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and Mehran Mesbahi
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Outline

underlying theme: role of parameterization–and the corresponding geometry– in
developing efficient algorithms for trajectory optimization and control

We cover a subset of our contributions over the past year, including:

1 high level decision-making/guidance: Optimization with temporal and logical
specifications/successive convexification/prox-linear algorithms

2 guidance to control interface: Constrained funnel synthesis/optimal control
on PSD matrices/succesive convexification

3 feedback control: Policy optimization on quotient Riemannian
manifolds/Riemmanian first order methods induced by system theoretic
metrics

each topic covered today corresponds to a distinct level in the general autonomy
stack: from higher-level decision making, to funnels, to control

let us start with STL ...
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Optimization with Temporal and Logical Specifications

Signal Temporal Logic

A formal language for modeling logical and temporal specifications

Effectively used in trajectory generation to specify high-level mission
constraints

Examples:

(Or) Final position of the vehicle should be either point A or point B.

(Implication) If the vehicle enters a certain zone, then it’s speed should not
exceed 20 m/s.

(Eventually) When the vehicle moves from point A to point B, the camera on
the vehicle should eventually capture an image of a target point.

(Until) The drone’s speed should not exceed 20 m/s until it visits one of the
battery charging stations.
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Optimization with Temporal and Logical Specifications

STL Syntax µ := (f (x) ≥ 0) φ ::= µ | ¬φ | φ1 ∧ φ2 | φ1UIφ2

STL specification Formula

disjunction φ1 ∨ φ2 ¬(¬φ1 ∧ ¬φ2)

implication φ1 =⇒ φ2 ¬φ1 ∨ φ2

eventually FIφ ⊤UIφ

always GIφ ¬FI¬φ
complete D-SR goes like this ...

ρµ(x , k) := f (xk)

ρ¬φ(x , k) := −ρφ(x , k)

ρφ1∧φ2(x , k) := min((ρφ1(x , k), ρφ2(x , k)))

ρφ1∨φ2(x , k) := max((ρφ1(x , k), ρφ2(x , k)))

ρφ1 =⇒ φ2(x , k) := max((−ρφ1(x , k), ρφ2(x , k)))

ρF[a:b]φ(x , k) := max((ρφ(x , k + a), ρφ(x , k + a+ 1), . . . , ρφ(x , k + b)))

ρG[a:b]φ(x , k) := min((ρφ(x , k + a), ρφ(x , k + a+ 1), . . . , ρφ(x , k + b)))

· · ·
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Optimization with Temporal and Logical Specifications

Autonomous Rocket Landing
Speed-triggered constraints: Speed upper-bound, 3 engines → 1 engine

Altitude-triggered constraints: Speed, tilt angle, glideslope angle, gimbal angle, angular velocity
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Optimization with Temporal and Logical Specifications

maximize ρ̃φ1∧φ2∧...∧φ5(x , k) maximize ρ̃φ1∨φ2∨...∨φ5(x , k)

ρ̃φ1∧φ2∧...∧φ5(x , k) = m̃inκ((f1(xk), f2(xk), . . . , f5(xk)))

ρ̃φ1∨φ2∨...∨φ5(x , k) = m̃axκ((f1(xk), f2(xk), . . . , f5(xk)))

features that we want to capture ...

designer’s flexibility for including a
“degree” of focus on enforcing the
spatial/temporal specifications

preserving soundness, completeness,
and monotonicity properties,
avoiding locality/masking

embeddable in smooth optimization,
e.g., prox-linear methods for
optimization of composite objectives
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Optimization with Temporal and Logical Specifications

Robust semantic - Generalized Mean based Smooth Robustness (GMSR)

SR GMSR
min ∧hcp,w
max ∨hcp,w

∧hcp,w (y) :=

(
Mc
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) 1

2
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(
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p,w (|y |2−)
) 1

2

, where
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0,w (z) :=

(
c1

Tw +
n∏

i=1

zwi

i

)1/1Tw
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(
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,

y ∈ Rn, z ∈ Rn
+, c ∈ R++, p ∈ Z++, w ∈ Zn

++.

∨hcp,w (y) := −∧hcp,w (−y)

UW - ACL/RAIN AFOSR 2024 8 / 46



intuition behind GMSR

(f1(x) ≥ 0) and (f2(x) ≥ 0) c = 1e − 8 and w = 1
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Optimization with Temporal and Logical Specifications

How ∧hcp,w and ∨hcp,w functions work

maximize Γφ1∧φ2∧...∧φ5
c,p,w (x , k) maximize Γφ1∨φ2∨...∨φ5

c,p,w (x , k)

Γφ1∧φ2∧...∧φ5
c,p,w (x , k) = ∧hcp,w ((f1(xk), f2(xk), . . . , f5(xk)))

Γφ1∨φ2∨...∨φ5
c,p,w (x , k) = ∨hcp,w ((f1(xk), f2(xk), . . . , f5(xk)))
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Optimization with Temporal and Logical Specifications

Soundness ρφ(x , k) ≥ 0 =⇒ (x , k) |= φ

Completeness (x , k) |= φ =⇒ ρφ(x , k) ≥ 0

Monotonicity ∧hcp,w and ∨hcp,w functions are non-decreasing for each of their
variables.

Locality & Masking If ∧hcp,w (y) and
∨hcp,w (y) are negative for

y = (y1, y2, . . . , yn), then their derivatives with respect to all the yi variables
causing the negative yield are positive.

Donze et al. Pant et al. Gilpin et al. Mehdipour et al. Varnai et. al. D-GMSR

C1-smoothness × ✓ ✓ × × ✓

Soundness ✓ ◦ ✓ ✓ ✓ ✓

Completeness ✓ ◦ ◦ ✓ ✓ ✓

Monotonicity ✓ ✓ ✓ ✓ × ✓

Locality & Masking × △ △ ✓ ✓ ✓

Table: Comparison with the previous robustness measures
(◦: Satisfied only for very large smoothing parameters
△: Satisfied only for small smoothing parameters)

Donzé and Maler [2010] Pant et al. [2017] Gilpin et al. [2020] Mehdipour et al.
[2019] Varnai and Dimarogonas [2020]
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Ongoing Works

Continuous-time modeling of STL specifications and a successive
convexification based solution method to ensure the continuous-time
satisfaction of STL specifications will be the subject of future studies.

Future work involves the design of optimization algorithms that exploit the
inherent structure of STL specifications to achieve faster convergence.

we now consider our next contribution pertaining to funnel synthesis ...

funnel synthesis becomes relevant after the guidance development, e.g.,
including STL specifications ... the key idea is how tight can the nominal
specification/mission requirement can actually be followed using feedback
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Funnel synthesis

A procedure computing time-varying controlled-invariant set and associated
feedback control law such that

(x(t), u(t)) ∈ (x̄(t), ū(t))⊕F(t) ⊂ X (t)× U(t)
invariance feasibility

F : state and input funnel, X ,Y : feasible state and input space
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Example: trajectory generation for the unicycle model with
obstacles and input constraints

 ṙx
ṙy
θ̇

 =

 uv cos θ
uv sin θ
uθ


State (rx , ry , θ) : x , y positions and yaw angle
Input (uv , uθ) : velocity, angular velocity

source of uncertainty: nonlinearity
modeled by pointwise incremental
quadratic inequalities

objective: maximize the initial
funnel

avoid obstacles

input constraints:
0 ≤ uv ≤ 0, |uθ| ≤ 2
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Incremental dynamical system

Define deviation variables

η := x − x̄ , ξ := u − ū, δp := p − p̄, δq := q − q̄

With linear feedback gain ξ = K (t)η and Acl = A+ BK ,Ccl = C + DK ,

Incremental dynamics

η̇(t) = f (t, x , u,w , p)− f (t, x̄ , ū, 0, p̄),

= Acl(t)η(t) + F (t)w(t) + Eδp(t),

δp(t) = ϕ(t, q(t))− ϕ(t, q̄(t)),

δq(t) = Cclη(t) + Gw(t),

Incremental dynamics is a finite-horizon uncertain LTV system

w represents (external) bounded disturbance

Pair (δq, δp) represents state-, input-, disturbance-dependent
uncertainty/nonlinearity
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Uncertainty models

External disturbance

w(t) ∈ W(t), W(t) : compact set

State/input-dependent uncertainty

⟨M(δq, δp), (δq, δp)⟩ ≥ 0,

where M is a bounded operator

This includes uncertainties satisfying
1 pointwise quadratic inequalities (pQI): norm-bounded, polytopic, conic

uncertainties
2 pointwise incremental QIs (piQIs): Lipschitz
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Funnel Dynamics

Lemma (Lyapunov condition (dissipation inequality))

Consider a time-varying Lyapunov function V (t, η) = η⊤Q(t)−1η such that

V̇ (t) + αV (t)− λ(t)w(t)⊤w(t) ≤ 0, 0 ≤ λ(t) ≤ α (2)

Then, the sublevel set (funnel) {η | η⊤Q(t)−1η ≤ w2
max} is invariant.

Theorem (Invariance condition by differential LMI)

Suppose there exist Q(t),Y (t),Z (t), ν(t) and λ(t) such that 0 < λ(t) ≤ α

Q̇(t) = Q(t)A(t)⊤ + Y (t)⊤B(t)⊤ + A(t)Q(t) + B(t)Y (t) + αQ(t) + Z (t),
−Z (t) ∗ ∗ ∗
ν(t)E⊤ −ν(t)I ∗ ∗
F⊤ 0 −λ(t)I ∗

CQ(t) + DY (t) 0 G −ν(t) 1
γ2 I

 ⪯ 0,∀t ∈[t0, tf ]

Then, the Lyapunov condition (2) holds with γ-Lipschitz nonlinearity.
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Recent and ongoing works

Joint synthesis of trajectory and funnel

optimizing feedforward and feedback controllers together

Uncertainty models by (incremental) integral quadratic constraints

general than pointwise (incremental) quadratic constraint
time-delay, H∞ or H2-norm bounded uncertainties

Computational methods for solving optimal control over PSD cone

preserving positive definiteness of Q
guaranteeing continuous-time invariance between node points

Customized-SDP solvers for computational efficiency and reliability

let us conclude with our work on dynamic policy optimization ...
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LQG Direct Policy Optimization using Riemannian
Optimization

Direct bridge between model based design and RL with explicit emphasis on
stabilization guarantees (Talebi et al. [2024], Hu et al. [2023])

feedback control is directly represented in terms of the policy optimization,
e.g.,

min J(K) K stabilizing

Offers an interesting twists on control design yet forces revisiting fundemental
system theoretic issues

Offers an approach to go beyond typical performance metrics, clarify the role
of robustness, and synthesizing dynamic controllers under structural
constraints

Facilitates developing first order type algorithms for feedback design (for high
dimensional systems); when an orcale model for gradient estimates are
allowed, one can implement these algorithms efficiency and in a model-free
setting, while also providing guarantees
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Problem setup

Consider
ẋ(t) = Ax(t) + Bu(t) + w(t), y(t) = Cx(t) + v(t)

and a stabilizing, controllable + observable, dynamic output-feedback controller

ξ̇(t) = AK ξ(t) + BKy(t), u(t) = CK ξ(t)

represented as an element K = (AK ,BK ,CK ) ∈ C̃n ⊂ Rn×n × Rn×p × Rm×n; the
space stabilizing full order dynamic output feedback controllers

LQG cost J : C̃n → R is analytic

Minimize J over C̃n via direct policy gradient
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Policy Gradient

Gradient descent (GD):
Kt+1 = Kt − st gradJ(Kt)

issues:

No local or global theoretical convergence guarantees for LQG case

i.e., we are not guaranteed (Kt) → K∗, where K∗ is the LQG controller; no
stabilization guarantee

Redundancy due to coordinate transformation:
(AK ,BK ,CK ) ∼ (SAKS

−1,SBK ,CKS
−1), where S ∈ Rn×n is invertible

Often, we have a sub-linear convergence rate

i.e., limt→∞
∥et+1∥
∥et∥ = 1, where et := ∥Kt − K∗∥

C̃n is too large; n2 + nm + np = O(n2) dimensions

C̃n is not path-connected
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Orbit Geometry

since stabilizing full order dynamic feedback controllers C̃n have a natural quotient
geometry, it make sense to instead consider policy optimization over the
quotient/orbit space induced by similarity transformation:

K1
K2 Kx3

K4
K5

K6

[K1][K2] [K3] [K4] [K5] [K6]

π : C̃n → Cn

C̃n
[K1] [K2] [K3] [K4] [K5] [K6]

Cn

Figure: C̃n and its orbit space

orbit of K = (AK ,BK ,CK ) is [K ] = {(SAKS
−1,SBK ,CKS

−1) : S ∈ GL(n)}
orbit space is the set of all orbits: Cn := C̃n/GL(n) := {[K ] : K ∈ C̃n}
dimension of Cn is nm + np = O(n)
minimal controllers: Cmin

n path-connected smooth manifold (locally Euclidean)
UW - ACL/RAIN AFOSR 2024 22 / 46



Riemannian Gradient Descent

Now comes the issue of choosing the metric: it does make sense to examine Cmin
n

(minimal) that also admit a nice coordinate invariant metric introduced by

Krishnaprasad-Martin in 1980s! KM metric makes C̃min
n a Riemannian manifold

and by embedding Cmin
n a Riemannian quotient manifold: we now develop a

Riemannian gradient descent (RGD) direct policy optimization for LQG:

Kt

Kt+1
−∇J(Kt)−∇J(Kt+1)

TKt C̃min
nTKt+1 C̃min

n

C̃min
n

RGD is an intrinsic 1st-order method for optimizing over minimal stabilizing
dynamic feedback controllers

Although Cmin
n is an orbit space, it isometrically embeds into C̃min

n via a
coordinate-invariant Riemannian metric; this implies RGD over the total
manifold C̃min

n coincides with RGD over the quotient manifold Cmin
n
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Theoretical results ...

under a non-degenerecy assumption:

Local convergence guarantee

there exists a neighborhood U
about K∗ such that K0 ∈ U
implies (Kt) → K∗

we are working on extending this
to a global guarantee

linear rate of convergence

much faster than ordinary GD
(sub-linear rate)

Numerical observations:

More robust at escaping saddle
points
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Next steps and summary

Apply the PO methodology to structurally constrained dynamic
output-feedback controllers/connections to rank constrained LMIs and BMIs

2nd-order optimization procedures to generate a superlinear convergence

deeper understanding of the interplay between th control performance and
dynamic stabilization, particularly as it relates to conditioning and algorithmic
performance

hence, in a nutshell, we have been examining the role of

parameterization

geometry

algorithms

at distinct levels of the autonomy stack: high order planning, guidance/control
interaction, and policy optimization ... this line of work is actively being pursued
in our groups to be not only theoretically interesting but also highly relevant for
next generation aerospace systems ...

thank you ...
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Oliver Sheridan and Behçet Açıkmeşe. Equivalent linear programming formulations for robust trajectory
planning under input dependent uncertainties. In 2022 American Control Conference (ACC), pages
1873–1878. IEEE, 2022.

UW - ACL/RAIN AFOSR 2024 26 / 46

https://doi.org/10.1007/978-3-642-15297-9_9
https://doi.org/10.1109/CCTA.2017.8062628
https://doi.org/10.1109/LCSYS.2020.3001875
https://doi.org/10.23919/ACC.2019.8814487
https://doi.org/10.23919/ACC45564.2020.9147692

	References



