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An (In)famous Magic Roundabout in Swindon, UK

Source: Wikimedia Commons.
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DETERMINISTIC “Shortest” Path Problems

e Nodes: X = {x1,...,xm}

e Bounded degree of nodes: |N(x;)| < x for all i

e Transition cost: Cj;j > § > 0 (assumed +oo if x; & N(x;))
e Exit cost: g(x;) for all x; € Q C X

Dynamic Programming: The value function U(x;) = U; is the
minimum required total-cost-to-exit starting from x;.

Bellman’s Optimality Principle:

U = i Gi+ U}, Y% €Q
xj?/\}?x,){ i+ Ui} xi & Q
U = q(x,-)./ Vx; € Q.

A coupled system of M non-linear equations!
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Fast (Non-iterative, “Label-Setting”) Methods

U= min {C:+U),  Vx;
x,-?A}?x,.){ i+ Uil xi ¢ Q

How can you de-couple a non-linear system?

Monotone Causality: Each node depends only on its “smaller” neighbors!

“If you use The Known
to tentatively compute The Still Unknown
then the smallest of The Tentatively Known
is actually Known."”

Dijkstra’s Method: O(M log M) complexity; uses a heap-sort.
Dial’s Method: O(M) complexity; uses a list of “buckets” of width 4.
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General Stochastic Shortest Path (SSP) problems

e X = {xla e XM, = XM+1};
@ A; = A(x;) a compact set of actions available at x;;
@ choice of an action a € A; determines

o the cost of the next transition C(x;,a) and
e the probability distribution over successor-states
p(xi, xj,a) = pjj(a) =P (x; = x; | using a);

o the target t is absorbing , i.e., pi(a) =1 and C(t,a) =0 for Va € A;.

M
A function p : X (U A,-) is a stationary policy if u(x;) € A; for all x; € X.
i=1

Starting from x;, the expected cumulative cost of using p is J(x;, 11).

The value function U; = U(x;) = inf J(x;, j1).
I

A policy p. is optimal if U(x;) = J(x;, 1) for all x; € X.

Alex Vladimirsky (Cornell) AFOSR Review, 2024 August 26, 2024 5/26



SSP: Dynamic Programming and Value lIterations

Optimality conditions:

Ut - O.,
M+1

Ui = min C(x,—,a)+Z;p,-j(a)Uj . forVx; e X\{t}.
=

M+1
V¥ : RM s RM is defined componentwise: (WW); = é‘neig {C(x,-,a) + > p,-j(a)VVj}
i j=1

Us
and U = is a fixed point of V.
Uwm
Value iterations: W™ .= w W" starting from an initial guess W° € RM.
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SSP: Dynamic Programming and Value lIterations

Optimality conditions:

Ut - O
M-+1

Ui = min C(x,—,a)+Z;p,-j(a)Uj . for Vx; € X\{t}.
=

M+1
V¥ : RM s RM is defined componentwise: (WW); = é‘neig {C(x,-,a) + > p,-j(a)VVj}
i j=1

Us
and U = is a fixed point of V.
Uwm
Value iterations: W™ .= w W" starting from an initial guess W° € RM.

[Bertsekas & Tsitsiklis; 1991] : In general, W isn't a contraction, but the convergence

is guaranteed for any W? provided:

e (A0) All C(x;,a) are lower-semicontinuous and all p;(a) are continuous.

e (A1) There exists at least one proper policy (i.e., a policy, which reaches the target t
with probability 1 regardless of the initial state x € X).

e (A2) Every improper policy p will have cost J(x, 1) = 400 for at least one x € X.
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Value lterations vs. Label-setting

An SSP is causal if only finitely many value iterations are needed.
A dependency digraph G, defined for every stationary policy .

Bertsekas: the SSP is causal if 3 an optimal policy . such that G, is acyclic.

Still requires O(M?) operations! But Dijkstra-like and Dial-like methods need only
O(M log M) and O(M) operations respectively. Can they be used instead?
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Value lterations vs. Label-setting

An SSP is causal if only finitely many value iterations are needed.
A dependency digraph G, defined for every stationary policy .

Bertsekas: the SSP is causal if 3 an optimal policy . such that G, is acyclic.

Still requires O(M?) operations! But Dijkstra-like and Dial-like methods need only
O(M log M) and O(M) operations respectively. Can they be used instead?

Bertsekas: An optimal policy i« is consistently improving if
pi(ps(xi)) >0 = Ui > U
Existence of such p. == applicability of a Dijkstra-like method.
AV: Given § > 0, an optimal policy p. is consistently §-improving if
pii(1«(xi)) >0 = Ui > Ui +o.

Existence of such p. - applicability of a Dial-like method with bin-width §.

But all these sufficient conditions are implicit... Can we do any better?
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What makes an SSP “Opportunistically” Stochastic?

Definition (OSSP:)

We will refer to an SSP as Opportunistically Stochastic (OSSP) if
da € A; s.t. p,'j(a) >0 - da € A; s.t. p,'j(é) =1

holds for all j and j.

Every stochastically realizable path is also deterministically realizable.
But stochastic actions might be still advantageous to reduce the cost!

Example: when driving on a highway, | might be able to guarantee a
successful lane change if | slow down enough. But is it always worth it?
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Shorthand action-focused notation

Focusing on any specific action a € A;, we define

@ A set of possible successor nodes
Z(a) = {xe X | p(xj,x,a) > 0}.

@ The number of possible successor nodes m = |Z(a)|
and their enumeration Z(a) = {z1,...,zn}.

@ The probabilities of transition & = p(x;, z;, a). Using these, a can be
identified with a point (&1, ...,&m) in a probability simplex =,.

@ The costs C; corresponding to deterministic x; — z; transitions.
(Since this is an OSSP, such deterministic actions are available.)

If m=1, this a is deterministic itself and C; = C(x;, a).

These m, z;, {;,and Cjs are always understood to be a-specific.
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Monotone Causality of OSSPs

Suppose there exists a 6 > 0 such that,
for all x; # t, a € A;, and every r € {1, ..., m},

C(xipa) > > &G+

J=1g#r

If these conditions are satisfied, this OSSP is monotone (0-)causal.

This criterion is easy to check for any m, and it is “sharp” for m = 2.

(A sharp criterion for m > 2 is also available, but it is more complicated. See the paper.)

Unlike in prior work on MC for SSPs (Vladimirsky, 2008), this does not
assume anything about convexity or smoothness of C(x;, a).
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Geometric interpretation of (9-)MC criterion when m = 2:

I(a) = {z1, z2}; & =p€(0,1); &=(1-p) K(p)=C(x;a).

0=0.3

K(p) = Ci(1 = p) +pd

K(p) = Cop+ (1 - p)§

OSSP is monotone d-causal if all points (p, K(p)) are
on or above the dotted restriction lines.

Examples above: Orange and green graphs are MC, but purple is not. Green is also 6-MC for § = 0.3, but orange is not.
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A new OSSP based AV-routing framework

@ Deterministic transitions to continue in the same lane,
with traffic dependent costs.

e .

-

@ Stochastic transitions to attempt lane changes e .
(m = 2 possible outcomes). e

o (Infinitely) many lane change actions available to reflect different
urgency levels, interpreted as probability of success p € [0, 1].

@ “Urgency” translates into willingness to alter velocity;
so, the cost K(p) is monotone increasing.

o Easy to find suitable cost models that ensure MC;
e.g., K(p) = Bp? + 7, with B, > 0 determined by traffic patterns.

Subject to U.S. Provisional Patent 10471-02-US.

Significantly extends a previous SSP-routing approach (Jones, Haas-Heger, and van den Berg; 2022).
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A simplified Magic Roundabout (MR)

N Entry e Trying to reach % (on SE Exit),
St minimizing the expected travel time.
B :
e @ When approaching MR, your lane
_/(.ﬂ-)—ﬂ.\_ determines the initial direction of
_/'/ -;{ \'\' travel (clockwise or counterclockwise).
VA N
SWEntry | ] Vool @ Which one is quicker/easier depends
v A Bl 000000 on the traffic distribution.
S T N/
eaman e e
SXXXX, N e SAGU0 o The success of lane-cha nge attempts
e e SE Entry

is uncertain, but you can influence it
(e.g., by slowing down).

How urgently should you try to switch lanes while approaching MR?
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When Congestion is Heaviest Around INNER Roundabout
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When Congestion is Heaviest Around OUTER Roundabout
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Continuous & Deterministic Time-optimal Trajectory Problem

Controlled system:

y'(t) = v(y(t),a(t)), velocity v:Q x Ar— RY;
y(0) = x, x € QcC R

Time-to-destination T, , =min{t € R o|y(t) € Q C0Q}.

Value functi =inf T, .
alue function u(x ‘Iarz.) a(), x

Viscosity solution of a Hamilton-Jacobi-Bellman PDE:
min{Vu(x)-v(x,a) + 1} = 0, xeQ,
acA

u(x) =0, x € Q.
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Continuous & Deterministic Time-optimal Trajectory Problem

Controlled system:

y'(t) = v(y(t),a(t)), velocity v:Q x Ar— RY;
y(0) = x, x € QcC R

Time-to-destination T, , =min{t € R o|y(t) € Q C0Q}.

Value function = inf T, .
ue functi u(x) ‘larz') a(), x
Viscosity solution of a Hamilton-Jacobi-Bellman PDE:

I

min{Vu(x)-v(x,a) + 1} = 0, xeQ,
=0,

acA
u(x) x € Q.

Geometric dynamics: velocity v = f(x, a)a with the speed f and
controls = directions of motion (i.e., A= S!).

The isotropic case: direction-independent speed (i.e., f(x,a) = f(x))
results in a much simpler Eikonal PDE:  [|Vu(x)|/f(x) = 1.
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But why should control-theorists care about SSPs?

SSPs are useful in approximating continuous optimal control; see, e.g. [Kushner, 1977].

X = §1Xs,1 + §2Xs,2
[(1%s,1 + &2xs,2) — x||.

®

)
~
A%
N

I
>t

]

I
>

I

® a=ac= T
_ mind DO :
Vi(x) = min { F(x, ac) + flU(Xs,1)+£2U(Xs,2)}y
U(x) = min Vi(x); Vx € XNAQ.
seS(X)
@ S(x) is the set of adjacent simplexes and C°(x,&) = D(€)/f(x, a¢).

@ U(x) =0 for all x € X N 9N
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Two simple stencils in R?:

X4 X3 X2 X4 X3 X2
/a /a
X =
X
X
X5 X1 X5 ¢ b X1
X6 X7 X8 X6 X7 Xsg
(A) (B)

For Eikonal PDEs (the isotropic case, f(x,a) = f(x)):

Tsitsiklis (1995) showed that semi-Lagrangian discretizations are (MC)
: : w " _ _h

on both stencils and (B) is also “4-causal” for § = 7

On stencil (A), Tsitsiklis' first algorithm is equivalent

to Sethian's Fast Marching Method (1996).

August 26, 2024
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Non-MC anisotropic speed: a failure of Dijkstra's method on a 4-pt stencil

The “monotone ordering” decoupling does not work here:
characteristics and gradient lines do not have to be the same.
Nor do they have to lie in the same simplex!

o

1 -1 -08 -06 -04 -02 0 02 04 06 08 1

characteristic for x lies in the simplex xx1x7 # u(x) > max{u(x1), u(x2)}
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Label-setting methods for HIJB Equations

If the problem is isotropic (i.e. f(x,a) = f(x)), the same monotone de-coupling works:
“If you use The Known to tentatively compute The Still Unknown, then the smallest of
The Tentatively Known is actually Known.”

o Dijkstra-like: (Tsitsiklis, 1995); (Sethian, 1996); (Kimmel & Sethian, 1998);
(Sethian, 1999); (Sethian & AV, 2000); (Potter & Cameron, 2019 & 2021).

@ Dial-like: (Tsitsiklis, 1095): (Kim et al., 2000); (AV, 2008).

For anisotropic HJB equations, “local” stencils need not be causal.
But extended stencils can be used to restore MC!

(Sethian & AV, 2001 & 2003); (AV, 2008); (Alton & Mitchell, 2012); (Cameron, 2012);
(Mirebeau, 2014); (Dahiya & Cameron, 2018); (Desquilbet et al., 2021).

Previous criteria for checking whether a stencil is causal for a particular anisotropic
problem were analytic & somewhat cumbersome.

Our §-MC OSSP criteria yield a simple/geometric interpretation

and identify all anisotropic problems compatible with a specific stencil.
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For which speed profiles is your chosen stencil (6-)MC?

In R?, a simple geometric answer based on our OSSP MC criterion!

© For each stencil-represented direction z;,
draw the corresponding velocity vector v;.

@ Form parallelograms based on pairs
of velocity vectors from each simplex.

© A union of these parallelograms defines a “sunflower”.

Q |If the speed profile V¢(x) = {f(x,a)a | a € S'} is fully contained
in the sunflower drawn at that gridpoint for each x € X,
then the stencil is MC.

For > 0, the §-MC condition is the same, but parallelograms are replaced
by smaller quadrilaterals, with one §-dependent vertex in each.
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5 MC and 1 non-MC stencil /speed profile combinations

(&) ®) ©

(D) (E) F)
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For which speed profiles and ds is your stencil 6-MC?

lz1] = B, |22| = hv2 |zl =h, |z|=hv2

Each “sunflower” color corresponds to a specific 6 > 0.
Magenta indicates the largest § that works for shown profiles.
The bigger is §, the faster Dial's method will generally be.

Alex Vladimirsky (Cornell) AFOSR Review, 2024 August 26, 2024 23 /26



A sharp (-)MC criterion for OSSPs

Assuming a € A is not deterministic (i.e., m > 1) and choosing any specific
r € {1,...,m}, we define v, = (¥r,1, ..., ¥r,m) to be an oblique (proportional) projection
of & as follows
0, if j=r,;
&/(1—¢&), otherwise.

Suppose there exists a 6 > 0 such that,
for all x; # t, a € A;,

@ if a is deterministic, then C(xi,a) > ¢;

Vrij =

@ if a is not deterministic, then
C(xia) > (1—-&)C(v,)+&6,  Vre{l,..m=|Z(a)}.

If these conditions are satisfied, this OSSP is monotone causal and Dijkstra’s method is
applicable. If § > 0, the OSSP is monotone d-causal and Dial’s method with buckets of
width § is also applicable.

v

Sharp for any m. Equivalent to our previous criterion for m = 2.
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Example: MC criterion in R3

Question: Suppose we can move with unit speed in each coordinate plane.
How anisotropic can the full 3D speed profile be if we want Dijkstra’s
method to work on a Cartesian grid with a standard 6-point stencil?
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Example: MC criterion in R3

Question: Suppose we can move with unit speed in each coordinate plane.
How anisotropic can the full 3D speed profile be if we want Dijkstra’s
method to work on a Cartesian grid with a standard 6-point stencil?

Answer: Our sharp MC criterion guarantees that Dijkstra’s will solve
the HJB-discretization correctly as long as the speed profile Vr is
contained in a tri-cylinder:

Ve C {(v1,v2,v3) € R® | max (v + 3, v§ +v3, v +v3,) < 1}.
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Example: MC criterion in R3

Question: Suppose we can move with unit speed in each coordinate plane.
How anisotropic can the full 3D speed profile be if we want Dijkstra’s
method to work on a Cartesian grid with a standard 6-point stencil?

Answer: Our sharp MC criterion guarantees that Dijkstra’s will solve
the HJB-discretization correctly as long as the speed profile Vr is
contained in a tri-cylinder:

Ve C {(v1,v2,v3) € R® | max (v + 3, v§ +v3, v +v3,) < 1}.

Source: Wikimedia Commons. Created by Ag2gaeh; CC BY-SA 4.0
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Conclusions

@ SSPs are useful models for discrete dynamic programming and
discretization of HJB PDEs, but can be computationally costly.

@ OSSPs are an important subclass, for which the applicability of
label-setting algorithms is easy to verify a priori.

@ Such Monotone (§)-Causal OSSPs are much more practical,
allowing for frequent online replanning in dynamic environments.

@ Strategic-Tactical Plans based on MC OSSPs provide an efficient
routing approach for autonomous vehicles, capturing the inherent
uncertainty of lane-change maneuvers and modeling a spectrum of
“urgency levels” in implementing them.

Details: M. Gaspard and A. Vladimirsky, “Monotone Causality in
Opportunistically Stochastic Shortest Path Problems”.

Submitted to Mathematics of Operations Research.
https://arxiv.org/abs/2310.14121
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