed

1. Observability of Hypergraphs (continuation)

a. Pickard, J., Surana, A., Bloch, A. and Rajapakse, |., 2023, December. Observability of
hypergraphs. In 2023 62nd IEEE Conference on Decision and Control (CDC) (pp.

2445-2451). IEEE.
b. Pickard, J., Stansbury, C., Surana, A., Rajapakse, |. and Bloch, A., 2024. Geometric

Aspects of Observability of Hypergraphs. In 2024 IFAC LHMNC. arXiv preprint
arXiv:2404.07480.

2. Kronecker Products for Tensors and Hypergraphs (continuation)

a. Pickard, J., Chen, C., Stansbury, C., Surana, A., Bloch, A., and Rajapakse, |. (2023).
Kronecker Product of Tensors and Hypergraphs: Structure and Dynamics. in press at
SIAM Journal on Matrix Analysis and Applications

3. Dynamic Biomarker Selection

a. Pickard, J., Stansbury, C., Surana, A., Bloch, A. and Rajapakse, |., 2024. Biomarker
Selection for Adaptive Systems. arXiv preprint arXiv:2405.09809.

4. Cellular Reprogramming of HSCs

a. Stansbury, C., Cwycyshyn, J., Pickard J., Meixner W., Rajapakse I., and Muir L.A., 2024,
Data-guided direct reprogramming of human fibroblasts into the hematopoietic

lineage. bioRxiv preprint



Outline

Ongoing
1. Large, directed, non-uniform hypergraphs
2. A Programmable Platform for Probing Cellular Dynamics

a. Cwycyshyn, J., Stansbury, C., Meixner, W., Hoying, J.B., Muir, L.A. and
Rajapakse, |., 2023. Automated In Vitro Wound Healing Assay. bioRxiv,
pp.2023-12.

b. Fabricating two-cell system

3. Data: Single Cell Pore-C (higher order structures in the human genome)
a. Hypergraph Core!
4. Digital Biology: In-silico testing Data-guide Control using HWG and

geneformer (joint project with NVIDIA)

a. Pickard, J., Choi, M., Oliven, N., Stansbury, C., Velasquez, A., Gorodetsky,
A., and Rajapakse, |. BRAD: Retrieval-Augmented Generation for
Bioinformatics. in preparation



Ongoing and Future Directions
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Pickard, J., Choi, M., Oliven, N., Stansbury, C., Velasquez, A., Gorodetsky, A., and Rajapakse, |. BRAD: Retrieval-Augmented
Generation for Bioinformatics. in preparation



Observability of Hypergraphs (continued from 2023)

Observability: Does data uniquely determine the system state?

Hypergraphs have multi-way interactions

X] = Xp + X3
x—Ax §
> X2 X1+X3

0 X3 = X1 + Xp

B

e X1 = XoX3
x—Ax?

= (X = X3

X3 = X1Xp

Homogeneous

2023 62nd IEEE Conference on Decision and Control (CDC)
December 13-15, 2023. Marina Bay Sands, Singapore

Observability of Hypergraphs

Joshua Pickard, Amit Surana, Anthony Bloch, and Indika Rajapakse

Abstract—In this paper we develop a framework to study
observability for uniform hypergraphs. Hypergraphs, being
extensions of graphs, allow edges to connect multiple nodes

systems, we rely on estimations of the plant state based solely
on the plant output or the measurements collected from its
sensors. This finds various applications, such as monitoring

and y represent 1ti r ips which
are ubiquitous in many real-world networks. We extend the
canonical homogeneous polynomial or multilinear dynamical
system on uniform hypergraphs to include linear outputs,
and we derive a Kalman-rank-like condition for assessing the
local weak observability. We propose an exact techniques for
determining the local observability criterion, and we propose a
greedy heuristic to determine the minimum set of observable
nodes. Numerical experiments demonstrate our approach on
several hypergraph topologies and a hypergraph representa-
tions of neural networks within the mouse hypothalamus.

hemical reactions network or understanding the spread of
information or a disease within a community. In the context
of networked systems, two fundamental questions arise:
« (Q1) Is a set of sensor nodes sufficient to render a
network observable?
« (Q2) What is the minimum set of nodes to render a
network observable?
Observability of network systems has been extensively
studied from several perspectives: see [12] and references

IEEE CDC (2023)

Polynomial Dynamics with Linear
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Non-homogeneous
Geometric Observability of Hypergraphs

Joshua Pickard®*, Cooper Stansbury?, Amit Surana®,
Indika Rajapakse®, and Anthony Bloch®
“Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor MI, USA
PRTX Technology Research Center, East Hartford, CT USA
“Department of Mathematics, University of Michigan, Ann Arbor MI, USA

April 12, 2024

Abstract

In this paper we consider aspects of geometric observability for hypergraphs, extending our earlier
work from the uniform to the nonuniform case. Hypergraphs, a generalization of graphs, allow
hyperedges to connect multiple nodes and unambiguously represent multi-way relationships which are
ubiquitous in many real-world networks including those that arise in biology. We consider polynomial
dynamical systems with linear outputs defined according to hypergraph structure, and we propose
methods to evaluate local, weak observability.

IFAC LHMNC (2024)



Determining Observability (continued from 2023)

Observability Increases with Higher Order Interactions
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1Sweeney P, Chen C, Rajapakse |, Cone R. "Network Dynamics of Hypothalamic Feeding Neurons." Proceedings
of the National Academy of Sciences, 118.14 (2021)
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https://drive.google.com/file/d/1VrkmtVcnzOYXKfrDLmmzJOnlZbN3uwOn/view?usp=sharing

Kronecker Products for Higher Order Systems (continued from 2023)
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1 KRONECKER PRODUCT OF TENSORS AND HYPERGRAPHS:

2 STRUCTURE AND DYNAMICS

3 JOSHUA PICKARD®, CAN CHEN!, COOPER STANSBURY?, AMIT SURANASY,

1 ANTHONY BLOCHY, AND INDIKA RAJAPAKSE!

5 Abstract. Hypergraphs and graph products extend traditional graph theory by incorporat-

6 ing multi-way and coupled relationships, which are ubiquitous in real-world systems. While the
7 Kronecker product, rooted in matrix analysis, has become a powerful tool in network science, its
& application has been limited to pairwise networks. In this paper, we extend the coupling of graph
9 products to hypergraphs, enabling a system-theoretic analysis of network compositions formed via
10 the Kronecker product of hypergraphs. We first extend the notion of the matrix Kronecker product
11 to the tensor Kronecker product from the perspective of tensor blocks. We present various alge-
12 braic and spectral properties and express different tensor decompositions with the tensor Kronecker
13 product. Furthermore, we study the structure an iynamics of Kronecker hypergraphs based on the
11 tensor Kronecker product. We establish conditions that enable the analysis of the trajectory and
15 stability of a hypergraph dynamical system by examining the dynamics of its factor hypergraphs.
16 Finally, we demonstrate the numerical advantage of this framework for computing various tensor
17 decompositions and spectral properties.

18 Key words. 'l'ensor Kronecker Product, hypergraph products, tensor decomposition, tensor
19 eigenvalues, multilinear system, block tensors

20 AMS subject classifications. 15A69, 05065

SIAM SIMAX, to appear
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Kronecker Products for Tensor Calculations
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Kronecker Products for Polynomial Dynamics

Stability of polynomial dynamical systems can be determined from Kronecker factors

Example Trajectory of x = Bx? 1OVector Field of x = Bx®  Vector Field of x = Ax® when x;, = 0
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Adaptive Sequencing Technology

nature

Explore content v About the journal ¥  Publish with us v

nature > articles > article

Article ‘ Open access ‘ Published: 11 October 2023

Ultra-fast deep-learned CNS tumour classification
during surgery

C. Vermeulen, M. Pagés-Gallego, L. Kester, M. E. G. Kranendonk, P. Wesseling, N. Verburg, P. de Witt

Hamer, E. J. Kooi, L. Dankmeijer, J. van der Lugt, K. van Baarsen, E. W. Hoving, B. B. J. Tops ™ & J. de Ridder
[}

Nature 622, 842-849 (2023) | Cite this article

Biomarker Selection for Adaptive Systems

Joshua Pickard"”, Cooper Stansbury®, Amit Surana?, Lindsey Muir!, Anthony
Bloch®, and Indika Rajapakse'®"

Department of Computational Medicine & Bioinformatics, University of Michigan,
Ann Arbor, MI 48109
2RTX Technology Research Center, East Hartford, CT 06108
3Department of Mathematics, University of Michigan, Ann Arbor, MI 48109
“{jpic,indikar}@umich.edu

Abstract

Biomarkers enable objective monitoring of a given cell or state in a biological system and are
widely used in research, biomanufacturing, and clinical practice. However, identifying appro-
priate biomarkers that are both robustly measurable and capture a state accurately remains
challenging. We present a framework for biomarker identification based upon observability
guided sensor selection. Our methods, Dynamic Sensor Selection (DSS) and Structure-Guided
Sensor Selection (SGSS), utilize temporal models and experimental data, offering a template
for applying observability theory to data from biological systems. Unlike conventional meth-
ods that assume well-known, fixed dynamics, DSS adaptively select biomarkers or sensors that
maximize ol vability while accounting for the time-varying nature of biologic: stems. Ad-
, SGSS incorporates structural information and diverse data to identify sensors which
ent against inaccuracies in our model of the underlying system. We validate our ap-
proaches by performing estimation on high dimensional systems derived from temporal gene
expression data from partial observations. Our algorithms reliably identify known biomarkers
and uncover new ones within our datasets. Additionally, integrating chromosome conforma-
tion and gene expression data addresses noise and uncertainty, enhancing the reliability of our
biomarker selection approach for the genome.

In Preparation: arXiv (2024)
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Dynamic Sensor Selection

Experimental Setup Model of Dynamics

x(t+1) = A(t)x(t)
y(t) = C()x(?)

Sauao
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Adaptive sequencing technologies lets us change biomarkers (sensor set) in real time
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Structure Guided Sensor Selection
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Cellular Reprogramming of Hematopoietic Stem Cells

Data-guided direct reprogramming of human
fibroblasts into the hematopoietic lineage

Cooper Stansbury' 2, Jillian Cwycyshyn! ?, Joshua Pickard?,
Walter Meixner!, Indika Rajapakse!% 4, and Lindsey A. Muir!

1Department of Computational Medicine and Bioinformatics, University of
Michigan, Ann Arbor, MI 48109 USA
2The Michigan Institute for Computational Discovery and Engineering, University of
Michigan, Ann Arbor, MI 48109 USA
3Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI
48109 USA
‘Department of Mathematics, University of Michigan, Ann Arbor, MI 48109 USA

August 26, 2024

Abstract

Direct reprogramming of human fibroblasts into hematopoietic stem
cells (HSCs) presents a promising strategy for overcoming the limita-
tions of traditional bone-marrow transplantation. Despite the potential
of this approach, our understanding of the mechanisms driving efficient
autologous cell type conversion remains incomplete. Here, we evaluate a
novel algorithmically predicted transcription factor (TF) recipe - GATA2,
GFIB1, FOS, REL, and STAT5A - for inducing HSC-like states from hu-
man dermal fibroblasts. Using flow cytometry and long-read single-cell
RNA-sequencing, we demonstrate increased CD34" cell populations and
high transcriptomic similarity to native HSCs. Additionally, we uncover
transcriptional heterogeneity at both gene and isoform levels among in-
duced HSCs, underscoring the complexity of direct reprogramming.

In Preparation: bioRxiv (2024)
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Cellular Reprogramming of Hematopoietic Stem Cells
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TRonquist S, Patterson G, Muir LA, Lindsly S, Chen H, Brown M, Wicha M, Bloch A, Brockett R and Rajapakse .
"Algorithm for Cellular Reprogramming."” Proceedings of the National Academy of Sciences 114.45 (2017):
11832-11837.
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https://drive.google.com/file/d/10TY0st7TsT0pUgaxQbY2NFIaDYGZlyuU/view?usp=sharing

Programmable Platform for Probing Cellular Dynamics
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Automated Wound Healing Assay

Automated In Vitro Wound Healing Assay

Jillian Cwycyshyn': 2, Cooper Stansbury? *, Walter Meixner?, James B. Hoying?,
Lindsey A. Muir?, and Indika Rajapakse®: % 3

1Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI 48109 USA
?Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI 48109
USA
3The Michigan Institute for Computational Discovery and Engineering, University of Michigan, Ann Arbor,
MI 48109 USA
4 Advanced Solutions Life Sciences, Manchester, NH 03101 USA
SDepartment of Mathematics, University of Michigan, Ann Arbor, MI 48109 USA

March 21, 2024

Abstract

Restoring the epidermal barrier after injury requires spatial and temporal orchestration of migration,
proliferation, and signaling across many cell types. The mechanisms that coordinate this complex
process are incompletely understood. In vitro wound assays are common model systems for examining
these mechanisms in wound healing. In the scratch assay, a cell-free gap is created by mechanical
removal of cells from a monolayer, followed by monitoring cell migration into the gap over time. While
simple and low-cost, manual scratch assays are limited by low reproducibility and low throughput.
Here, we have designed a robotics-assisted automated wound healing (AWH) assay that increases
reproducibility and throughput while integrating automated live-cell imaging and analysis. Wounds
are designed as computer-aided design (CAD) models and recreated in confluent cell layers by the
BioAssemblyBot (BAB) 3D-bioprinting platform. The dynamics of migration and proliferation in
individual cells are evaluated over the course of wound closure using live-cell fluorescence microscopy
and our high-performance image processing pipeline. The AWH assay outperforms the standard
scratch assay with enhanced consistency in wound geometry. Our ability to create diverse wound
shapes in any multi-well plate with the BAB not only allows for multiple experimental conditions to
be analyzed in parallel but also offers versatility in the design of wound healing experiments. Our
method emerges as a valuable tool for the automated completion and analysis of high-throughput,
reproducible, and adaptable in vitro wound healing assays.

20



Automated in vitro Wound Healing Assay
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https://www.biorxiv.org/content/10.1101/2023.12.23.573213v2.full.pdf
https://www.biorxiv.org/content/10.1101/2023.12.23.573213v2.full.pdf

Data: Single Cell Pore-C (higher order structures in the genome)



Single Cell Hypergraphs and Hypergraph Core: Coming Soon
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Large, Directed, Non-uniform Hypergraphs
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Ongoing and Future Directions
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KRONECKER PRODUCT OF TENSORS AND HYPERGRAPHS:
STRUCTURE AND DYNAMICS

JOSHUA PICKARD®, CAN CHEN', COOPER STANSBURY?, AMIT SURANAS,
ANTHONY BLOCHY, AND INDIKA RAJAPAKSE!

Abstract. Hypergraphs and graph products extend traditional graph theory by incorporat-
ing multi-way and coupled relationships, which are ubiquitous in real-world systems. While the
Kronecker product, rooted in matrix analysis, has become a powerful tool in network science, its
application has been limited to pairwise networks. In this paper, we extend the coupling of graph
products to hypergraphs, enabling a system-theoretic analysis of network compositions formed via
the Kronecker product of hypergraphs. We first extend the notion of the matrix Kronecker product
to the tensor Kronecker product from the perspective of tensor blocks. We present various alge-
braic and spectral properties and express different tensor decompositions with the tensor Kronecker
product. Furthermore, we study the structure anc lynamics of Kronecker hypergraphs based on the
tensor Kronecker product. We establish conditions that enable the analysis of the trajectory and
stability of a hypergraph dynamical system by examining the dynamics of its factor hypergraphs.
Finally, we demonstrate the numerical advantage of this framework for computing various tensor
decompositions and spectral properties.

Key words. ‘lensor Kronecker Product, hypergraph products, tensor decomposition, tensor
eigenvalues, multilinear system, block tensors

AMS subject classifications. 15A69, 05C65
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KRONECKER PRODUCT OF TENSORS AND HYPERGRAPHS:
STRUCTURE AND DYNAMICS

JOSHUA PICKARD®, CAN CHEN', COOPER STANSBURY?, AMIT SURANAS,
ANTHONY BLOCHY, AND INDIKA RAJAPAKSE!

Abstract. Hypergraphs and graph products extend traditional graph theory by incorporat-
ing multi-way and coupled relationships, which are ubiquitous in real-world systems. While the
Kronecker product, rooted in matrix analysis, has become a powerful tool in network science, its
application has been limited to pairwise networks. In this paper, we extend the coupling of graph
products to hypergraphs, enabling a system-theoretic analysis of network compositions formed via
the Kronecker product of hypergraphs. We first extend the notion of the matrix Kronecker product
to the tensor Kronecker product from the perspective of tensor blocks. We present various alge-
braic and spectral properties and express different tensor decompositions with the tensor Kronecker
product. Furthermore, we study the structure anc lynamics of Kronecker hypergraphs based on the
tensor Kronecker product. We establish conditions that enable the analysis of the trajectory and
stability of a hypergraph dynamical system by examining the dynamics of its factor hypergraphs.
Finally, we demonstrate the numerical advantage of this framework for computing various tensor
decompositions and spectral properties.

Key words. ‘lensor Kronecker Product, hypergraph products, tensor decomposition, tensor
eigenvalues, multilinear system, block tensors

AMS subject classifications. 15A69, 05C65
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Hypergraph Dynamics

Hypergraph dynamics are represented as homogeneous polynomial or
multi-linear systems. A k-unifrom hypergraph JH{ on with adjacency tensor

A has the polynomial dynamics

x = Ax*"1 + Bu

2y
¥y = EL£X
with linear inputs and outputs.
A B

X1 = X2 + X3 a X1 = XoX3

x—Ax . x—=Ax2 .
——— Xo = X1 + X3 e X2 = X1X3
Q X3 = X1 + X e a X3 = X1X2

4

4Chen, Can, et al. " Controllability of hypergraphs.” IEEE Transactions on Network Science and Engineering 8.2 (2021):
1646-1657.
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Network Observability

Observability

A system is observable if the system state can be determined from the
system output.
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0——*(;)‘ 1 y ‘ (,f‘ el T
(C o C{
'\}\ </
0\/ I l‘)‘j \ o,

1Liu, Yang-Yu, Jean-Jacques Slotine, and Albert-Laszl6 Barabdsi. " Observability of complex systems.” Proceedings of the
National Academy of Sciences 110.7 (2013): 2460-2465.
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Hypergraph Dynamics

Repeated Kronecker Product

X[i] :§®x®)§

i—times

Hypergraph dynamics without control:

s {X = AXk_l Tensor Um“olding> e {X = A(p)x[k_l]
y =Cx

Nonlinear System X = f(X)
? ZN
y =g(x)
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Nonlinear Observability Matrix (NOM)

Kalman-like Observability Test

When rank(O(x)) = dim(x), the system is locally, weakly observable.

C
[
CA?

\CAE”—l )

Q

Nonlinear O (X)

Vx
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Nonlinear Observability Matrix (NOM)

Kalman-like Observability Test

When rank(O(x)) = dim(x), the hypergraph dynamics are locally, weakly
observable.

CAx!<1]
O(X) — N : =378 CABzx[zk—3] (5)

\ng(x)) \CAB; ... B,:,x[”k_(2”_1)] )

(Log(x)\ ( a )

(p—1)k—(2p—3) (p—1)k—(2p—3)times

Bp: Z i@...@ A(p) ®...®i
5 oo N~~~

I-th pos.

See Sontag, Krener and Baillieul -



Computing the Hypergraph Nonlinear Observability Matrix

l 4
A n e e a o e ” ° Algorithm 1 A recursive algorithm for computing Lp(g)
| 1 1: RecursivelL(C. A, p. k,5))
; By Py KyS;
B ﬁ ° 0 9 ° 2. if p=1 then
. 3. Lp(g(x)) =CA(51® - ® Sj(k-1))
o- 0 1 o e o 4: return: Ly(g(x)) '
e J( l« 5. end if
1 6: b=(p—1)k—(2p—3)
C o 90 000 7. Ly(g(x)) = 0
o 8 for i = L1, b do
e T ith)gos
~L 9: S/’ = {Sj,l ..... A(SJ, K- ® Sj_,'Jrk,Q) ..... Sj.pkf(prl)}
) 10 Lp(g(x)) = Ly(g(x)) + RecursiveL(C,A. p—1,k.S))
11: end for

12: return: L,(g(x))

n

-]

Symbolic Calculations



Hypergraph controllability has been studied similarly

L4l g Ll
000000000000

A

B @ & o “‘ o Algorithm 1 Computing the reduced controllability matrix.
I: Given a supersymmetric tensor A € R™*™* X" and a

0060 control matrix B € R"*™
c 0 e © 2: Unfold A into a matrix A by stacking the last k£ — 1 modes,
6 (6] - - A€ Ruxn" .
L Scl L,. =Band j =0
D while 7 < n do

k—
Compute L = A(C, ® C,® -- 5 ®C;)
Set €, = [C,, L]
Compute the economy-size SVD of L, and remove the
\l

E @ 6 ° zero singular values, i.c., C, = — USV'" where § € Rs*#,
and s is the rank of C,
& SetC,.,=U,and j=73+1
1
e

ﬁ'>.‘i'i1

oN BN RN o

9: end while

. 10: return The reduced controllability matrix C,.

3
F O T
(<]

5Chen, Can, et al. " Controllability of hypergraphs.” IEEE Transactions on Network Science and Engineering 8.2 (2021):
1646-1657.
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Better than Graph Observability

Minimal Observable Node Minimal Controllable Node
Selection Selection
- IiHypergraphs!1Graphs - I1Hypergraphs ! Graphs
J [
155 I
Z 10| 5
= = 10
51 - I
0t
Fast Re-fed Fast Re-fed
Phase Phase
6

6Chen, Can, et al. " Controllability of hypergraphs.” IEEE Transactions on Network Science and Engineering 8.2 (2021):
1646-1657.

DATA

Sweeney P, Chen C, Rajapakse |, Cone R. "Network Dynamics of Hypothalamic Feeding Neurons." Proceedings of
the National Academy of Sciences, 118.14
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Systems of Systems

Stochastic Kronecker Graph

111(1(1
11100
1/0/1]0
1/0/0/1
1(1(1(1
11100
11011
1]10(1]1

Initiator Ky K adjacency matrix

Ky adjacency matrix

Tensor Kronecker Product

A
.55 .55
i‘%"ﬁg‘% 7 h
' Wi

e
F

iﬁ?:-%ﬂ:-' 7 '5*;
ﬂ'r'-‘.i‘. %}%ﬁ

B ®

o548

C

Tensor Decompositions

102 TTD Compute Time

| ¢ Direct -°
|_& Kronecker| _.o°
lU“, -

Time (sec.)

{ .

10 ": A
% = ...m-o“
!f O

10412

0 10 20
Dimension of B and C

30

Time (sec.)

8

CPD Compute Time

(e

107 e
© sy

. gooed L

{ it pne

102
0 10 20

Dimension of B and C

30

8(Left) Leskovec, Jure, et al. " Kronecker graphs: an approach to modeling networks

Research 11.2 (2010).

" Journal of Machine Learning
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KRONECKER PRODUCT OF TENSORS AND HYPERGRAPHS:
STRUCTURE AND DYNAMICS

JOSHUA PICKARD®, CAN CHEN', COOPER STANSBURY?, AMIT SURANAS,
ANTHONY BLOCHY, AND INDIKA RAJAPAKSE!

Abstract. Hypergraphs and graph products extend traditional graph theory by incorporat-
ing multi-way and coupled relationships, which are ubiquitous in real-world systems. While the
Kronecker product, rooted in matrix analysis, has become a powerful tool in network science, its
application has been limited to pairwise networks. In this paper, we extend the coupling of graph
products to hypergraphs, enabling a system-theoretic analysis of network compositions formed via
the Kronecker product of hypergraphs. We first extend the notion of the matrix Kronecker product
to the tensor Kronecker product from the perspective of tensor blocks. We present various alge-
braic and spectral properties and express different tensor decompositions with the tensor Kronecker
product. Furthermore, we study the structure anc lynamics of Kronecker hypergraphs based on the
tensor Kronecker product. We establish conditions that enable the analysis of the trajectory and
stability of a hypergraph dynamical system by examining the dynamics of its factor hypergraphs.
Finally, we demonstrate the numerical advantage of this framework for computing various tensor
decompositions and spectral properties.

Key words. ‘lensor Kronecker Product, hypergraph products, tensor decomposition, tensor
eigenvalues, multilinear system, block tensors

AMS subject classifications. 15A69, 05C65
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Data from the LAB



Cell Dynamics

Control

Wound Healing

Migration

Proliferation

R(‘p rogramming

Cell Type 1

-_— Cell Type 2
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Biology of Wound Healing

Unwounded Wound Healing Healed
Keratinocytes e A
B S - S R gl SRS
Fibroblasts, ECM __
Immune cells,
Vasculature
Migration Proliferation
4 ; >
2 Time
Injury
Unwounded Wound Healing Scar
B N /%\ BT Z - BT .
Migration Proliferation
m .
4 Time
Injury
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Wound Healing System: In Vitro Analog

Fibroblasts (nucleus) Keratinocytes Fibroblasts Composite

Wound
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Next Generation

Skin tissue construct Perfusion setup
3D-printed ﬂ jl
channels in-flow syringe out-flow syringe

]

100 pl/hr ‘

= fibroblast a = microvessel M ’|
|

= keratinocyte . = macrophage

Automated wound healing assay Lot | media

b

1

[

1

1

1

CAD !
wound |
[

1

1

1

1

1

The BioAssemblyBot 400 (BAB)

model

L W

<+ B )
Bl
.P

______________________________________________
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Automation

A A 2 3 4 5 e']/ D
(xh Y 21) ] "'@OOOO(?{' """" e (Xz, Y2, Zz) T u!~_|
000000 EEEEEEID

: -O00000 | i 8
[

(Xa) Ya, Zg) =--===- \"@OOOO@' """" == (X3, Y3, Z5)

Side view

Top view

CAD
wound
model




LAB 2023: Technology

Oxford Nanopore Sequencing

MinION
———r— —
TN The BAB robotic arm ERBFieh . Piacayoa) The BAB and Zeiss BAB Printing Tool used to
(i.e., the grippers) Celldiscoverer 7 automate a wound healing
assay

University Research Instrumentation Program (DURIP), 2019 and 2022
GridION Air Force Office of Scientific Research (Dr. Fred Leve)

PromethlON 2

Jay Hoying LakmaI.Jayasinghe Amit Surana
Advanced Solutions Oxford Nanopore Technologies Raytheon Technologies

Technology Transfer to Startup: iReprogram Inc.
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Automation in the LAB

Live Cell Imaging

Adares

. B E ,
.
ol B

Live Streaming
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Thank you!
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Scaling Hypergraph Observability Calculations

Tensor-based Evaluation

I
X

Matrix-based Evaluation

—

Hypergraph-based Evaluation

]

®

X

4 x v
Polynomial
0.6 0.6
x *Degree
¥ L] o e 5
a1
0.5 0.5 !
~ =] . «Algorithmpp,
2 x . % % Tensor
g o4 iz 04wt R ExEE e e
IS x L x
S v
203 x5 ¥ 03 BEx Fxa o oxox aoR K
© x x| ¥
2 x x
2 x % %
oo S L] 1 0.2 ¥ oxx % x t *
%% % x% xx¥x X Cuxlx
LI e % x xo | &
. . ue e
0.1 o g E38% § g 0.1 "E* @se2Ce
H H g I .
s % R Ex 25 s
§=§5ig s25§¢ 2 fa it
0.0 *:i“§i§§§!c§§§'§ Ooﬁ-*‘fn‘&?&?&%%} $as
50 75 100 125 150 175 20.0 o 100 200 300 400 500
500000 % 500000 oo x
400000 400000
xx  x xx x x %
)
X,
© 300000 300000
>
8 x % wex xx
=
fa
£ 200000 . 200000 el L
3
=
x xx yx
100000 + 100000 . .
x xxowex
xx
x x % xR » %
0 wwwux5Esesssssoose o vesns Sty e i e e e
50 75 100 125 150 175 20.0 o 100 200 300 400 500
Number of Vertices (n) Number of Hyperedges (e)

Algorithm 1 Hypergraph based evaluation of f(x)

Require: H: list of hyperedges, x: vector of node states
Ensure: Updated vector of node states
: Initialize x" « [0,0,..., 0] of length |x]|

|
2: for all h € H do
3

4:
o:

6:

Let polyterm < [, ¢ ainn) X[V]
x'[head(h)] «— x'[head(h)] + polyterm

end for
return x’
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Large, Directed, Non-uniform Hypergraphs

{.

X

)

= f(x) = Ax*! + Bu

Algorithm

Hypergraph

Matrix
Degree
e 3
x 4
= 5

=g(x) = Cx

Tensor-based Evaluation £
— =
E

% 4
Matrix-based Evaluation 5,
£
2

. ﬂ® ®ﬂ

Dimension Interactions

Hypergraph-based Evaluation
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Tensor-based Evaluation

= N ]V %

Matrix-based Evaluation

L0 - o]

Hypergraph-based Evaluation

Run Time

Numerical Comparison

Memory

Dimension

Interactions

Algorithm
Hypergraph
Matrix
Degree

e 3

x 4
5
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