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Outline

1. Summary of YIP "Information-Geometric Path Planning" 2020-2023

• Review: “Rationally inattentive” path planning

• Follow-up studies: Deep-learning-assisted motion planning

2. Outlook on a new project “Motion Planning, Partial Observability, and Quantum Mechanics: Advancing 

the Frontiers of Path Integral Control Theory” 2025-2027

• Brief history of path integral control

• Path integral control of partially observable systems

3. Deceptive path planning and hypothesis testing
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Rationally Inattentive Path Planning
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Sensing is costly.  Sensing cost appears in various forms:

• Computational cost

• Communication cost

• Mechanical cost

• Time cost

Path geometry is a key factor determining sensing cost.

• Following Path A requires precise localization. 

Expected sensing cost for path following will be higher.

How to generate a motion plan with a “simple” path 

geometry that requires minimum sensing to execute?

“Rationally Inattentive” Path Planning
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Control, 
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Shortest Path Problem in Gaussian Belief Space
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Distance Function
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Path Length
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Shortest Belief Path Problem

8a) 𝛼 = 0.0                     b) 𝛼 = 0.3 c) 𝛼 = 0.7 

We developed an RRT* and PRM*-based shortest path solver:



Case Study: Ground 

Robot Navigation with 

Event-based Sensing  
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𝛼 increases    → →    →

𝛼 increases → → →



Follow-Up Work: Deep-Learning-Assisted Real-Time Planning
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It is difficult to run sampling-based path planner in real-time. We consider applying a 

deep learning model (U-net) to quickly generate an optimal path candidate.

Indicator function of 

randomly generated 

triangular obstacles

Input Image -- (3, 150, 225) Output Image (Label) -- (150, 225)

Distance function to 

initial position

Distance function to 

target area

Optimal path computed 

by RRT*-based planner 

U-net [Ronneberger et al. 2015]



U-Net Architecture
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• A transition-down block extracts and processes 

high-frequency components

• A transition-up block reassembles the processed 

information

• Skip connections give the transition-up block to 

the previous unprocessed information

• The bottleneck layer transforms the leftover low-

frequency components

• The final convolution refines the fully 

reassembled solution

This allows U-Net to access different frequency 

components of the input separately to process them 

and reconstruct the solution



U-Net Training
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• We trained a U-net model until it can predict an output 

image from a given input image. 

• A trained U-net model is tested on unseen input images 

to see if it can predict the corresponding path plan. 

• While the preparation of a training data set and the 

training of a U-net are time-consuming processes, a 

forward execution of the trained U-net is instantaneous.



Generalizability
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How does the trained U-net perform on unseen problems?

• We trained U-net only using triangle-shaped obstacles.

• We tested the trained U-net in environments with circle-shaped obstacles.

Future work: Quantitative analysis of the robustness against unseen data.
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“Rationally Inattentive” path planning

• A. Pedram, “Information-Theoretic Path Planning and Navigation” Ph.D. 

dissertation, The University of Texas at Austin, 2023.

• A. Pedram, R. Funada and T. Tanaka, “Gaussian Belief Space Path Planning for 

Minimum Sensing Navigation,” IEEE Transactions on Robotics, vol. 39, no. 3, 

pp. 2040-2059, June 2023.

Simultaneous Perception-Action Design

• M. Hibbard, T. Tanaka, and U. Topcu, “Simultaneous Perception-Action Design 

via Invariant Finite Belief Sets,” Automatica, vol. 155, pp. 111140, Sep. 2023.

Publication

2 Ph.D. Theses, 4 Journal publications, 5 Journal papers under review, 13 

conference papers

Major Outcomes of YIP
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Through this YIP project, we witnessed various roles that information 

theory can play in motion planning problems.

• Minimum-information (“rationally inattentive”) motion planning

• Maximum information path planning

• Information sharing in multi-agent path planning

• Path integral control

• Deceptive control and hypothesis testing

What’s Next?



Path Integral Control

Outlook on a new project  “Motion Planning, Partial Observability, and 

Quantum Mechanics: Advancing the Frontiers of Path Integral Control Theory”
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Path Integral Control (PIC)

Equation-based modeling
Nonlinear/stochastic/uncertain

Continuous/discrete/hybrid
High/infinite dimensional
Full/partial observability

ሶ𝑥 = 𝑓(𝑥, 𝑢)
Physical system

ሶ𝑥 = 𝑓(𝑥, 𝑢)

𝑢 = 𝑘(𝑥)

Control Policy Synthesis

Control Policy

Image: Matlab Vehicle 

Dynamics Blockset

Simulator Building 

Image: Peng et al. 2022

Real-time Simulation
Monte-Carlo sampling of 

open-loop (uncontrolled) 

trajectories 

Digital Twin Path integral 
control

A control algorithm inspired by the path-integral formulation of quantum mechanics
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Background: Simulator Development Became Easy and Quick

• Building a robotic simulator is often easier than 

writing down an analytical equation of motion.

• PIC can compute the optimal control input using 

simulators only.Gazebo simulator

[Pedram, Funada and Tanaka, TRO 2022]

Open AI Gym [Abdeetedal, 

https://www.etedal.net/2020/04/

pybullet-panda.html]

Matalb Simscape 

[Suh and Tanaka, Lecture material 2019]



Brief History of Path Integral Control
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• The origin of PIC can be traced back to the stochastic variational treatment of quantum mechanics [1-4]

• [4,5] identified the class of SOC problems in which the associated HJB equation coincides with the 

linear Schrödinger equation. 

• [6,7] noticed the semi-classical limit (ℏ → 0) of the Schrödinger equation approximates the HJB 

equation corresponding to a broader class of SOC problems.

• [6,7] invoked the Feynman-Kac formula to numerically evaluate the solution of Schrödinger equations 

using Monte Carlo (Metropolis-Hastings) algorithm.

• In separate threads: Risk-sensitive control, distributionally robust control against relative entropy 

ambiguity set, linearly solvable MDPs, …

1. E. Nelson, Derivation of the Schrödinger equation from Newtonian mechanics, Physical Review, 1966.

2. H. Rosenbrock, A variational principle for quantum mechanics, Physics Letters A, 1985.

3. H. Rosenbrock, A stochastic variational treatment of quantum mechanics, Proceedings of the Royal Society of London. 1995.

4. F. Guerra and L. M. Morato, Quantization of dynamical systems and stochastic control theory, Physical review D, 1983.

5. K. Yasue, Stochastic calculus of variations, Journal of Functional Analysis, 1981.

6. T. Itami, Optimization of nonlinear control systems based on the principle of superposition (in Japanese), Transactions of the Society 

of Instrument and Control Engineers, 2001. 

7. T. Itami, Nonlinear optimal control via Monte-Carlo evaluation of path integrals (in Japanese), Transactions of the Institute of 

Systems, Control and Information Engineers, 2003. 



Modern Path Integral Control
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Under the deterministic system assumption, the SOC can be solved exactly by Monte Carlo 

as 𝑁 → ∞.

• Derivation by [1]

• Derivation by [2]

Removal of deterministic system assumption has been considered in [3-5]. 

1. H. Kappen, Path integrals and symmetry breaking for optimal control theory, Journal of Statistical Mechanics, 2005.

2. E. Theodorou and E. Todorov, Relative entropy and free energy dualities: Connections to path integral and KL control, CDC 2012

3. S. Satoh, H. J. Kappen, and M. Saeki, An iterative method for nonlinear stochastic optimal control based on path integrals, TAC, 2016.

4. G. Williams, P. Drews, B. Goldfain, J. M. Rehg, and E. A. Theodorou, Information-theoretic model predictive control: Theory and 

applications to autonomous driving, TRO 2018

5. S. Levine, Reinforcement learning and control as probabilistic inference: Tutorial and review, arXiv:1805.00909, 2018.



Proposed Research (2025-2027)
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Thrust 1: Path Integral Control for Spatial Navigation

• Task 1-1: Chance-constrained SOC and strong duality.

• Task 1-2: Minimum sensing navigation. 

Thrust 2: Path Integral Method and Partially Observable Systems. 

• Task 2-1: Removal of the deterministic system assumption. 

• Task 2-2: KLD-regularized POMDP. 

Thrust 3: Quantum Theoretic Perspectives of Path Integral Control. 

• Task 3-1: Classical optimal control problems and Schrödinger 

equation.

• Task 3-2: Quantum optimal control via the path integral method. 



Path Integral Control of Partially Observable Systems
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Belief Space Representation
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Dynamic Programming in Belief Space
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(Bellman’s 

Equation)

(Free energy 

lower bound)

(Jensen’s 

inequality)

(Recursive substitutions)

(Monte Carlo)



Deceptive Path Planning and 

Hypothesis Testing
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Covert Vehicle Misguidance and Its Detection

Nominal

Under attack (GPS-Spoofed)

J. Bhatti and T. E. Humphreys, “Hostile control of ships via false GPS signals: Demonstration 

and detection,” NAVIGATION: Journal of the Institute of Navigation, 2017.

Inspired by the GPS spoofing demonstration, we formulate a stochastic zero-sum game to analyze 

the competition between 

• Attacker, who tries to misguide the vehicle to an unsafe region covertly, and

• Detector, who tries to detect the attack signal based on the observed trajectory of the vehicle.
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System Model
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Hypothesis Testing
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Neyman-Pearson Lemma
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Saddle Point Policy
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Error Exponent and Finite Sample Analysis

See Tanaka et al. “Covert Vehicle Misguidance and Its Detection: A Hypothesis Testing Game over 

Continuous-Time Dynamics” 2024 for more details.
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−𝜆 × (𝐴𝑡𝑡𝑎𝑐𝑘 𝐷𝑒𝑡𝑒𝑐𝑡𝑎𝑏𝑖𝑙𝑖𝑡𝑦)

Generalization 

• More general nonlinear dynamics

• Probability of successful attack ⇒ More general 

cost functions

• Controller/detector can now apply a legitimate 

control input 𝑢𝑡 to combat with the noise 𝑤𝑡 and 

the potential attack input 𝜃𝑡. 
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−𝜆𝐷(𝑃||𝑄)

Stealthy Attack on Control Systems

[Bai, Pasqualetti & Gupta "Data-Injection Attacks in 

Stochastic Control Systems: Detectability and 

Performance Tradeoffs“ 2017] introduced the KL 

divergence as the stealthiness measure (justified by 

Stein’s Lemma).

KLD-constrained optimal control problem for the 

optimal stealthy attack synthesis. 

Is this problem computationally tractable?
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Risk-sensitive control

min
𝑢

𝜆 log 𝔼𝑄 exp
1

𝜆
න

0

𝑇

ℓ 𝑥𝑡, 𝑢𝑡 𝑑𝑡

Minimax KL control

min
𝑢

max
𝜃

𝔼𝑃 න
0

𝑇

ℓ 𝑥𝑡, 𝑢𝑡 𝑑𝑡 − 𝜆𝐷(𝑃||𝑄)

Nonlinear 𝐻∞ control

min
𝑢

max
𝜃

𝔼𝑃 න
0

𝑇

𝑐 𝑥𝑡 +
1

2
𝑢𝑡

𝑇𝑅𝑢𝑡 −
𝜆

2
𝜃𝑡

2

Legendre 

Duality

Girsanov Theorem
• Jacobson 1973.

• Petersen, James, & Dupuis 2000.

Minimax KL Control, Risk-sensitive Control, Nonlinear 𝐻∞ 

Control, and Path Integrals

See Patil, Karabag, Tanaka, Topcu "Simulator-Driven Deceptive Control via Path Integral Approach" 

CDC 2023 for more details.



Q & A
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