A new operator for dynamic mode decomposition of discrete-time

control-affine systems
AFOSR FA9550-20-1-0127

Rushikesh Kamalapurkar ! Joel A. Rosenfeld 2

LUniversity of Florida
2University of South Florida

Aug 27, 2024

1/22



Could not have done this work without

Collaborators:
» Moad Abudia and Zachary Morrison
(Oklahoma State University)

» Efrain Gonzalez, Ladan Avazpour,
and Joel Rosenfeld (University of
South Florida)

» Benjamin Russo (Riverside Research

Institute)

Support:
» Air Force Office of Scientific
Research
» Grant FA9550-20-1-0127
» Grant FA9550-21-1-0134
» National Science Foundation
> Collaborative project, grants
2027999 (OSU), 2027976 (USF),
and 2028001 (Vanderbilt)

2/22



DMD in continuous time using the Liouville operator

System Liouville Operator Identity Map
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DMD in continuous time using the Liouville operator

Componentwise

Spectral Projection
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Computations utilize spectra of finite-rank operators

Hy ----- PdM -—— spandM <----- h=6TgM------ > RM
-
: ho s
Af PmAf|gm  A%rj = d WXtV Gym
: g it a
A v e ’ v
Hr ----- Prl\/l----> spanrM<- ----- g:aTrM ------ > ]RM
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Convergence under appropriate assumptions

Mathematical Constructs

| 2

| 2

Trajectories: {v; : [0, T;] — R"}M,
Domain basis

M = {Ky(-,7i(Ti) = Ka(-,7i(0)} 2, and
Gram matrix Gywm
Range basis rM = {rw},{\ip and Gram matrix
Gm
SVD of G,m: (V, X, W)

Singular functlons P = WT M and

¢,’ = Vi

» DMD modes: £ = DV
> M =N, L = DVEtWT M = DG M
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Convergence under appropriate assumptions

Mathematical Constructs

| 2

| 2

Trajectories: {v; : [0, T;] — R"}M,

Domain basis
M = {Ka(-,7i(T3) = Ka(-,7i(0))}2; and
Gram matrix Gywm

Range basis rV = {F%},{\il, and Gram matrix

G
SVD of Gw: (V,Z, W)

Singular functlons Y= WT M and

¢i = V,'

» DMD modes: £ = DV

> M=V 10§,¢,_DVZ+WT M —

= DG} rM

Assumptions
P ~ continuous
> Ky continuously differentiable
» Ar: Hy — H, compact
> Hyg= Fp2r' H, = F/i
> pd < pr
> f row-wise polynomial
> (hia)j € Hy for all
j=1...,n

» span d™ is dense in Hy

> span r* is dense in H,
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Convergence under appropriate assumptions

Convergence results
> IimM_mo ||PrMAdeM - Af” =0

> limpy oo <supXeX H?M(X) - f(x)H2> =0
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Linearity of the Liouville operator with respect to its symbol makes it convenient for

incorporation of partial knowledge
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Linearity of the Liouville operator with respect to its symbol makes it convenient for

incorporation of partial knowledge
x = g(x) + e(x), trajectories {'yi},{‘il, Azrely = K(-,7i(T:)) — K(-,7i(0))

Linearity
Asyoh = Ash+ Ath = AST, = K(,7i(Th)) = K(7i(0) — Azl

g+e )
Proposition
Ifh=¢6"d" with 6 € RM and g = P,’%/’Aeh then a set of coefficients a € RM such that
M
g=a'rM isgiven by a = GJ;,,(GC,M + J)oM, where J := <<Agde, r,-M>H ) . That is,
v/ ij=1

the matrix G, (Ggm + J) represents PouAe|gm.

Computation of inner products in J
(Agdl, 1) = (AK(3(T)) = K(,%(0)), Ty, =
I (K (i) = 3(Ti) = &K (i) = %(0))) g(n(e))de

Extension: incorporation of partial knowledge
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Unsurprisingly, incorporation of partial knowledge improves prediction accuracy

Example: Duffing oscillator

2(t)
o

Extension: incorporation of partial knowledge

TN m - m =
_ -

= —a(t) - a(t)
= —z(t) - Z(t)
21(t) = 21(t)

— () — 5

0.4 0.6 0.8 1
Time
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The operator framework extends to control-affine systems with some additions

x = F(x,u) :=f(x) + g(x)u, feedback
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The operator framework extends to control-affine systems with some additions

x = F(x,u) := f(x) + g(x)u, feedback p

H,«

I

!
1 |
MiArh=3[f g [ ] |
|
| !

Data

Control {u; : [0, T}] = U C R™}M | controlled trajectories {v,, : [0, T}] = X C R"}M |

and a feedback law p : U — X.

Extension: control-affine systems
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Finite rank representation requires four sets of basis vectors

Hy — Pgm = spand¥ » Af g > H

MﬁAﬂg PrMMﬁPﬂMAf’g‘dM ;:»:: PBM
| wi = Mir s,
v l - J nJ \\\\ l
H, — P.v = spanr™ N span M

\MM/

A" = {Ka( 70 (T7)) = Ka(o v O) Ly BY = {Toy b o = {0, b ™ = Ty o iy

1
,u € H represents Tp = fOT p(y(t)) l (t)] dt
u
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Convergence guarantees from the uncontrolled case also extend to the controlled case

Proposition

If Mz - H — H, is bounded, Af , : Hy — H is a compact, and the spans of {d;}?2;, {ri}72;,
and {B;}2, are dense in Hy, Hr, and H, respectively, then

imusoo || MiAr g — Pyt MgPau Ar g Pyu H:; — 0. In particular, with

/:_M,M = PrmMgPﬁmAf,g\dmhid, iMoo <supX€X HIA-_ Mm(x) — F”(X)Hz) =0.

J. A. Rosenfeld and R. Kamalapurkar, “Dynamic mode decomposition with control Liouville

operators,” IEEE Trans. Autom. Control, to appear

Extension: control-affine systems 10 / 22



In discrete time, we rely on the Koopman operator

Xk

System

Xk+1

Koopman Operator

F

Kr

Keh=hoF

New operator for discrete-time systems

[Keh](xk) = h(xk+1)

Identity Map

hia(x) = x
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In discrete time, we rely on the Koopman operator

Xk

System

Koopman Operator

Xk+1 h

F

Kr

Krh=hoF
[Keh](xk) = h(xk+1)

Identity Map

hia(x) = x

Componentwise Propagation

Xk+1 =

(hia)y (xk+1)

(hia), (xk+1)

[(hia)y © F](xk) Kz (hia)1 (x«)

[(hia), o F](x«) Kz (hia), (x«)

Approximate

Point Spectrum

Kroi = \ipi

Componentwise

Spectral Projection

(ha); = S (&)

Approximate

Componentwise Propagation

(k1) = Kr M1 (6)i0i (k) = M1 ()N idi(xk)
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Controllers complicate spectral analysis

Xk

System

Xk+1

F

Koopman Operator

Krh

Kr

[Keh](xk) = h(xk+1)

New operator for discrete-time systems

Controlled System
Xk Xk+1
: F + Gu, ——
Uy
Operator ?
h
4 A Ah
Uk [AR](xk, uk) = h(Xk+1)
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Different operators have been used over the years to embed controlled systems

Data: {Xk, Uk}zlill from xx11 = F(Xk, uk), xx € R" and u, € R™.

DMDc (2014 Proctor et al.):
Find matrices A € R"*" and B € R"™ such that xx.1 = Axx + Bu.

SINDYc (2016 Brunton et al.):
Find a transformation v : R” — RN and matrices A € RV*N and B € RV*™ such that

Y(xky1) = AY(xk) + Buy |

eDMDc (2018 M. Korda et al.): [Kg] (({i})) — g ((F‘(S.?UU}O)))

Find a transformation 9 : R” — RN and matrices A € RV*N and B; € RV*N for
i=1,...,m such that Y¥(xk+1) = AY(xk) + D11 Bith(xk)(uk)i

New operator for discrete-time systems 13 /22



Different operators have been used over the years to embed controlled systems

Data: {x, uk}f(vill from xx11 = F(xk, uk), xx € R” and u, € R™.

KIC (2018 Proctor et al.) [Kg](x,u) = g(F(x,u),0)
Model is similar to DMDc.

KCT (2021 Goswami et al.) Koopman operator of unforced dynamics
Model is similar to eDMDc, transformation constructed from eigenfunctions of the unforced

Koopma n operator

Taylor's series (2020 Abraham et al.) linearization

h(xi1) =~ h(F(xi)) + G2 (F () G(xi) ux = [KKeh((x)) + SE(F (xi)) G (i) u

New operator for discrete-time systems 13 / 22



A new approach for spectral analysis of controlled system

» Predictors are linear or bilinear, which typically result in short prediction horizons

> Spectra of transfer operators corresponding to the controlled systems are not

computed/analyzed

Idea:
If we restrict the prediction to feedback controllers i : R” — R™, then it is possible to

compute and analyze the spectrum of the Koopman operator associated with the

closed-loop system xx11 = F(xk) + G(xk)u(xx) using open-loop data.

New operator for discrete-time systems
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If the observables were linear...

h
—1 AF,c

(hoF, ho(6),

... ho(6)")

Ms,

(hoF, ho(6),

. ho(6))

T
where T, = (1 uT> . If his a linear function, then

(hoF, ho(G),

k

and as a result,

i=1

ho(G)m) B =hoF+ > (u)iho(G) = ho (F + Guy)

Mz A ch](xk) = [ho (F + Guk)](xk) = h(F(xk) + G(xk)uk) = h(xk+1)

New operator for discrete-time systems

15 / 22
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oF, o LIS o m oF, o LI o ™)
LAF,G (hoF, ho(6) ho(G)") e (hoF, ho(6) ho (G)") Tk

T
where &, = (1 uZ) . If his a linear function, then
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i=1

and as a result,
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Idea:
An extension of A ¢ from linear functions to reproducing kernels of a RKHS turns out to
be sufficient for DMD.
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. (hoF. ho(G), ..., ho(G)") (hoF. ho(G), ... ho(G)")m
HAF,G Muk
Vector-valued (C1*m+1)

-
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Propagation of all functions is not possible, but we can propagate reproducing kernels

RKHS (H, K), wRKHS (H,K), both defined on X C R”, and ) = C1xm+1
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Proposition

For each reproducing kernel K, centered at z € X, there exists a unique function L, € H
such that for all tuples (x, u, y) satisfying y = F(x) + G(x)u, we have

[MglL,] = K.(F(-) + G(")u), i.e., [MgL,](x) = K,(y), where T = (1 uT>T.
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RKHS (H, K), wRKHS (H,K), both defined on X C R”, and ) = C1xm+1

Proposition

For each reproducing kernel K, centered at z € X, there exists a unique function L, € H

such that for all tuples (x, u, y) satisfying y = F(x) + G(x)u, we have
. . T
[Maly] = K,(F(-) + G(-)u), ie., [Mal](x) = Ku(y), where T = (1 uT)

L,

i

Ko (F() + G(-)ux)

Arc

MUkAF,G
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Propagation of all functions is not possible, but we can propagate reproducing kernels
RKHS (H, K), wRKHS (H,K), both defined on X C R”, and ) = C1xm+1

Proposition

For each reproducing kernel K, centered at z € X, there exists a unique function L, € H
such that for all tuples (x, u,y) satisfying y = F(x) + G(x)u, we have

[MglL,] = K.(F(-) + G(")u), i.e., [MgL,](x) = K,(y), where T = (1 uT)T

L,
AF.G Mg

Ko (F() + G(-)ux)

Kz;(Xk) “““““ MUkAF,G ““““ > Kz'(Xk—&-l)

Extension to complex span of reproducing kernels

ZI 13,K +1Z 1bJ'RZj A ZI 13,1_ +1Z_/ 1bLZJ
F.G
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System dynamics can be approximated using eigenfunctions of the kernel propagation

operator

If o; = Z,N:1(Vj)iKXf is an eigenfunction of MzAF ¢ with eigenvalue \;, then

N N

MzAr 60i(xk) = Npi(xk) = Y ()iMaAF 6K (k) = D (v))iKe (1) = 05 (xk1)-
= i—1

New operator for discrete-time systems 17 / 22



System dynamics can be approximated using eigenfunctions of the kernel propagation

operator

If ; = S°N . (v})iKy is an eigenfunction of MzAE ¢ with eigenvalue );, then

N N
MzAr,0i(x) = Npi(xk) = D (v)iMrAr 6K (xi) = D (v))ik (Xict1) = 05 (xkc41)-
i=1 i=1
Projected ldentity Map Propagation
hia(x) = YL, &ipi = € Xk+1 = hia(Xk+1) =~ §p(xk+1) = Ap(xx)

A finite-rank representation of M;Afr ¢ and the spectrum of that finite-rank representation
can be computed using the open-loop response of the system J

New operator for discrete-time systems 17 / 22



Finite-rank representation results from projections onto spans of reproducing kernels
Data

Open-loop response {x, ux, xk+1}£’:1

Bases for projection

N
a = span {ka}kzl C D(AF ) and B = {KXk,Ek}lel C D(Mg)  (Assumptions)
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Finite-rank representation results from projections onto spans of reproducing kernels

Data

Open-loop response {x, ux, xk+1}f(\’:1

Bases for projection

N
« = span {ka}kzl C D(Ar,¢) and = {Kj ,Uk}zlzl C D(My)

(Assumptions)

he H a

T

a

A,:,GaTa

Py

AF.Gc

>~ |

eH

Ps

w'p

?)

\ME

MﬁWTﬁ

cH

b
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Finite-rank representation results from projections onto spans of reproducing kernels

Data

Open-loop response {x, ux, xk+1}f(V:1

Bases for projection

N
}kzl C D(Ar.c) and B = {Kyz }\_, € D(My)

(Assumptions)

Ps

w'p

Mg

[MzPsAF, 6l € RVN

« = span {ka
~ T
heH (a o AFca «
P, AF.G
cH
aelR
Proposition

If vj is an eigenvector of the matrix [MzP3AF ¢l& with eigenvalue \;j, then the function

0 = Zf\il(vj);KX, is an eigenfunction of the operator P, My PgAF G|o with eigenvalue ).

M*WTﬂ
I N p.
e H
b e RN

New operator for discrete-time systems
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Finite-rank representation results from projections onto spans of reproducing kernels

Finite-rank Representation

[MzPsAF GlS = GTIGTTT,

N

~ ~ N
1 G= (<Kxi’l-li7 KXj»le>H),-J:1' I= (K(Xi+1a)<j))ij:lv I= (<KXj,H(Xj)7 KX[JJ:')H)N

N
ij= ' ij=1

6= (ks

Z. Morrison, M. Abudia, J. Rosenfeld, and R. Kamalapurkar, “Dynamic mode
decomposition of control-affine nonlinear systems using discrete control Liouville operators,”
IEEE Control Syst. Lett., vol. 8, pp. 79-84, 2024
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Finite-rank representation results from projections onto spans of reproducing kernels

Finite-rank Representation

[MzPsAF GlS = GTIGTTT,

- - . N N
G= (K(X,',Xj))l 1 G= (<K><i,l-li7 Kxj,aj>H)N I= (K(Xi-%—lvxj))i’j:lv I= (<Kx,-,u(xj-)7 Kx;,ﬂi)H):\szl

N
=1 hi=1

Koopman modes

£ = X(VTG)*, V:<v1 VN>, X:<x1 XN)

Z. Morrison, M. Abudia, J. Rosenfeld, and R. Kamalapurkar, “Dynamic mode

decomposition of control-affine nonlinear systems using discrete control Liouville operators,”

IEEE Control Syst. Lett., vol. 8, pp. 79-84, 2024

New operator for discrete-time systems
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The technique shows promise as a tool for equation-free prediction of closed-loop

response
X: X: 0
= ’ + . u,
Xo —0xp — Bx1 — axf’ 2 +sin(x1)
Goal:
Predict the response of the system in to two feedback laws: Linear: p(xx) = —2x41 — Xk 2
Nonlinear: fi(xx) = —2x,f1 — Xk 2

> Data points {(xk, Xk+1, uk) }22> with initial conditions sampled from the set
[-3,3] x [-3,3] C R2.
» Control inputs are sampled uniformly from the interval [-2,2] C R.

» Gaussian RBF with parameter o = 10 for both K and K (diagonal).
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The technique shows promise as a tool for equation-free prediction of closed-loop

response

\ \ \ \ \ \ \ \ \
0 0.5 1 15 2 2.5 3 3.5 4 4.5 5

Time [s]

Linear feedback
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The technique shows promise as a tool for equation-free prediction of closed-loop

response

0 0.5 1 15 2 2.5 3 35 4 4.5
Time [s]

Nonlinear feedback
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The technique shows promise as a tool for equation-free prediction of closed-loop

response

[

8 % (t)

— (1)
B Xp,1(t)

o X:,z(t)

)
45 1--- ()
2
07
—2
| | | | | | | | |
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Comparison against linear eDMDc predictor!

M. Korda and |. Mezi¢, “Linear predictors for nonlinear dynamical systems: Koopman operator meets

model predictive control,” Automatica, vol. 93, pp. 149-160, 2018.
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What next?

» Compactness, finite-data L, error bounds (inspirations from MTNS 20242)
» Error bounds open up applications in control, e.g., MPC3 and SoS*
» Operator representations of input-output models (NARMAX, delay embedding, etc.)

» Deep kernel learning

2F. Kéhne, F. M. Philipp, M. Schaller, A. Schiela, and K. Worthmann, L*-error bounds for
approximations of the koopman operator by kernel extended dynamic mode decomposition,

arXiv:2403.18809, 2024.
3M. Schaller, K. Worthmann, F. Philipp, S. Peitz, and F. Niske, “Towards reliable data-based optimal

and predictive control using extended dmd,” /FAC-PapersOnLine, vol. 56, no. 1, pp. 169-174, 2023, 12th

IFAC Symposium on Nonlinear Control Systems NOLCOS 2022.
“R. Strasser, M. Schaller, K. Worthmann, J. Berberich, and F. Allgéwer, “Koopman-based feedback

design with stability guarantees,” /[EEE Transactions on Automatic Control, pp. 1-16, 2024.
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In summary,

~ 1
| e PaMgPsArgla, P8
“~~~ "l

H Mg span 3V

Smm-

Thank you!
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