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QOutline

@ Autoencoders (w/ Kvalheim)



Dimensionality reduction of data

“manifold hypothesis:” data set in R” lies on some k-dimensional submanifold K C R”
= data can be parametrized locally by k < n real numbers
classical approaches like PCA to learn these parameters work well when K is linear

but not when K is nonlinear



Autoencoding as nonlinear dimensionality reduction

C° encoder F: R" — R¥ and decoder G: R — R" (typically “neural networks")

ideal autoencoder: G(F(x)) = x V x € K (data manifold)

useful also for “interpolation” of images by “walking along"” latent space

and for encoding vector fields in reduced space

obvious obstruction: = K homeomorphic to subset of R¥ (generally false for k-dim K)

so relax to “approximate” versions:



Numerical example using a “deep” NN

(Python TensorFlow, Adaptive Moment Estimation [Adam] optimizer, L2 error loss)
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Semi-global autoencoders always exist (Kvalheim & EDS 2024)

let F&™ be dense in the space of continuous functions RY — R™
(e.g., the collection of possible feedforward neural network 1/0O functions)

Theorem 1: Let:

» K C R" = finite union of disjoint compact < k-dimensional submanifolds
(with or without boundary)
» 1, Op any smooth measures on K, 0K

Then: V¥V § > 0, V finite data subset S C K, 3 a closed set Ky C K s.t.:

> KoNS =g, M(Ko) <6, 8,u(K0 ﬂ@K) < 6;

» M\ Kp is connected for each component M of K;

» for each € > 0 there are functions F € F™k, G € Fk" st.

sup ||G(F(x)) —x|| <e.
XEK\KO
— data S can be reconstructed with error
and generalization error also uniformly smaller than e (with probability > 1 — )



... but not global (approx) autoencoders (Kvalheim & EDS 2024)

Theorem 2:
Consider k-dimensional compact submanifold without boundary K C R”; rix > 0 its reach.

Then: for any continuous functions F: R” — R¥ and G: R — R”,
sup [|G(F(x)) — x| = r«
xeK

recall:

“reach” rx > 0 of K measures “local curvature”
defined as largest r s.t. V x € R™:

dist(x, K) < r = x has unique projection on K

(nearest point)

(both shown line segments shown have length r)



Example: K = union of two unit circles = L~ error > rx =1
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Summary and interpretation for autoencoder training error

Theorem 1 = (Ve > 0) (3 F, G) making LP(u) loss, p € (1,00), small:
IG(F(x)) = xllpp <
Theorem 2 = (for K w/o boundary, V F, G)
IG(F(x)) = xlloo = rk >0

New Theorem (unpublished):
bottleneck dim must be > k (for Lipschitz encoding/decoding)

1/p
notes: notation means (/ IG(F(x)) — prdu(x)) for any reasonable measure
K

p loss is basically limy_,cc 4 SN IIG(F(xi)) — xi||P for training data

just modify G off F(K \ Ko) to make the AE error smaller than some Cx > 0 on Kj



Idea behind proof of Theorem 1: negative gradient flow

take any polar Morse function h (e.g. height function below) and —Vh flow
consider region of attraction of unique local minimum
remove a fattened version of U Ws(q), g = other critical points (1 = 0)

encoder F: R” — R¥ = any extension of this diffeomorphism
decoder G: R¥ — R"” = any extension of inverse diffeomorphism

can always find such a “codim > 0 set” disjoint from the data
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Idea behind proof of Theorem 2

the set N = {x € R": dist(x, K) < rx}
contains line segment from x € N to unique projection p(x) € K (and p continuous)
which implies given
sup [|G(F(x)) = x|l < i

that t — po (tGo Flkx + (1 — t)idk) is a homotopy of idk to po Go F|k
so induced homomorphism on singular homology groups

(poGoF|k)e =psoGyoFy: He(K) = Hi(K)
(1) equals the identity homomorphism (idk ). induced by idk, but
(2) this contradicts that this map factors through G, which is zero
small print: use Z> homology

use factorization through “fattened” U := G~'(N), noncompact manifold, Hx(U;Z,) =0
and that Hy(K;Z2) = Z # 0 when K is a compact (connected) manifold

11



Extension to vector fields (Kvalheim & EDS, in progress)

Theorem 3 (only partially proved):
Let:
> K C R" = finite union of disjoint compact < k-dimensional submanifolds
(with or without boundary);
» 1, O any smooth measures on K, 0K
» f a smooth vector field on R” s.t. f|x is tangent to K.
Then:

¥V 6 > 0 and finite set S C K, 3 closed set Ko C K and smooth vector field g on R¥ s.t.:

> KoNS =0, u(Ko) <9, du(Ko NOK) < 6;
» for each e, T > 0 3 functions F € F™"k G € Fkr st.
sup HGod);oF(x)—d)}(x)H<£.

XEK\KO
te[-T,T]

= only obstructions to autoencoding vector field trajectories
arise from autoencoding initial conditions

12



*** True min-max error is often larger than the reach

min max error “reach” is conservative
e.g.: K =green, reach = e <« 1
but expect error lower bound much worse

define “dewrinkled reach of K" =1 —¢

witnessed by red circle, which has reach 1,
and projection mapping T : L — K

where 6(T) := maxyie | T(y) — y||
= maximum deviation of T from the identity

Corollary:
Consider K C R" be a k-dimensional compact submanifold without boundary.
For any continuous functions F: R” — R and G: R¥ — R":

sup [G(F(x)) —xI[ =2 rkx = sup {r.=0(T)}
xeK LeM, , TeEC(L—=K)
dewrinkled reach 13



QOutline

@ Some limitations of linearization-based control (w/ Liu & Ozay)
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(Global) linearization-based identification and control

Find z = 1 (x) a linear system

a nonlinear system .
= () ) -4

| prediction (or control) I

for example, 1, (x) represented by neural network with weights w

and one attempts to “learn” the network weights and matrix A from data

15



“Koopman” (& Kalman!) approach

Koopman operator theory

Nonlinear systems x = f(x) — Infinite-dimensional linear systems

¢ =Ly

Challenging, Sys identification

especially when f is unknown Finite-dimensional

L-invariant subspace

Stability analysis, prediction, etc. — Finite-dimensional linear systems

z=Az
Linear system theory
often hard to a linear (finite-dimensional global, continuous) representation ...

» algorithmic problem?
» A representation?

here: show impossibility of continuous immersion (one to one) ¥

if there are (more than one) isolated omega limit sets (equilibria, cycles, .. .)

16



Seems obvious no?

there cannot be multiple isolated equilibria in linear systems ...

but what about an immersion like this (with singular A)?
f(x)

\ g P(x)? v
X T Y

x = f(x) z=Az

need to rule out that this can ever happen (with consistent dynamics)

17



Setup

X% = f(x), x € X (connected subset of manifold M)
f smooth enough to guarantee uniqueness, completeness, continuous dependence

a key property: “closed basins of attraction”

for any w-limit set Q, define: DT(Q) := {¢ € X | w'(¢) = Q}

Observation: for linear systems, and all Q, D™ (Q) closed

|

A A=[—1 _1] / A A=[—1 1]

Ny, .
ZINR

\/
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Main impossibility result (Liu, Ozay, EDS 2023/4)

V¥ : X — Z continuous, one-to-one, is an “immersion” of x = f(x) in z = g(z) if:

V(px(t, &) = @z(t,W(£)) V initial states £ € X and times t > 0

X 2 x
v v
z £z

Theorem: Suppose:

e trajectories of x = f(x) on X are precompact in X', and

e there is more than one but at most a countable number of w-limit sets.
Then: x = f(x) on X cannot be immersed in a system with closed basins

—> impossible to immerse in linear systems

19



Our conditions are “necessary” in a sense

no obstructions if weakening:

e uncountably many w-limit sets (obvious: even linear)
e local immersions

e “approximate” immersions

e unbounded trajectories (Arathoon & Kvalheim)

e discontinuous (or into hybrid system)

20



Implications to learning from data

recall immersion condition:

V(px(t,&)) = pz(t,V(£)) Vinitial states £ € X and times t > 0
given sampling time 7 and pairs {(x, x,")}52; s.t. x," = (7, %)
continuous linear immersions W that match first NN samples belong to:

F(r,N) = {U[IAR™™ U(x) = e W(x), ¥/ =1,--- N}

Corollary: Suppose

o {x/}72, is a dense subset of X' (e.g. random sampling),

e trajectories of X = f(x) on X are precompact in X, and

e VW distinguishes between at least two w-limit sets.

Then for all small enough sampling times 7 and large enough N, V & F(r, N).

Intuitively: immersion candidates F that can distinguish at least two w-limit sets

will be ruled out as more data is collected (if sampling time small enough)
21



**%* Dijscontinuous immersions much easier

discontinuous less interesting, as they destroy global dynamics

Minor result: 1-d isolated equilibria embeddadble in 2-d linear

1D example:
Consider the 1-d system with three isolated equilibria
o x(1—x3)
x =—_—— x,
14 x? [
Equilibrium points are {—1,0, 1}.
Then, -
x(1 — x? u=v .
i= (_2) — { v
1+x P(x) v= st
where 6, 0) Fx) =0 L
3x >0
(l"|—2+2x2 '1> x<-1
an|—2_1 2 1 0 i
Px) = ( "|—2+2x2|’ ) -t<x< 2
3x
(infgizal ) o<x<t

(21| 3x z) >1 o
Mzl ¥>h ’

22



*** (Observe that limit cycles per se are not an obstruction!

even though a linear system cannot have isolated limit cycles,
it is nonetheless possible to immerse a nonlinear system with an isolated limit cycle

into a linear system via a continuous and one to one mapping:

Consider the 2-d system with one isolated limit cycle :
X1 = %1 — X3 — x1(x% + x3)

X, = %1 + X, — x(x% + x3) 5

The w-limit sets are
the origin {0} and the unit circle {x | ||x]|, = 1}. **

Let X = R?/{0}. Then, .

X1=x1—x2—x1(x12+x22) _ v=u

_ 2, .2
Xy = X1+ X3 — x2(x7 + x3) W= —2w

X2
Y(x) = ( ||x||2 1) continuous and one-to-one
Nl Tl

23



**% Example of local

Consider the 1-d system a nonlinear system Findz = 1)(x) a linear system
x=x%-1 x=f(x) z=Az
The w-limit setsare x = 1 and x = —1. | prediction (or control) I
Let X = (—oo,1). Then, > Py - *~—>r—>
-1 1
x=x%—1 E—) 7= —27
x+1
Y ==

If we extend X by a point to X' = (—o0, 1], 3 is not an immersion anymore as (1) is undefined.

24



*** Similarly, for limit cycle in previous example

. Findz = .
a nonlinear system B $(x) a linear system

%= f() =4z

Consider the previous 2-d system o
{ | prediction (or control) I

X1 = X1 — X — % (% + x3)

Xy = %1 + Xy — X (xf +x3) oa
The w-limit sets are: o4
* the origin {0} and the unit circle {x | ||x||, = 1}. & oo
Let X = R2/{0}. Then, ae]
. il = -7 Voar
x1=x1—x2—x1(xf+x§)— sy

X = X1 + X — x(xf + x3) W= —2w

X1 X2 2
@) = (o 2l - 1)
llcllz” llcllz” ™

If we extend X by a point to R2,3 is not an immersion anymore as 1(0) is undefined.

25



*** Some previous work

A linear representation may not exist

X = f(x) has more than one . :
(since linear systems can only have one

isolated equilibria
g isolated equilibrium)

This is suggested/observed numerically by many earlier works (Lan and Mezi€ (2013),
Williams et al. (2015), Brunton et al. (2016), Bakker et al. (2019)).

Bakker et al. (2019) show a counter-example where a discontinuous lifting exists.

_x =) ha's.mf)re than one A linear representation may not exist.
isolated equilibria
N A linear representation may still exist with
a discontinuous lifting function (Koopman

eigenfunctions)

26



QOutline

@ (Disturbed) gradient flows
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Iterations and flows in optimization

consider a continous time (flow) or a discrete time (iteration) system:

x(t) = f(x(t))
x(t+1) = f(x(t))

for which it is desired that x(t) — &, where £ solves an optimization problem

e.g. if L(x) is a (generally non-convex) loss function, one may look at gradient flow:

x(t) = —nVL(x(t)"

of natural (Riemannian) flows, Newton or Quasi-Newton, etc . ..

similarly can study (discrete) steepest descent version (= Euler of gradient flow):

x(t+1) = x(t) - 77V£(X(1‘))T

28



Review of general convergence theory

assume L is continuously differentiable and has a minimum value 0

target and critical sets:

Te = {x] L(x)=0}
Cc = {x|VL(x)=0} D T,
x(t) = = VL(x(t))" (for simplicity, take n = 1)

» precompact trajectories approach C, (Krasovskii-LaSalle):
L= —|VL> <0
( = convergence to T if Cx = Tr)
» for analytic £, all w-limit sets (C C) are single equilibria (Lojasiewicz)

» generically, precompact trajectories converge to C\ strict saddles

(“strict” = linearization has at least one positive eigenvalue)

29



***% A Theorem

Suppose that:
» L is a real-analytic (loss) function;
» Cr =Tz US, where S consists of strict saddles for x = —VL(x); and
> every trajectory of the gradient flow dynamics is pre-compact.

Then, except for a set of measure zero, all trajectories converge to points in 7.

30



Convergence to 7, under gradient dominance conditions

if XA > 0st: [|[VL(X)|? > AL(x) (global Polyak-tojasiewicz Inequality)
then: £ = —||VL|? < -AL(t) = L(t) < e *ML(0)
several weaker versions also guarantee (not necessarily exponential) convergence

(but more useful for subsequent “ISS” discussion):

VL))
VLGP > a(L(x)), for some o € K

IVLO)|? > a(L(x)), for some o € PD

Y

a(L(x)), for some o € Ko

some notes:
o if |[VL(x)||?> > AcL(x), where A.'s depend on sublevel set £(x) < c, then 3 a € PD
e /C condition is a global "Kurdyka—tojasiewicz Inequality”

e strict convexity = Ptl, but convexity not needed
31



But: £ and/or its gradient V£ might be imprecisely known

e adversarial attack

e errors in evaluation of £ by “oracle”

e carly stopping of a simulation

e inacurate and very approximate digital twin
e stochastic computations (“reproducibility”!)
e learning by sampling from limited data

model by “input” or “disturbance” u(t):
x(t) = —nVL(x(t))" + u(t)
or more generally

x(t) = f(x(¢),u(t))

algorithm

query x

estimate gradient
+ error/noise

oracle,

digital twin,
computing subsystem, ...

g

natural questions: graceful degradation if ||u|| “small” (sup norm, integral, ...)?

e is dist (x(t), 7Tz) (or L(x(t))) ~ 0 for large t? (asymptotic question); and rate?

e is dist (x(t),7z) (or L£(x(t))) not “too large” for intermediate computational times t?

32



ISS-like perturbation theory of gradient descent

X(t) = —nVL(x(t))" + B(x(t)) u(t)
(“learning rate” n > 0; B : X — R™*™ bounded locally Lipschitz)

[integral] input to state stability (ISS [iISS]): how do inputs affect dynamics?

if input u(-) is bounded

(small, “eventually” small, convergent)
then solutions inherit properties

& well-controlled transient behavior:
dBeKL, veE Ky st. V xo, u

L(x(t)) < max {B(L(x), ) 7 (llull.0)}

[/t'y(lu(s)\)ds for integral ISS
0
think of B(r,t) = ai(e *ax(r))

A

< B(L(%),0), [[ull
(overshoot) ~ lullo
¢ (asymptotic)

t 33



Key relationships (+ technical details!)

o [VL(X)|? > a(L(x)), for some o € Koy <= 1SS

o VLI

v

a(L(x)), for some o € K <= small-input ISS

o [VL(X)|? > a(L(x)), for some v € PD <= ilSS

34



*** Recall: [i]ISS is natural generalization of linear stability

for linear X = Ax + Bu (Hurwitz A), typical estimates of stability for operators
{L2, Loo} — {Lz, L‘X’} : (x0, u) — x(+)
are:

Ix(t, %0, u)] < c1lx|e ™ + e sup |u(s)| (L — L™)
s€[0,t]

t
Ix(t, %, u)] < c1lxo|e ™ + c2/ lu(s)|> ds (L% — L)
0

t t
/ X(s, 50, )2 ds < 1 lxo| + C2/ lu(s)[? ds (L2 = 12)
0 0

for linear systems, all equivalent (with different constants)

changing (nonlinear) coordinates x(t) = T(z(t)) ~ ISS, ilSS, and (again) ISS

35



*&% [i] 1SS with respect to 7; C X C R” (open set)

definition: w : X — R is a size function for (X, T;) if:
continuous, positive definite wrt 7z, and proper [coercive]

(meaning w(x) — oo as x — IX or |x| = o0)
assume £ has strict minimum £ on 7Tz, and
IVLO)|? > a(L(x)—L) ¥VxeX

with a € K, K, PD

conclude ISS, “small-input” ISS, ilSS properties for
x(t) = = VL(x(t) " + B(x(t))u(t)

wlx(tx ) < max (8((00) 0,7 (lull)} [ [ 1(0u(s))ds for ntegral 155
(EDS, SCL 2022)
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*** Tool: [i]ISS-Lyapunov (dissipation) inequalities

C! function £ : X — R is [i[ISS-Lyapunov function for x = f(x, u) wrt (X, A) if
» (3L) L — L is a size function for (X, A)
> Ja,y€ Ko sit. L(x,u) < —a(L(x)—L) + v(Ju]) Y(x,u) e X xR™

[for iISS, ask only « positive definite]
(where L(x, u) :== VL(x) - f(x,u), ie dL(x(t))/dt = L(x(t),u(t)))
Theorem. 3 [i]ISS Lf <= system is [i]ISS

Theorem. Similarly for a € K and “small-input ISS”
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*** Steepest descent w/ line search

steepest descent algorithm: given guess x,

perform line minimization search in negative gradient direction:

M= argmin V(xK = AVL(xM)T)
A>0

and define x**1 := xk — A\kvL(xK)T

but noisy on gradient estimation, so really:

KA = K N [VLER T+ B(xK)d]

Theorem: if L is K loss function, safe step

then iteration is (DT) ISS

estimated gradien

38



**%* Other works on ISS-like gradient flows

» Cherukuri-Mallada-Low-Cortés 2018, saddle dynamics
(ISS gradient wrt additive errors, V has a convexity property, X = R")

» Poveda-Krsti¢ 2019/21, fixed-time convergence in extremum seeking
(gradient flow, “D-ISS" property wrt a time-varying uncertainty, X = R")

» Bianchin-Poveda-Dall'Anese, 2020 switched LTI systems
(ISS gradient flow wrt unknown disturbances acting on plant, X = R")

» Suttner-Dashkovskiy 2021, extremum seeking
(ISS gradient flow for kinematic unicycle, X closed submanifold of R")

» Cunis-Kolmanovsky 2022, bilevel optimization

(ISS gradient flow; errors arise from “inner loop” incomplete optimization)
» Pang-Tian-Jiang 2021/2022, LQ

(Kleinman's policy iteration, “small-input” ISS)

39
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@ ISS for LQR direct problem (w/ Cui & Jiang)
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A motivating application

consider the most classical linear control problem: LQR for x = Ax + Bu,
T 06, u(")) = /OOOXT(t)QX(t) + uT(£)Ru(t) dt

= u(t) = —Koptx(t), Kopt = R7*BTT, where N > 0 solves ARE

reformulate as: min V(K) := E[J (%, Kx(-))] (average over initial states)

over open set K(A, B) := {K | A— BK Hurwitz} C R™*"

but: solving problem requires precise knowledge of system/cost matrices

alternative (e.g. in RL): “direct” or “model free” approach, where controllers
designed by numerically estimating cost (loss) function, using plant or digital twin

~» “direct policy update” approach: optimize gain K

renewed interest in an old approach! (Levine-Athans 1970)
41



Main result (Cui, Jiang, EDS 2024)

LQR for x = Ax + Bu, J(x, u()) = / xT(1)Qx(t) + u” (t)Ru(t) dt
0
= u(t) = —Koptx(t), Kopt = R™1BTT, where 1 > 0 solves ARE ~» min V(K)

Theorem.
V is a IC loss function.
Corollary.

Gradient system is small-input ISS wrt gradient noise/errors.

e greatly generalizes known results (previously only PD, so only ilSS)

o key: [VV(K)|F > ao(V(K) - V(Kopt)), some o € K (can pick a(r) = bircr

e also: (1) Newton flow, (2) natural gradient (over appropriate Riemannian metric)

)

42



Why is the problem challenging?

» for LQR, problem generally non-convex

-1 k
e.g.: A=02x2, B=—hx2, Q= hx2, R=hx2, K= [kz —11]

stabilizing
(admissible set) :
ky.

non-stabilizing

s 4 < 2z 4 0o 1 2 3 4 5

P perturbed gradient flow is nonlinear dynamical system evolving in matrix space

dK(s)
ds
(A= BK(s))"P(s) + P(s)(A - BK(s)) + @ + K(s)"RK(s) = 0
(A= BK(s))Y(s)+ Y(s)(A—BK(s))" + 1, =0

= —2n(RK(s) — BT P(s))Y(s) + A(s)

43



Ensure robustness by Polyak-tojasiewicz (PL) condition?

IVI(K)]? > a(T(K) = J(K*))| where « is a constant [Polyak, tojasiewicz, 1963]

"gradient flow is fast far from the optimal function value"

VI (E)P? / A

5

o —

robust
stable
J(K) - T(K™) N e e e e e e e e /
PL Condition Exponential input-to-state stability
V(K) = T(K) - T(K")
dV(K(s))

o = CAVIKEPHVIKE)TAE) < =5 VKE) + 5 A6
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No: for LQR, PL condition only holds over compact sets!

IVI(K)? > a (T (K) — J(K*))| where o, tends to zero as r tends to infinity

[Mesbahi UW; Polyak RAS; Jovanovic USC]

VT ()
\ar -0

l @ Robustness may vanish.

J(K) = I (K7)

PL condition over
compact sets
linear form of PL condition is too strong

can we have a nonlinear PL condition? i



New: CJS-PL (“comparison just saturated”) condition

IVI(K)]? > a(T(K) = J(K*))| where a is a K-function.

-

I’ \\

[ If A< 2Vd mall disturbance |

| V2 !

i J(K(s)) = J(K") < '

® L BIEW0) - T8 +([Ae)

1 - 1

i asymptotically robust '

% stable ,,'

CJS-PL condition Small-disturbance input-to-state stability

V(K) = J(K) - J(K")

D — 9 (kP+ITKE)TA(6) < ~La(VK(ED) + 5 IAG)PR
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LQR satisfies the CJS-PL condition

2
> for LQR cost: [VJiqr(K)[} > a(Jior(K) — Tiqr(K*)), where a(r) = (;35)

v

perturbed gradient flow for the LQR problem is small-disturbance 1SS

» perturbed natural gradient flow is small-disturbance ISS:

dK(s) _

P —2n(RK(s) — BT P(s)) + A(s)

2(RK(s) — BT P(s)) is the gradient over the Riemannian manifold (G, (-, )y, ).

» perturbed Newton's gradient flow is small-disturbance ISS:

dK(s) _
ds

—n(K(s) = R7'BT P(s)) + A(s)
K(s) — R~1BT P(s) is the Newton's gradient direction.
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Comparing gradient dominance conditions

W) = VI (K(s) + A(s), | IVI(K) = a(T(K) = T(K")) |

S-PL
condition

CJS-PL
condition

exponential ISS ISS small-disturbance ISS

VT (K)? IV (K)? IVJ(K)Vd

J(K) - J(K) J(K) = J(K”) J(K) - T (K")

PL Condition S-PL condition CJS-PL condition
48
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@ Gradient dynamics for (linear) neural networks (w/ de Oliveira & Siami)
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Motivation: “neural network” learning

H » ’;’(

A‘l‘l ?'h\

'm, w 'c '
0 ,

A A

Output Layer

Pixels of image fed as input

Input Layer

Hidden Layers

typically “trained” from samples using variants of gradient descent on “loss”

(picture from web)
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*** e.g. b0+ years ago, in this Al book ©

34.1. Ejemplos de la biénica. El Perceptrin,

Para resolver ahora un cierto problema de RC, se deberan
exponer a la “retina” la imagenes a clasificar y, de acuerdo a la
respuesta d istema, modificar los “pesos” de las neuronas (en

I E u antidad fija, o en proporeion a su valor), aumentandoe los
ARTIFICIAL —

aquellas que influyeron correctamente y disminuyendo aque-

> R R
Eduardo Daniel Sontag A A, S L .
WTINA Jaiiva
BUENOS AIRES / ARGENTINA /[1o2] . -
neural nets are a very old field, of course : Ay .." o
pattern recognition i Figura 1.

(reconocimiento de configuraciones) al acumulador que da la respuesta errénea. En

input features, s conexiones y asignacion de pesos pueden ser
neurons, ]u.‘n; totalmente al azar, y luego el sislema (-l'ectuxrd los a]uv
ltes necesarios de acuerdo con los “premios” y “castigos” re-
weights adjustment by stochastic gradient descent, cibidos.
reinforcement learning (“rewards” and “penalties”), El] io teorico del funcionamiento se puede llevar a cabo
. PR . f desde v puntos de vi introduciendo conceptos tales como
theory based on probability distributions on inputs " aprendizaje” y la distribucion de probabilida-
des de aparicion de las diversas configuraciones?.

i
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*** Old area, always same issues ... but now hype is not hype

LA NACION

Buenos Aires, miércoles 29 de marzo de 1972

our Al research group on B. Aires, 1969-72:

e sentience possible?

e Al will solve most major problems of science
“e need “"humanists” to help set limits

e “the most powerful technology ever”
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Single-hiden layer case for simplicity here

w(l) a5 w(i-‘)
21 gz
X1
g(zz)
Z2 Y1
*2 (picture from web)
Z3 Y2
4(z3)
Xm
Z, *
B o(ea,)
Inputs Hidden Final Output

study special case where “activation function” is the identity: Y = WoW; X

given “data” pairs (X, Y;): minimize |Y — WoWAX] [X=(Xi,...,Xs), Y =(Y1,...

trivial linear regression: first argmin || Y — WX||; then factorize W = WoW;
highly non-unique: W = (WoT)(T~*Wy), T € GL(k)

, Y6l

53



Why do people study this “uninteresting” problem?

e as a way to understand & conceptualize convergence of gradient descent

e understanding why “overparametrization” seems to “work”
(if WaWi € R"™™ and middle dim = k > n, m, have (n+m)k > nm parameters)
0.6 % H
under-parameterized over-parameterized 9
S 0.4+ :
:‘:,4) “clas§ical” . “mo(?.ern” X § {
E regime interpolating regime g 0.2+ t\\\ :
. ~
« Training risk 0.0 v ?'-T—‘ = -
Tk w o ABtEIDGlation thiveshold, o 3 10 40 100 300 800
Capacity of H Number of parameters/weights (x103)
(figures from Belkin/Hsu/Ma/Mandal, PNAS 2019)
e ...and even faster convergence in certain cases

e we will study effect of disturbances (in ISS formalism):
think errors in V computation, adversarial attacks, stochastic learning, ...
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Gradient flow associated to problem

for simplicity here, matrix factorization problem: X = |

1
loss to be minimized: L(P, Q) := 5 Y — PQT||$_-

“noisy” gradient flow on (P; Q): [gl = lgz : ggiggpi g

if no disturbances (errors) U, V: a.e. convergence to “target set” 7, where £L =0

follows from
P> precompactness of trajectories
(conservation law PTP — QT Q = constant — symmetries and Noether's Theorem)
> analyticity

» critical points not in 7, are strict saddles
[Remark: Riemannian gradient flow on fixed-rank matrices w/suitable metric]

[Baldi&Hornik1989, Monzén&Potrie'06, Kawaguchi'16, Panageas&Piliouras'16, Du. .. 18, Schaeffer&McCalla’20, Eftekhari'20, Bah...'21, Chitour...'23, ..

1
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The loss function as a candidate I1SS-Lyapunov function

Theorem.

2
F

£0.0) < 20,01 (@ + i) 3 | [

2

unfortunately, the factor o2, (Q) + o2,,(P) is not bounded away from zero,
so we do not have an ISS-Lyapunov function!

must restrict domain. ..

plan: first consider phase space for system with no disturbances, U =V =0
then find invariant sets s.t. flow sufficiently transversal at boundary

so perturbations allow staying inside and decreasing £

and so that on this set the factor is bounded away
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“Vector” case: m=n=1 (but latent layer size k arbitrary)

since here lg] = (Y — PQT) [(1) é] [g] and Y — PQ" is a scalar,

this is just a scalar multiple (time-reparametrization) of a linear saddle; pic for k = 1:

green: target set T = {(p,q) | pg = 1} (if Y=1)

(components in 1st/3rd quadrants)

dashed black lines: sets p+ g = «

magenta: “transversal” sets {pg = a}

blue: solution trajectories converging to target set

(g% — p? = constant)
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Convergence region w/o inputs (de Oliveira, Siami, EDS, 2023)

Theorem.
» linearized stable manifold S~ at saddle [P; Q] = 0 is global W.....(0)

» all other solutions converge to target set 7,

distance from [P; Q] to 5™,
equals norm of projection of [P; Q] into St := (57)+,
computed as |P + Q|2

for any a > 0, define:
Ra ={[P; Q] € R**| |P + QI3 > o®}

(delimited by black dashed lines in k=1 plane)

this gives “enough room” for perturbations:
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Now with inputs (de Oliveira, Siami, EDS, 2023)

Theorem.
For any « € [0,2VY), R, is forward-invariant under gradient flow dynamics if

1 a?
Vi, < — Y - —
Ul + ||2_ﬁra\< 4>

Moreover, if (P, Q) € Ra, then PPT + QQT = o(P)? + 0(Q)? > a?/2.

Corollary.
For solutions in R, and with (U, V) constrained as above,

2 2
L(LP) < —L(P, Q)-%Jr% M

2

gives an ISS estimate in that region.
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**%* A remark on speed of convergence (w/o inputs)

(still for simplicity n=m=k=1 and Y=1)
target set 7 = {(p, q) | pq = 1}
eigenvalues of linearization at 77

one eigen = 0 (tangent to 7))

and the other one is —(p? + ¢?),

which is > 1 as p — 0o or ¢ = o©

very fast (at least local) convergence vs gradient descent for non-overparametrized
L(p):=(1/2)(1 —p)*,ie. p=1—p

which has eigenvalue —1 at stable equilibrium p =1
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*** Remarks about general case max{m, n} > 1 (no inputs)

[P; Q] equilibrium iff 3 SVDs Y — PQ" = WX d', P =VUYpl}, Q = ©X gl
st. XXo=0and X'¥p =0 (note then (Y — PQRT)Q =0and (Y — PQT)"P =0)

at [P; Q] = 0: same # of + and — (and no zero, if Y full rank square) eigenvalues

target set 7 has dimension (n+ m)k — nm

at [P; Q] € T: mn strictly negative eigs, —'s of squares of SV's of P and Q
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*** A sufficient condition for convergence

Theorem. B
For undisturbed dynamics, solutions with POQ(—)I— — Y >0 (in PSD sense)
must converge to target set.

illustration for scalar case: initializing in the gray area

(condition conservative)
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*** A necessary condition for convergence

Theorem. (Assuming m = n for simplicity)
For undisturbed dynamics, solutions that converge to target set
must have rank(W' Py + &' Q) = n.

illustration for scalar case: initializing anywhere except P+ Q@ =0
necessary and sufficient in the vector case

T(WTP+ o7 Q) is projection onto unstable manifold of linearization at origin
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QOutline

@ Putting it all together: NN/overparametrized LQR (w/ de Oliveira & Siami)
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Linear feedforward neural networks for state feedback
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Problem setup (de Oliveira, Siami, EDS, 2024)

optimization problem:

o]
algoritm min J(K) = Ex o, / x(8)TQx(£) + u(t)T Ru(t) dt
KeK 0
; with constraint
uery x estimate gradient .
e +error/ftoise x = Ax + BU
u = K(X) = KN. . K2K1X
oracle, parameter training via gradient flow:
digital twin,
computing subsystem, ...
Ki = =V J(K)




Theoretical results (de Oliveira, Siami, EDS, 2024)

Theorem (informal statement):

gradient flow for overparametrized LQR always converges (to a finite solution)

Theorem (informal statement):
when N = 2 (“single hidden layer”)
gradient flow for overparametrized LQR converges to optimal feedback

for all but a set of measure zero of initializations
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Simulations for overparametrized LQR gradient flow

Level of
Imbalance
0.4885 100
85
73
0.488 g;
45
39
0.4875 > .
. : speed of convergence of overparametrized (blue)
§ Increasing fg
£ o4 =" | W= slower or quicker than non-overparametrized (red)
3 1
04865 ¢ depending on parameter initialization
‘
0.486 S
3
2
0.4855 !

102 10° 102
Simulation Time
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Simulations when using uncertain gradients

0.4895

0.489

0.4885

0.488

Cost Function

0.4875

0.487

0.4865

0.486

0.4855
107

Certain Gradient, Balanced Initalization
Uncertain Gradient, Bal i
Uncertain Gradient, Imbalanced Intaliz

ation

107 10° 10' 10% 10°
Simulation Time

red curve: balanced initialization without uncertainty
light blue: balanced initialization with uncertainty

dark blue: imbalanced initialization with uncertainty

accelerated convergence in overparametrized case
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@ Collaborators
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Collaborators

g8 &

Arthur Castello de Oliveira / Milad Siami, NU Matthew D. Kvalheim, UMBC

Leilei Cui/ Zhong-Ping Jiang, NYU Zexiang Liu / Necmiye Ozay, Michigan
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http://www.sontaglab.org/publications.html
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