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Estimation of Linear Dynamic Systems

@ The Kalman filter assumes a linear system with additive
Gaussian process and measurement noise.

o Gaussian probability density function (pdf) has a light tail
and rarely takes extreme values

o The conditional pdf of the state given the measurements is
Gaussian, i. e. unimodal and symmetric.

@ Our robust estimator assumes a linear system with
additive Cauchy process and measurement noise.

o Cauchy pdf has a heavy-tail that captures physical
phenomena which have a more impulsive character.

o The conditional pdf of the state given the measurements is
not symmetric and not always unimodal

e Denote this nonlinear estimator as the multivariate Cauchy
estimator (MCE)



The Gaussian and Cauchy densities are in a class

called symmetric a-stable densities.

@ A class of heavy-tailed pdf’s is the symmetric a-stable
distribution, represented by its characteristic function
(Essentially, the Fourier transform of the pdf):
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Vector-State Cauchy Estimation: Formulation

e Consider a vector-state, linear dynamic system as

X1 = Pxp + Ty,
zir = Hxp+ vy

where

e The state vector is x; € R”,

e The measurement z; € RY,

e The known matrices ® € R"*", T ¢ R"™™ and H € R7*",

e The measurement history is y, = {z1,--- , 2}

e The additive noises wy and vy are Cauchy distributed.
e For simplicity let wy and vy be scalars.



Vector-State Cauchy Estimation: Formulation

e For scalar state estimation, the conditional pdf given the
measurement history y; can be propagated analytically.

e For vector state estimation, the conditional pdf cannot be
propagated analytically, but the characteristic function of the
conditional pdf can be propagated analytically and recursively.

e The initial states, measurement noise, process noise are
Cauchy distributed as (v € R", v € R)

n n

fX1 (xl) — H 0517/71- charactcrii‘(i; function ¢Xl (l/) _ He—ai\ui| —e L O‘i|ﬂ,TV|7

i1 (xl,i)z +af P
fv(vk) — v/ = oy (7) = eIl fw(wk) — BT = dw () = e P17l
o+ 7 w; + B

eThe a; above are unit vectors, but will be general directions forming a
central arrangement of cells.



Unnormalized Conditional pdf at k

@ The conditional pdf at k is

Fv (alyi) = fxfy(@kk;’k)

@ The unnormalized conditional pdf (ucpdf) is defined as the
joint pdf of x; and yy,

Fxavi (klyi) = fv, (X, yie)

@ The ucpdf can only be obtained recursively and in closed
form for the scalar system.

o The characteristic function (CF) of the ucpdf

for the vector state is obtained recursively and
in closed form and denoted as ¢x, )y, (V).



The CF of the ucpdf: Propagation and Update

@ The Characteristic Function (CF) of the ucpdf is
o0
_ e
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—00
where v € R" is the spectral vector.
@ The propagation to # is

qgXlem (V) = ngk,lm,l (q)TV) ow (FTV) )
@ The measurement update at k, using zy = Hxy + vy,

produces ¢y, |y, (v). It is determined by using the general
convolution integral

bx, v, (v) = /éf?ka ) HT??) oy (—n) &=dn.

@ The closed-form solutlon to the convolution integral is the
key to our estimation approach.



General form of ¢y, |y, () at Measurement time k

@ From the convolution integral, ¢x, |y, (v) is analytic and recursive
kI
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Kk klk , klk Kk
v yi) = Zp‘ a' )|+ {0 ), ),
° pkllk € Rk, pﬁk, and ”w € R" are all parameters that can be

computed recursively.

@ The hyperplanes form cells, in a cell gklk (ygk(y yk)> is constant.

@ The cell is identified by a sign sequence of the hyperplanes.

@ New innovation is the propagation of the enumeration table of
sign sequences. High increase in numerical speed.



Propagation of Cell Enumeration Sign Tables

Consider three hyperplanes in two-dimensions (parent) with
added I' hyperplane for propagatlon
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Rows: cell sign sequences. Columns: hyperplane sign sequences. 9



Partial Differentiation of ¢x,y,() Produce Conditional

Mean and Conditional Variance

® ¢x,v,(v) is twice continuously differentiable.

@ To construct the conditional mean and variance, choose
v = e where ¢ > 0 and 7 is a fixed direction.

e The normalization variable is fy, (yx) = dx,y, (eﬁ)‘
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¢ To cap growth in the number of terms of ¢x, |y, (v), a bank
of fixed, sliding windows of measurements is constructed.
o Initialize window by mean and variance of a full window.
o This initialization, using one measurement, only requires
rotating a positive definite matrix into diagonal form.
o Nonlinearities accomidated by linearization. 10



Estimation of Damped Pendulum System:

miss-specification: Measure Angle Only.

Damping change at 2 sec. is four times nominal in Gaussian simulation.

@ The estimation error of the EKF/UKEF jumps and then oscillates,
but the EMCE (extended MCE) has small transient error.

State Error Plot of Angle and Angular Rate of Two-State Pendulum
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Missile State Estimation: Impulsive Meas. Noise

Zk = O + ny, ni is glint, clutter, fading noise. 6, = arctan
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@ Missile dynamics used in estimators

y = v, y(lateral relative position) € R
v = a,—ar, v (relative velocity),a, (pursuer acc.) € R
ar = ——ar+w,,, ar (target acceleration),w,, € R,

T

X=[y v ar T ¥=Fx+ Bay, + Gw,, = Discrete Time
@ Gauss-Markov process used in the estimators match the target’s
auto-correlation, modeled as a telegraph process in simulation. 12



Robust Performance: Geometric Mean

radar measurements in a clutter environment

Monte-Carlo simulation of 9000 trials for o« = 2, 1.7, 1.5, 1.3, 1.
Geometric Mean Square Gy;: Let A, = - S""C log [(xi — x1)2].

nymc i=1

Plotting /G, = Ve . Window size = 7. a,, = —Ng V.6

Monte Carlo (Log Geom-Mean Squared-Error) Performance
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7 State Estimation with Window Bank of Five for LEO

satellites: density dispersion (o = 1.3, 8 = .0013)

No tuning for either filter.

LEO Satellite State Estimation Errors at Low 250 Km Orbit
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Conclusions for the Vector Cauchy Estimator

@ Developed a real-time, robust dynamic estimator.
e Estimator highly competitive with the state of the art.

@ Matlab and Python wrappers for the Cauchy estimator
C/C++ code are available.

@ Future Research

e Understand the fundamental structure of the MCE.

o Determine how to embed the CF of the unnormalized
conditional pdf into new stochastic prediction and control
formulations.

o From the CF, determine in real-time the conditional pdyf, its
marginal densities, and the expectation of particular cost
criteria.

e Evaluate performance of the MCE and Cauchy stochastic
controllers with measures of robustness, convergence, and
stochastic stability.
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