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Dimensionality reduction of data

“manifold hypothesis:” data set in Rn lies on some k-dimensional submanifold K ⊂ Rn

=⇒ data can be parametrized locally by k < n real numbers

classical approaches like PCA to learn these parameters work well when K is linear

but not when K is nonlinear
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Autoencoding as nonlinear dimensionality reduction

C0 encoder F : Rn → Rk and decoder G : Rk → Rn (typically “neural networks”)
ideal autoencoder: G(F (x)) = x ∀ x ∈ K (data manifold)
useful also for “interpolation” of images by “walking along” latent space
and for encoding vector fields in reduced space
obvious obstruction: =⇒ K homeomorphic to subset of Rk (generally false for k-dim K )
so relax to “approximate” versions: 4



Numerical example using a “deep” NN
(Python TensorFlow, Adaptive Moment Estimation [Adam] optimizer, L2 error loss)

K = pair of circles in R3

after thickening, then deleting small intervals,
diffeo to a pair of disjoint intervals in R
encoder F : R3 → R = any extension of this diffeo
decoder G : R→ R3 = any extension of inverse diffeo
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Semi-global autoencoders always exist (Kvalheim & EDS 2024)

let F ℓ,m be dense in the space of continuous functions Rℓ → Rm

(e.g., the collection of possible feedforward neural network I/O functions)
Theorem 1: Let:
▶ K ⊂ Rn = finite union of disjoint compact ≤ k-dimensional submanifolds

(with or without boundary)
▶ µ, ∂µ any smooth measures on K , ∂K

Then: ∀ δ > 0, ∀ finite data subset S ⊂ K , ∃ a closed set K0 ⊂ K s.t.:
▶ K0 ∩ S = ∅, µ(K0) < δ, ∂µ(K0 ∩ ∂K ) < δ;
▶ M \ K0 is connected for each component M of K ;
▶ for each ε > 0 there are functions F ∈ Fn,k , G ∈ Fk,n s.t.

sup
x∈K\K0

∥G(F (x))− x∥ < ε.

=⇒ data S can be reconstructed with error ε
and generalization error also uniformly smaller than ε (with probability > 1− δ)
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. . . but not global (approx) autoencoders (Kvalheim & EDS 2024)

Theorem 2:
Consider k-dimensional compact submanifold without boundary K ⊂ Rn; rK > 0 its reach.
Then: for any continuous functions F : Rn → Rk and G : Rk → Rn,

sup
x∈K
∥G(F (x))− x∥ ≥ rK

recall:

“reach” rK > 0 of K measures “local curvature”

defined as largest r s.t. ∀ x ∈ Rn:

dist(x ,K ) < r =⇒ x has unique projection on K

(nearest point)

(both shown line segments shown have length rK )
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Example: K = union of two unit circles =⇒ L∞ error > rK = 1

errors ∥G(F (x))− x∥ vs k-th evenly-spaced point on respective circle
8



Summary and interpretation for autoencoder training error

Theorem 1 =⇒ (∀ ε > 0) (∃F ,G) making Lp(µ) loss, p ∈ (1,∞), small:

∥G(F (x))− x∥p.µ < ε

Theorem 2 =⇒ (for K w/o boundary, ∀F ,G)

∥G(F (x))− x∥∞ ≥ rK > 0

New Theorem (unpublished):
bottleneck dim must be ≥ k (for Lipschitz encoding/decoding)

notes: notation means
(∫

K
∥G(F (x))− x∥pdµ(x)

)1/p
for any reasonable measure

p loss is basically limN→∞
1
N
∑N

i=1 ∥G(F (xi))− xi∥p for training data
just modify G off F (K \ K0) to make the AE error smaller than some CK > 0 on K0
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Idea behind proof of Theorem 1: negative gradient flow
take any polar Morse function h (e.g. height function below) and −∇h flow
consider region of attraction of unique local minimum
remove a fattened version of

⋃
q

Ws(q), q = other critical points (µ = 0)

←→

encoder F : Rn → Rk = any extension of this diffeomorphism
decoder G : Rk → Rn = any extension of inverse diffeomorphism
can always find such a “codim > 0 set” disjoint from the data
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Idea behind proof of Theorem 2
the set N := {x ∈ Rn : dist(x ,K ) < rK}
contains line segment from x ∈ N to unique projection ρ(x) ∈ K (and ρ continuous)
which implies given

sup
x∈K
∥G(F (x))− x∥ < rK

that t 7→ ρ ◦ (tG ◦ F |K + (1− t) idK ) is a homotopy of idK to ρ ◦ G ◦ F |K
so induced homomorphism on singular homology groups

(ρ ◦ G ◦ F |K )∗ = ρ∗ ◦ G∗ ◦ F∗ : Hk(K )→ Hk(K )

(1) equals the identity homomorphism (idK )∗ induced by idK , but
(2) this contradicts that this map factors through G∗, which is zero

small print: use Z2 homology
use factorization through “fattened” U := G−1(N), noncompact manifold, Hk(U;Z2) = 0
and that Hk(K ;Z2) = Z2 ̸= 0 when K is a compact (connected) manifold
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Extension to vector fields (Kvalheim & EDS, in progress)

Theorem 3 (only partially proved):
Let:
▶ K ⊂ Rn = finite union of disjoint compact ≤ k-dimensional submanifolds

(with or without boundary);
▶ µ, ∂µ any smooth measures on K , ∂K ;
▶ f a smooth vector field on Rn s.t. f |K is tangent to K .

Then:
∀ δ > 0 and finite set S ⊂ K , ∃ closed set K0 ⊂ K and smooth vector field g on Rk s.t.:
▶ K0 ∩ S = ∅, µ(K0) < δ, ∂µ(K0 ∩ ∂K ) < δ;
▶ for each ε,T > 0 ∃ functions F ∈ Fn,k , G ∈ Fk,n s.t.

sup
x∈K\K0

t∈[−T ,T ]

∥G ◦ Φt
g ◦ F (x)− Φt

f (x)∥ < ε.

=⇒ only obstructions to autoencoding vector field trajectories
arise from autoencoding initial conditions
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*** True min-max error is often larger than the reach

min max error “reach” is conservative
e.g.: K = green, reach = ε≪ 1
but expect error lower bound much worse

define “dewrinkled reach of K” = 1− ε

witnessed by red circle, which has reach 1,
and projection mapping T : L→ K

where δ(T ) := maxy !eL ∥T (y)− y∥
= maximum deviation of T from the identity

Corollary:
Consider K ⊂ Rn be a k-dimensional compact submanifold without boundary.
For any continuous functions F : Rn → Rk and G : Rk → Rn:

sup
x∈K
∥G(F (x))− x∥ ≥ r∗

K ,k︸︷︷︸
dewrinkled reach

:= sup
L∈Mn,k ,T∈C(L→K)

{rL − δ(T )}.
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(Global) linearization-based identification and control

for example, ψw (x) represented by neural network with weights w

and one attempts to “learn” the network weights and matrix A from data
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“Koopman” (& Kalman!) approach

often hard to a linear (finite-dimensional global, continuous) representation . . .

▶ algorithmic problem?
▶ ̸ ∃ representation?

here: show impossibility of continuous immersion (one to one) ψ

if there are (more than one) isolated omega limit sets (equilibria, cycles, . . . )
16



Seems obvious no?

there cannot be multiple isolated equilibria in linear systems . . .

but what about an immersion like this (with singular A)?

need to rule out that this can ever happen (with consistent dynamics)

17



Setup

ẋ = f (x), x ∈ X (connected subset of manifold M)

f smooth enough to guarantee uniqueness, completeness, continuous dependence

a key property: “closed basins of attraction”

for any ω-limit set Ω, define: D+(Ω) := {ξ ∈ X | ω+(ξ) = Ω}

Observation: for linear systems, and all Ω, D+(Ω) closed

18



Main impossibility result (Liu, Ozay, EDS 2023/4)

Ψ : X → Z continuous, one-to-one, is an “immersion” of ẋ = f (x) in ż = g(z) if:

Ψ(φX (t, ξ)) = φZ(t,Ψ(ξ)) ∀ initial states ξ ∈ X and times t ≥ 0

X φX−−→ X
Ψ ↓ ↓ Ψ
Z φZ−−→ Z

Theorem: Suppose:

• trajectories of ẋ = f (x) on X are precompact in X , and
• there is more than one but at most a countable number of ω-limit sets.

Then: ẋ = f (x) on X cannot be immersed in a system with closed basins

=⇒ impossible to immerse in linear systems
19



Our conditions are “necessary” in a sense

no obstructions if weakening:

• uncountably many ω-limit sets (obvious: even linear)

• local immersions

• “approximate” immersions

• unbounded trajectories (Arathoon & Kvalheim)

• discontinuous (or into hybrid system)

20



Implications to learning from data
recall immersion condition:

Ψ(φX (t, ξ)) = φZ(t,Ψ(ξ)) ∀ initial states ξ ∈ X and times t ≥ 0
given sampling time τ and pairs {(xℓ, x+

ℓ )}∞ℓ=1 s.t. x+
ℓ = φ(τ, xℓ)

continuous linear immersions Ψ that match first N samples belong to:
F(τ,N) = {Ψ | ∃A ∈ Rm×m,Ψ(x+

ℓ ) = eAτ Ψ(xℓ),∀l = 1, · · · ,N}

Corollary: Suppose
• {xℓ}∞ℓ=1 is a dense subset of X (e.g. random sampling),
• trajectories of ẋ = f (x) on X are precompact in X , and
• Ψ distinguishes between at least two ω-limit sets.
Then for all small enough sampling times τ and large enough N, Ψ ̸∈ F(τ,N).
Intuitively: immersion candidates F that can distinguish at least two ω-limit sets
will be ruled out as more data is collected (if sampling time small enough)
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*** Discontinuous immersions much easier
discontinuous less interesting, as they destroy global dynamics
Minor result: 1-d isolated equilibria embeddadble in 2-d linear

22



*** Observe that limit cycles per se are not an obstruction!
even though a linear system cannot have isolated limit cycles,
it is nonetheless possible to immerse a nonlinear system with an isolated limit cycle
into a linear system via a continuous and one to one mapping:
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*** Example of local
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*** Similarly, for limit cycle in previous example
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*** Some previous work
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Iterations and flows in optimization
consider a continous time (flow) or a discrete time (iteration) system:

ẋ(t) = f (x(t))
x(t + 1) = f (x(t))

for which it is desired that x(t)→ ξ, where ξ solves an optimization problem

e.g. if L(x) is a (generally non-convex) loss function, one may look at gradient flow:

ẋ(t) = −η∇L(x(t))⊤

of natural (Riemannian) flows, Newton or Quasi-Newton, etc . . .

similarly can study (discrete) steepest descent version (= Euler of gradient flow):

x(t + 1) = x(t)− η∇L(x(t))⊤
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Review of general convergence theory

assume L is continuously differentiable and has a minimum value 0
target and critical sets:

TL := {x | L(x) = 0}
CL := {x | ∇L(x) = 0} ⊇ TL

ẋ(t) = −∇L(x(t))⊤ (for simplicity, take η = 1)

▶ precompact trajectories approach CL (Krasovskii-LaSalle):
L̇ = −∥∇L∥2 ≤ 0

( =⇒ convergence to TL if CL = TL)

▶ for analytic L, all ω-limit sets (⊆ CL) are single equilibria (Łojasiewicz)

▶ generically, precompact trajectories converge to CL\ strict saddles
(“strict” = linearization has at least one positive eigenvalue)
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*** A Theorem

Suppose that:

▶ L is a real-analytic (loss) function;

▶ CL = TL ∪ S, where S consists of strict saddles for ẋ = −∇L(x); and

▶ every trajectory of the gradient flow dynamics is pre-compact.

Then, except for a set of measure zero, all trajectories converge to points in TL.

30



Convergence to TL under gradient dominance conditions

if ∃λ > 0 s.t.: ∥∇L(x)∥2 ≥ λL(x) (global Polyak-Łojasiewicz Inequality)
then: L̇ = −∥∇L∥2 ≤ −λL(t) =⇒ L(t) ≤ e−λtL(0)
several weaker versions also guarantee (not necessarily exponential) convergence
(but more useful for subsequent “ISS” discussion):

∥∇L(x)∥2 ≥ α(L(x)), for some α ∈ K∞

∥∇L(x)∥2 ≥ α(L(x)), for some α ∈ K

∥∇L(x)∥2 ≥ α(L(x)), for some α ∈ PD

some notes:
• if ∥∇L(x)∥2 ≥ λcL(x), where λc ’s depend on sublevel set L(x) ≤ c, then ∃ α ∈ PD
• K condition is a global “Kurdyka–Łojasiewicz Inequality”
• strict convexity ⇒ PŁI, but convexity not needed
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But: L and/or its gradient ∇L might be imprecisely known

• adversarial attack
• errors in evaluation of L by “oracle”
• early stopping of a simulation
• inacurate and very approximate digital twin
• stochastic computations (“reproducibility”!)
• learning by sampling from limited data

model by “input” or “disturbance” u(t):

ẋ(t) = −η∇L(x(t))⊤ + u(t)

or more generally

ẋ(t) = f (x(t), u(t))

natural questions: graceful degradation if ∥u∥ “small” (sup norm, integral, . . . )?
• is dist (x(t), TL) (or L(x(t))) ≈ 0 for large t? (asymptotic question); and rate?
• is dist (x(t), TL) (or L(x(t))) not “too large” for intermediate computational times t? 32



ISS-like perturbation theory of gradient descent

ẋ(t) = −η∇L(x(t))T + B(x(t)) u(t)
(“learning rate” η > 0; B : X→ Rn×m bounded locally Lipschitz)

[integral] input to state stability (ISS [iISS]): how do inputs affect dynamics?

if input u(·) is bounded

(small, “eventually” small, convergent)

then solutions inherit properties

& well-controlled transient behavior:

∃ β ∈ KL, γ ∈ K∞ s.t. ∀ x0, u:

L(x(t)) ≤ max {β(L(x0), t) , γ (∥u∥∞)}[∫ t

0
γ(|u(s)|)ds for integral ISS

]
think of β(r , t) = α1(e−λtα2(r))

6

-

6

?

≤ β(L(x0), 0), ∥u∥∞
(overshoot)

t

L(x(t))

6
?

≈ ∥u∥∞
(asymptotic)

33



Key relationships (+ technical details!)

• ∥∇L(x)∥2 ≥ α(L(x)), for some α ∈ K∞ ⇐⇒ ISS

• ∥∇L(x)∥2 ≥ α(L(x)), for some α ∈ K ⇐⇒ small-input ISS

• ∥∇L(x)∥2 ≥ α(L(x)), for some α ∈ PD ⇐⇒ iISS
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*** Recall: [i]ISS is natural generalization of linear stability

for linear ẋ = Ax + Bu (Hurwitz A), typical estimates of stability for operators{
L2, L∞

}
→
{

L2, L∞
}

: (x0, u) 7→ x(·)

are:

|x(t, x0, u)| ≤ c1 |x0| e−λt + c2 sup
s∈[0,t]

|u(s)| (L∞ → L∞)

|x(t, x0, u)| ≤ c1 |x0| e−λt + c2

∫ t

0
|u(s)|2 ds (L2 → L∞)∫ t

0
|x(s, x0, u)|2 ds ≤ c1 |x0| + c2

∫ t

0
|u(s)|2 ds (L2 → L2)

for linear systems, all equivalent (with different constants)

changing (nonlinear) coordinates x(t) = T (z(t)) ; ISS, iISS, and (again) ISS
35



*** [i] ISS with respect to TL ⊂ X ⊆ Rn (open set)
definition: ω : X→ R is a size function for (X, TL) if:

continuous, positive definite wrt TL, and proper [coercive]

(meaning ω(x)→∞ as x → ∂X or |x | → ∞)

assume L has strict minimum L on TL, and

∥∇L(x)∥2 ≥ α(L(x)− L) ∀ x ∈ X

with α ∈ K∞, K, PD

conclude ISS, “small-input” ISS, iISS properties for

ẋ(t) = −η∇L(x(t))T + B(x(t))u(t)

ω(x(t, x0, u)) ≤ max {β((ω(x0), t) , γ (∥u∥∞)}
[∫ t

0
γ(|u(s)|)ds for integral ISS

]
(EDS, SCL 2022)
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*** Tool: [i]ISS-Lyapunov (dissipation) inequalities

C1 function L : X→ R is [i]ISS-Lyapunov function for ẋ = f (x , u) wrt (X,A) if

▶ (∃L) L − L is a size function for (X,A)

▶ ∃ α, γ ∈ K∞ s.t. L̇(x , u) ≤ −α(L(x)− L) + γ(|u|) ∀ (x , u) ∈ X× Rm

[for iISS, ask only α positive definite]

(where L̇(x , u) := ∇L(x) · f (x , u), i.e. dL(x(t))/dt = L̇(x(t), u(t)))

Theorem. ∃ [i]ISS Lf ⇐⇒ system is [i]ISS

Theorem. Similarly for α ∈ K and “small-input ISS”
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*** Steepest descent w/ line search
steepest descent algorithm: given guess xk ,
perform line minimization search in negative gradient direction:

λk := arg min
λ≥0

V (xk − λ∇L(xk)T )

and define xk+1 := xk − λk∇L(xk)T

but noisy on gradient estimation, so really:

xk+1 = xk − λk
[
∇L(xk)T + B(xk)dk

]

Theorem: if L is K∞ loss function,

then iteration is (DT) ISS
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*** Other works on ISS-like gradient flows
▶ Cherukuri-Mallada-Low-Cortés 2018, saddle dynamics

(ISS gradient wrt additive errors, V has a convexity property, X = Rn)

▶ Poveda-Krstić 2019/21, fixed-time convergence in extremum seeking
(gradient flow, “D-ISS” property wrt a time-varying uncertainty, X = Rn)

▶ Bianchin-Poveda-Dall’Anese, 2020 switched LTI systems
(ISS gradient flow wrt unknown disturbances acting on plant, X = Rn)

▶ Suttner-Dashkovskiy 2021, extremum seeking
(ISS gradient flow for kinematic unicycle, X closed submanifold of Rn)

▶ Cunis-Kolmanovsky 2022, bilevel optimization
(ISS gradient flow; errors arise from “inner loop” incomplete optimization)

▶ Pang-Tian-Jiang 2021/2022, LQ
(Kleinman’s policy iteration, “small-input” ISS)
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A motivating application

consider the most classical linear control problem: LQR for ẋ = Ax + Bu,

J (x0, u(·)) :=
∫ ∞

0
xT (t)Qx(t) + uT (t)Ru(t) dt

=⇒ u(t) = −Koptx(t), Kopt = R−1BT Π, where Π > 0 solves ARE

reformulate as: min V (K ) := E[J (x0,Kx(·))] (average over initial states)

over open set K(A,B) := {K |A− BK Hurwitz} ⊂ Rm×n

but: solving problem requires precise knowledge of system/cost matrices

alternative (e.g. in RL): “direct” or “model free” approach, where controllers
designed by numerically estimating cost (loss) function, using plant or digital twin
; “direct policy update” approach: optimize gain K

renewed interest in an old approach! (Levine-Athans 1970)
41



Main result (Cui, Jiang, EDS 2024)

LQR for ẋ = Ax + Bu, J (x0, u(·)) :=
∫ ∞

0
xT (t)Qx(t) + uT (t)Ru(t) dt

⇒ u(t) = −Koptx(t), Kopt = R−1BT Π, where Π > 0 solves ARE ; min V (K )

Theorem.

V is a K loss function.

Corollary.

Gradient system is small-input ISS wrt gradient noise/errors.

• greatly generalizes known results (previously only PD, so only iISS)

• key: ∥∇V (K )∥2F ≥ α(V (K )− V (Kopt)), some α ∈ K
(

can pick α(r) = ar
b + cr

)
• also: (1) Newton flow, (2) natural gradient (over appropriate Riemannian metric)

42



Why is the problem challenging?
▶ for LQR, problem generally non-convex

e.g.: A = 02×2, B = −I2×2, Q = I2×2, R = I2×2, K =
[
−1 k1
k2 −1

]

2

stabilizing
(admissible set)

𝑘2

non-stabilizing

𝑘1

▶ perturbed gradient flow is nonlinear dynamical system evolving in matrix space

dK (s)
ds = −2η(RK (s)− BT P(s))Y (s) + ∆(s)

(A− BK (s))T P(s) + P(s)(A− BK (s)) + Q + K (s)T RK (s) = 0
(A− BK (s))Y (s) + Y (s)(A− BK (s))T + In = 0

43



Ensure robustness by Polyak-Łojasiewicz (PL) condition?

|∇J (K )|2 ≥ α(J (K )− J (K ∗)) where α is a constant [Polyak, Łojasiewicz, 1963]

"gradient flow is fast far from the optimal function value"

3

PL Condition

exponentially 
stable

robust

Exponential input-to-state stability

V(K ) = J (K )− J (K ∗)
dV(K (s))

ds = −η|∇J (K (s))|2+∇J (K (s))T ∆(s) ≤ −ηα2 V(K (s)) + 1
2η |∆(s)|2

44



No: for LQR, PL condition only holds over compact sets!

|∇J (K )|2 ≥ αr (J (K )− J (K ∗)) where αr tends to zero as r tends to infinity

[Mesbahi UW; Polyak RAS; Jovanovic USC]

4

PL condition over 
compact sets

Robustness may vanish.

𝛼𝑟 → 0

linear form of PL condition is too strong
can we have a nonlinear PL condition?
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New: CJS-PL (“comparison just saturated”) condition

|∇J (K )|2 ≥ α(J (K )− J (K ∗)) where α is a K-function.

5

asymptotically 
stable

robust

If small disturbance

Small-disturbance input-to-state stabilityCJS-PL condition

𝑑

V(K ) = J (K )− J (K ∗)
dV(K (s))

ds = −η|∇J (K (s))|2+∇J (K (s))T ∆(s) ≤ −η2α
(
V(K (s))

)
+ 1

2η |∆(s)|2
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LQR satisfies the CJS-PL condition

▶ for LQR cost: |∇JLQR(K )|2F ≥ α(JLQR(K )− JLQR(K ∗)), where α(r) =
(

a r
r+b

)2

▶ perturbed gradient flow for the LQR problem is small-disturbance ISS
▶ perturbed natural gradient flow is small-disturbance ISS:

dK (s)
ds = −2η(RK (s)− BT P(s)) + ∆(s)

2(RK (s)− BT P(s)) is the gradient over the Riemannian manifold (G, ⟨·, ·⟩YK ).
▶ perturbed Newton’s gradient flow is small-disturbance ISS:

dK (s)
ds = −η(K (s)− R−1BT P(s)) + ∆(s)

K (s)− R−1BT P(s) is the Newton’s gradient direction.

47



Comparing gradient dominance conditions
dK(s)

ds = −η∇J (K (s)) + ∆(s), |∇J (K )|2 ≥ α(J (K )− J (K ∗)) .

6

PL 
condition

S-PL 
condition

CJS-PL 
condition

exponential ISS ISS small-disturbance ISS

LQR

7

PL Condition S-PL condition

𝑑

CJS-PL condition
48
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Motivation: “neural network” learning

typically “trained” from samples using variants of gradient descent on “loss”
(picture from web)
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*** e.g. 50+ years ago, in this AI book
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*** Old area, always same issues . . . but now hype is not hype

our AI research group on B. Aires, 1969-72:

• sentience possible?

• AI will solve most major problems of science

• need “humanists” to help set limits

• “the most powerful technology ever”
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Single-hiden layer case for simplicity here

(picture from web)

study special case where “activation function” is the identity: Y = W2W1X

given “data” pairs (Xi ,Yi): minimize ∥Y −W2W1X∥ [X = (X1, . . . ,Xs), Y = (Y1, . . . ,Ys)]

trivial linear regression: first argmin ∥Y −WX∥; then factorize W = W2W1

highly non-unique: W = (W2T )(T −1W1), T ∈ GL(k)
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Why do people study this “uninteresting” problem?
• as a way to understand & conceptualize convergence of gradient descent

• understanding why “overparametrization” seems to “work”

(if W2W1 ∈ Rn×m and middle dim = k ≫ n,m, have (n+m)k ≫ nm parameters)

(figures from Belkin/Hsu/Ma/Mandal, PNAS 2019)

• . . . and even faster convergence in certain cases

• we will study effect of disturbances (in ISS formalism):
think errors in ∇ computation, adversarial attacks, stochastic learning, . . .
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Gradient flow associated to problem
for simplicity here, matrix factorization problem: X = I

loss to be minimized: L(P,Q) := 1
2 ∥Y − PQT∥2F

“noisy” gradient flow on (P; Q):
[

Ṗ
Q̇

]
=
[
(Y − PQT)Q + U
(Y − PQT)TP + V

]
if no disturbances (errors) U,V : a.e. convergence to “target set” TL where L = 0

follows from
▶ precompactness of trajectories

(conservation law PT P − QT Q ≡ constant – symmetries and Noether’s Theorem)
▶ analyticity
▶ critical points not in TL are strict saddles

[Remark: Riemannian gradient flow on fixed-rank matrices w/suitable metric]
[Baldi&Hornik1989, Monzón&Potrie’06, Kawaguchi’16, Panageas&Piliouras’16, Du. . . ’18, Schaeffer&McCalla’20, Eftekhari’20, Bah. . . ’21, Chitour. . . ’23, . . . ]
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The loss function as a candidate ISS-Lyapunov function

Theorem.

L̇(P,Q) ≤ −L(P,Q) ·
(
σ2

min(Q) + σ2
min(P)

)
+ 1

2

∥∥∥∥∥
[

U
V

]∥∥∥∥∥
2

F

unfortunately, the factor σ2
min(Q) + σ2

min(P) is not bounded away from zero,

so we do not have an ISS-Lyapunov function!

must restrict domain. . .

plan: first consider phase space for system with no disturbances, U = V = 0

then find invariant sets s.t. flow sufficiently transversal at boundary

so perturbations allow staying inside and decreasing L

and so that on this set the factor is bounded away
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“Vector” case: m=n=1 (but latent layer size k arbitrary)

since here
[

Ṗ
Q̇

]
= (Y − PQT)

[
0 1
1 0

] [
P
Q

]
and Y − PQT is a scalar,

this is just a scalar multiple (time-reparametrization) of a linear saddle; pic for k = 1:

green: target set T = {(p, q) | pq = 1} (if Y =1)

(components in 1st/3rd quadrants)

dashed black lines: sets p + q = α

magenta: “transversal” sets {pq = α}

blue: solution trajectories converging to target set

(q2 − p2 ≡ constant)
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Convergence region w/o inputs (de Oliveira, Siami, EDS, 2023)

Theorem.

▶ linearized stable manifold S− at saddle [P; Q] = 0 is global Wstable(0)

▶ all other solutions converge to target set TL

distance from [P; Q] to S−,
equals norm of projection of [P; Q] into S+ := (S−)⊥,
computed as ∥P + Q∥2
for any α > 0, define:

Rα = {[P; Q] ∈ R2k | ∥P + Q∥22 ≥ α
2}

(delimited by black dashed lines in k=1 plane)

this gives “enough room” for perturbations:
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Now with inputs (de Oliveira, Siami, EDS, 2023)

Theorem.
For any α ∈ [0, 2

√
Y ), Rα is forward-invariant under gradient flow dynamics if

∥U∥2 + ∥V ∥2 ≤
1√
2
|α|
(

Y − α2

4

)

Moreover, if (P,Q) ∈ Rα, then PPT + QQT = σ(P)2 + σ(Q)2 ≥ α2/2.

Corollary.
For solutions in Rα and with (U,V ) constrained as above,

L̇(L,P) ≤ −L(P,Q) · α
2

2 + 1
2

∥∥∥∥∥
[

U
V

]∥∥∥∥∥
2

2

gives an ISS estimate in that region.
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*** A remark on speed of convergence (w/o inputs)

(still for simplicity n=m=k=1 and Y =1)

target set T = {(p, q) | pq = 1}

eigenvalues of linearization at T ?

one eigen = 0 (tangent to T )

and the other one is −(p2 + q2),

which is ≫ 1 as p →∞ or q →∞

very fast (at least local) convergence vs gradient descent for non-overparametrized

L(p) := (1/2)(1− p)2 , i.e. ṗ = 1− p

which has eigenvalue −1 at stable equilibrium p = 1
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*** Remarks about general case max{m, n} > 1 (no inputs)

• [P; Q] equilibrium iff ∃ SVDs Y − PQT = ΨΣΦT, P = ΨΣPΓT
P , Q = ΦΣQΓT

Q

s.t. ΣΣQ = 0 and ΣTΣP = 0 (note then (Y − PQT)Q = 0 and (Y − PQT)TP = 0)

• at [P; Q] = 0: same # of + and − (and no zero, if Y full rank square) eigenvalues

• target set T has dimension (n + m)k − nm

• at [P; Q] ∈ T : mn strictly negative eigs, −’s of squares of SV’s of P and Q
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*** A sufficient condition for convergence
Theorem.
For undisturbed dynamics, solutions with P0Q⊤

0 − Ȳ ≥ 0 (in PSD sense)
must converge to target set.

illustration for scalar case: initializing in the gray area
(condition conservative)
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*** A necessary condition for convergence
Theorem. (Assuming m = n for simplicity)
For undisturbed dynamics, solutions that converge to target set
must have rank(Ψ⊤P0 + Φ⊤Q0) = n.

illustration for scalar case: initializing anywhere except P + Q = 0

necessary and sufficient in the vector case
1
2(Ψ⊤P + Φ⊤Q) is projection onto unstable manifold of linearization at origin
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Outline

Autoencoders (w/ Kvalheim)

Some limitations of linearization-based control (w/ Liu & Ozay)

(Disturbed) gradient flows

ISS for LQR direct problem (w/ Cui & Jiang)

Gradient dynamics for (linear) neural networks (w/ de Oliveira & Siami)

Putting it all together: NN/overparametrized LQR (w/ de Oliveira & Siami)

Collaborators
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Linear feedforward neural networks for state feedback

x1

...

xn

...

z1
2

z1
κ1

. . .

. . .

. . .

...

zN−1
1

zN−1
κN−1

...

u1

um

K1 K2 KN−1 KN

u = KNKN−1 . . .K2K1x = K(x)
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Problem setup (de Oliveira, Siami, EDS, 2024)

optimization problem:

min
K∈K
J (K) = Ex0∼X0

[∫ ∞

0
x(t)⊤Qx(t) + u(t)⊤Ru(t) dt

]
with constraint

ẋ = Ax + Bu

u = K(x) = KN . . .K2K1x

parameter training via gradient flow:

K̇i = −∇KiJ (K)
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Theoretical results (de Oliveira, Siami, EDS, 2024)

Theorem (informal statement):

gradient flow for overparametrized LQR always converges (to a finite solution)

Theorem (informal statement):

when N = 2 (“single hidden layer”)

gradient flow for overparametrized LQR converges to optimal feedback

for all but a set of measure zero of initializations
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Simulations for overparametrized LQR gradient flow

speed of convergence of overparametrized (blue)

slower or quicker than non-overparametrized (red)

depending on parameter initialization
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Simulations when using uncertain gradients

red curve: balanced initialization without uncertainty

light blue: balanced initialization with uncertainty

dark blue: imbalanced initialization with uncertainty

accelerated convergence in overparametrized case
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Collaborators
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http://www.sontaglab.org/publications.html
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