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Rationally Inattentive Path Planning



“Rationally Inattentive” Path Planning

Sensing is costly. Sensing cost appears in various forms:
e Computational cost

e Communication cost

e Mechanical cost

* Time cost

Path geometry Is a key factor determining sensing cost.
* Following Path A requires precise localization.
Expected sensing cost for path following will be higher.

How to generate a motion plan with a “simple” path
geometry that requires minimum sensing to execute?

Obstacles :
Target / Target covariance

Control,
Robotics,
Autonomy

Information
Theory




Shortest Path Problem in Gaussian Belief Space

e Robot’s configuration is represented by N (xx, Pi). Belief state: by, = (xx, Pi).

e We want to compute the “shortest” collision-free path in the Gaussian belief
space B = R" x S .

Obstacle Goal

Path B




Distance Function

We define the distance from by to bxy1 to be

D(bk, br+1) = Diravel (b, bt1) + aDingo (bk, brs1)

o Travel cost: Diyavel(br,bpr1) = ||xr — Tra1]|-
e Information cost (entropy reduction):

1 1
Dinfo(bk, bk—|—1) = 5 log det(Pk + Hajk—l—l — SI?]CHW) — 5 log det Plc—H

where W is the natural growth of uncertainty.

D(-,-) introduces a quasi-pseudometric (Lawvere metric) on the belief manifold B.
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Path Length

e The length of a belief path v(t) = (x(t), P(t)) w.r.t. the partition P =
(0=1t; <ty <---<tg =T)isdefined by c(v,P) = Zle D(v(tk)s Verir)-

e The length of 7 is defined by ¢(y) = supp c(v, P).
e Belief path v(t) = (z(t), P(t)) is collision-free if
(x(t) T mobS)TP_l(t) (aj(t) _ xobs) > X2 Vit € [OvT]avxobs S Xobs

where x? is a user-defined confidence parameter.

E(x(2), P(1))




Shortest Belief Path Problem
min  c¢(7)
Y
s.t. ¥(0) = by, Y(T') € Biarget
(x(t) — azobS)TP_l(t)(aj(t) — Tobs) = Y Yt € 0, T)],VZops € Xobs
We developed an RRT* and PRM*-based shortest path solver:
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is generated by the RRT*-based algorithm.

e Belief path following: Sensors and actuators
are operated in real-time to follow the reference
beliet path.

e Livent-based sensing: Location sensor is acti-
vated only when €(Zy, Px) is not contained in

e(xzef, P,:ef).
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Follow-Up Work: Deep-Learning-Assisted Real-Time Planning

It is difficult to run sampling-based path planner in real-time. We consider applying a
deep learning model (U-net) to quickly generate an optimal path candidate.

Input Image -- (3, 150, 225)

Indicator function of
randomly generated
triangular obstacles

Distance function to
initial position

Distance function to
target area

Output Image (Label) -- (150, 225)

output
> P!

¥

¥

“_ > segmentation

_____ 512 256 '
I’I’l I’ITI = conv 3x3, RelLU
T s s P copy and crop .
ks P v p e Optimal path computed
-v—b— = conv 1x1 by RRT*_based planner

U-net [Ronneberger et al. 2015]
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U-Net Architecture

« Atransition-down block extracts and processes
high-frequency components

« Atransition-up block reassembles the processed
Information

 Skip connections give the transition-up block to
the previous unprocessed information

« The bottleneck layer transforms the leftover low-
frequency components

* The refines the fully
reassembled solution

This allows U-Net to access different frequency

components of the input separately to process them

and reconstruct the solution

Input

Encode 1

Encode 2

Encode D-1

|

i
]
Decode D-1

FC

Output

Decode D

tran. down
= fran. up
fin. conv.
=== phottleneck]
Skip con.
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U-Net Training

The network fy is trained by ming BCE(fe(X),Y)
where X: input, Y: output (label), and

L
1
BOE(v,y) = = ) lyilog(x:) + (1 — y:) log(1 — ;)]
1=1

We trained a U-net model until it can predict an output
Image from a given input image.

A trained U-net model is tested on unseen input images
to see If it can predict the corresponding path plan.
While the preparation of a training data set and the
training of a U-net are time-consuming processes, a

forward execution of the trained U-net iIs instantaneous.

m
0 50 100 150 200

U-net Prediction

0 50 100 150 200

RRT* solution

0 50 100 150

0 50 100 150

200

200
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Generalizability

How does the trained U-net perform on unseen problems?
« \We trained U-net only using triangle-shaped obstacles.
« \\e tested the trained U-net in environments with circle-shaped obstacles.
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Future work: Quantitative analysis of the robustness against unseen data.
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Major Outcomes of YIP

“Rationally Inattentive” path planning

* A. Pedram, “Information-Theoretic Path Planning and Navigation” Ph.D.
dissertation, The University of Texas at Austin, 2023.

* A. Pedram, R. Funada and T. Tanaka, “Gaussian Belief Space Path Planning for
Minimum Sensing Navigation,” IEEE Transactions on Robotics, vol. 39, no. 3,
pp. 2040-2059, June 2023.

Simultaneous Perception-Action Design

e M. Hibbard, T. Tanaka, and U. Topcu, “Simultaneous Perception-Action Design
via Invariant Finite Belief Sets,” Automatica, vol. 155, pp. 111140, Sep. 2023.

Publication

2 Ph.D. Theses, 4 Journal publications, 5 Journal papers under review, 13
conference papers

14




What’s Next?

Through this YIP project, we witnessed various roles that information
theory can play in motion planning problems.

* Minimum-information (“rationally inattentive’) motion planning
* Maximum information path planning

* Information sharing in multi-agent path planning

 Path integral control

» Deceptive control and hypothesis testing
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Path Integral Control

Outlook on a new project “Motion Planning, Partial Observability, and
Quantum Mechanics: Advancing the Frontiers of Path Integral Control Theory”
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Path Integral Control (PIC)

A control algorithm inspired by the path-integral formulation of quantum mechanics

Equation-based modeling Control Policy Synthesis
Nonlinear/stochastic/uncertain
Continuous/discrete /hybrid X = f(x, u) ]
High /infinite dimensional
Physical system Full /partial observability U = k(x)
; % = f(x,w)
Control Policy
Simulator Building Real-time Simulation
J — Monte-Carlo sampling of
=g 5] open-loop (uncontrolled)
=2 1=} @ trajectories

Path integral

Digital Twin Image: Matlab Vehicle Image: Peng et al. 2022
Dynamics Blockset control
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Background: Simulator Development Became Easy and Quick

Open Al Gym [Abdeetedal, Matalb Simscape
https://www.etedal .net/2020/04/ [Suh and Tanaka, Lecture material 2019]

pybullet-panda.html]

 Building a robotic simulator is often easier than
writing down an analytical equation of motion.
« PIC can compute the optimal control input using

Gazebo simulator 1
[Pedram, Funada and Tanaka, TRO 2022] simu |at0 'S on Iy
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Brief History of Path Integral Control

The origin of PIC can be traced back to the stochastic variational treatment of quantum mechanics [1-4]
4,5] identified the class of SOC problems in which the associated HIB equation coincides with the
linear Schrddinger equation.

6,7] noticed the semi-classical limit (A — 0) of the Schrdodinger equation approximates the HIB
equation corresponding to a broader class of SOC problems.

6,7] invoked the Feynman-Kac formula to numerically evaluate the solution of Schrédinger equations
using Monte Carlo (Metropolis-Hastings) algorithm.

In separate threads: Risk-sensitive control, distributionally robust control against relative entropy
ambiguity set, linearly solvable MDPs, ...

E. Nelson, Derivation of the Schrddinger equation from Newtonian mechanics, Physical Review, 1966.

H. Rosenbrock, A variational principle for quantum mechanics, Physics Letters A, 1985.

H. Rosenbrock, A stochastic variational treatment of qguantum mechanics, Proceedings of the Royal Society of London. 1995.

F. Guerra and L. M. Morato, Quantization of dynamical systems and stochastic control theory, Physical review D, 1983.

K. Yasue, Stochastic calculus of variations, Journal of Functional Analysis, 1981.

T. Itami, Optimization of nonlinear control systems based on the principle of superposition (in Japanese), Transactions of the Society
of Instrument and Control Engineers, 2001.

T. Itami, Nonlinear optimal control via Monte-Carlo evaluation of path integrals (in Japanese), Transactions of the Institute of

Systems, Control and Information Engineers, 2003.
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Modern Path Integral Control

Under the deterministic system assumption, the SOC can be solved exactly by Monte Carlo

as N — oo, DP Cole-Hopf Feynman-Kac
Stochastic - Trans. - Lemma

: : X Nonlinear Linear Monte-Carlo-based

* Derivation by [1] [ (():Ptltmall ]<::>[ HJB ]<:>[ HJB ] =) [ Control Synthesis ]
ontro
Girsanov Free-every representation of

) ) Stochastic Theorem value function [ Monte-Carlo-based

. .
Derivation by [2] (()jg:::l;:ll > KL Control < > ' Control Synthesis ]

Removal of deterministic system assumption has been considered in [3-5].

H. Kappen, Path integrals and symmetry breaking for optimal control theory, Journal of Statistical Mechanics, 2005.

E. Theodorou and E. Todorov, Relative entropy and free energy dualities: Connections to path integral and KL control, CDC 2012

S. Satoh, H. J. Kappen, and M. Saeki, An iterative method for nonlinear stochastic optimal control based on path integrals, TAC, 2016.
G. Williams, P. Drews, B. Goldfain, J. M. Rehg, and E. A. Theodorou, Information-theoretic model predictive control: Theory and

applications to autonomous driving, TRO 2018

S. Levine, Reinforcement learning and control as probabilistic inference: Tutorial and review, arXiv:1805.00909, 2018.
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Proposed Research (2025-2027)

Thrust 1: Path Integral Control for Spatial Navigation
« Task 1-1: Chance-constrained SOC and strong duality.
» Task 1-2: Minimum sensing navigation.

Thrust 2: Path Integral Method and Partially Observable Systems.
« Task 2-1: Removal of the deterministic system assumption.
« Task 2-2: KLD-regularized POMDP.

Thrust 3: Quantum Theoretic Perspectives of Path Integral Control.
« Task 3-1: Classical optimal control problems and Schrodinger
equation.
» Task 3-2: Quantum optimal control via the path integral method.
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Path Integral Control of Partially Observable Systems

P(xq1|re,ur)  State transition probability Oy, w) Runn.l ng cost
. . Y(xr) Terminal cost
P(xo) Initial state distribution : :
P(yla:) Observation model R(u¢|yo.t,wo.t—1) Baseline (reference) policy
LIt Q(ut|yo.t, up.t—1) Control policy to be designed

Joint probability measures of the trajectories induced by policies () and R:

T—1
Q(zo.1, Yo:r—1, vo:r—1) = P(20) 1_--t=0 P(ye| ) Q(ue|yo:t, woit—1) P(Tes1|we, ur)
T—1
R(zo.1, yo:r—1, uo:r—1) = P(z0) [-t:o P(yt|ze) R(ut|yo:t, woie—1) P(Te1|me, we).
T—1
Partially observable KL control: min E¢ Z C(xe,us) + (zr) | +FAD(Q|| R)

{Q(utlyO:tauO:t—l)}f:BI t=0
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Belief Space Representation

Define the belief state b;(x;) := Q(x¢|yo.¢, uo-t—1). By the Bayes formula, we have

b ( ) P(yt-l-llxt-l—l)fxt P(mt‘Fl‘xt)ut)bt(mt)
x — |
t+1(Tt41 f;gtﬂ P(ysy1|Te1) fxt P(xiq1|7e, ue )by ()

This formula shows that b; is a controlled Markov process (controlled by ;).

Equivalent problem in belief space: min N E?
{Q(uelbe)} /5!

Define the value function

{Q(upbr)} T} R(ug|by)

Jb) = o [Z Quubk{ (by ux) + Alog (“kb‘“)}wwﬂ]-
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Dynamic Programming in Belief Space

A

. - - Q (us|by) (Bellman’s
Jt(bt) — Q(lurifbt) ” Q(Ut|bt) {C(bt, ut) -+ /b;-i_l P(bt+1|bt, ut)e]t+1(bt+1) + )\log R(ut‘bt) | Equa‘tlon)

W

— —\log {/ exp ( C(b: ut)) exp (—%/B Jt+1(bt+1)15(bt+1‘btzut)) R(u|by) I(OF\:\?eerebnongél)

C(bg, u Jiiq (b - Jensen’s
> )\log {/ / exp ( ! t)> exp (— t+1gt+1)) P(bt+1|bt,ut)R(ut]bt)} _( i
Ut J Biga

o
v

Inequality)
= —AlogEF exp (—%ét 7 (ber, s 1)) (Recursive substitutions)
1 © 1 -
~ —\log {ﬁ ; exp (—XOt:T(bt:T(i), ut:T_l(z'))) } (Monte Carlo)

If P(byy1|be, uy) is a point mass (deterministic transition), then Jensen’s inequality holds with equality.
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Deceptive Path Planning and
Hypothesis Testing



Covert Vehicle Misguidance and Its Detection

J. Bhatti and T. E. Humphreys, “Hostile control of ships via false GPS signals: Demonstration
and detection,” NAVIGATION: Journal of the Institute of Navigation, 2017.

Z Under attack (GPS-Spoofed) @
i) /7/1/2/2/
Nominal

Inspired by the GPS spoofing demonstration, we formulate a stochastic zero-sum game to analyze

the competition between
 Attacker, who tries to misguide the vehicle to an unsafe region covertly, and

 Detector, who tries to detect the attack signal based on the observed trajectory of the vehicle.
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System Model

Vehicle trajectory with attack input ()

A
c
dz(t) = 0(t)dt + dw(t),z(0) =0,0<t < T 2
@
Terminal state: %D

x(T) > Td : Unsafe .

x(T) <Td : Safe %
Fix an open-loop attack policy 0(¢),0 <t < T. The %
probability of the terminal state being unsafe N

vmﬂfw‘w' v

]- L _20 ﬂ.l‘l 012 0:3 D.I4 '[].IS UIB DI? DIB UIQ 1
~(0) := @ Nis O(t)dt —VTd | . et
0

The attacker wants () > c¢(> 1), or fOT O(t)dt > VTd(c) + Td.
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Hypothesis Testing
Hy:0(t)=0 VvVt €[0,7] (Null hypothesis)
Hi : /1 O(t)dt > VT® *(c) +Td (Alternative)

The role of the detector is to design a hypothesis testing algorithm ¢ : C[0, 7] — {0, 1} such that

0 Hj is accepted
¢(x) = .
1 H; is accepted.

The quality of a testing algorithm ¢ is measured in terms of:

a(p) == Pr{¢(x) =1 | Hy is true} (Probability of a false alarm )
B(0,¢) :=Pr{o(x) =0 ‘ Hi is true} (Probability of a detection failure) .

Consider a mini-max game and its dual:

*

= min max (6, and d"= max min 0,
qb:a(cb)ée@:v(@)zcﬁ( ?) 9:7(9)ZC¢:CM(¢)SEB( ?)




Neyman-Pearson Lemma

We want to find:
e The saddle point policy (6%, ¢*)

e The value of the game [(6*, ¢*) and its error exponent as a function of T

Lemma: For a fixed 0, the testing algorithm ¢ : C[0,7] — {0,1} that minimizes 5(6, ¢) subject
to the constraint a(¢) < € is given by

o) = {O if jﬁ(w) <\ )

1 if 72 (z) > A"

where the likelihood ratio is computed by Girsanov’s theorem

%(m) ~ exp { /0 0(s)d(s) % /O tHQ(S)dS} (2)

and \* > 0 is a constant satisfying a(¢) = e.
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Saddle Point Policy

Theorem: The following pair of policies form a (unique) saddle point of the zero-sum game:

) +d Vte0,T] (1)

0 =
{ if 2(T) < VT® (1 —¢)

if 2(T) > VT® (1 —e).
Moreover, the value of the game is (6%, ¢*) = ®(®~1(1 —¢) — ®~1(c) — VT4d).

Observation:

e The max-min policy (the most covert attack) is a constant bias injection 0(t) = 0, where the
constant € is chosen to be the smallest value satisfying v(6) > c.

e The minimax policy ¢*(z) (i.e., the most powerful hypothesis test) is a likelihood ratio test,
and only examines the final value x(T") of the observed sample path x.
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Error Exponent and Finite Sample Analysis

Under the constraint a(¢) < €, we have 3(0*,¢*) — 0 as T — o0, i.e., the hypothesis testing problem
becomes easier as the horizon length 7" grows. How does 3(6*, ¢*) behave as a function of T7

~log 80", ¢") = TD(lluo-) + VTV (ullg-) " (€) + const.

where D(p||po+) = 162 is the relative entropy rate and V(ul|ue-) = 62 is the variance rate.

Observation:
e The first-order term is reminiscent of the classical Stein’s lemma.

e The second-order term provides a tighter approximation in the regime of finite T [K. Li,
Annals of Statistics, 2014].

e Further improvements are available [Lungu and Kontoyiannis, ISIT 2024].

See Tanaka et al. “Covert Vehicle Misguidance and Its Detection: A Hypothesis Testing Game over
Continuous-Time Dynamics™ 2024 for more details.
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Generalization
dv; = dwy (No attack)
[ Adversary | dv; = 0;dt + dwy (Under attack).
0 L ) Xt
t
4 ) . i
We | Ut Controlled system - * More general nonlinear dynamics
>0 T dx, = (f, + gau)dt + hedv, .~ * Probability of successful attack = More general
B < | cost functions
‘ { Controller ](_xt |  Controller/detector can now apply a legitimate
i | control input u; to combat with the noise w, and
et >[ Detector ]< the potential attack input ;.

T
mgn nax E [/ ((xy, ut)dt] —A X (Attack Detectability)
0
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Stealthy Attack on Control Systems

( 1 |
0, L Adversary T x [Bai, Pasqualetti & Gupta "Data-Injection Attacks in
g . Stochastic Control Systems: Detectability and
Wi v Ve Controlled system | Performance Tradeoffs 2017] introduced the KL
= 2 dxe = (fy + geup)dt + hedv, ; " divergence as the stealthiness measure (justified by
i ; | Stein’s Lemma).
Lt ( t |
i | Conirollcr ] | KLD-constrained optimal control problem for the
L )[ —— ]< _: optimal stealthy attack synthesis.

T
minm@aXEP [/ f(ﬂftput)dt] —AD(P||Q)
u 0

Is this problem computationally tractable?
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Minimax KL Control, Risk-sensitive Control, Nonlinear H,
Control, and Path Integrals

e ~N Legendre ~N
Risk-sensitive control Duality Minimax KL control
. 1 T < > . T
min Alog E? |exp —f £(x;, up)dt min max E” f £(x;,up)dt| — AD(P||Q)
L u A 0 y L u 0 0 y

» Jacobson 1973.
Petersen, James, & Dupuis 2000.

4 _ )
Nonlinear H,, control

! 1 T A 2
c(x¢) + Eut Ru; — §||9t||

]: Girsanov Theorem

min max E?
u v} 0

- J

See Patil, Karabag, Tanaka, Topcu "Simulator-Driven Deceptive Control via Path Integral Approach”
CDC 2023 for more details.



Q&A
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