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Duality in control and estimation

1. Solving control problem with an estimation algorithm (5 mins):

2. Solving estimation problems with control techniques (25 mins):
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LQ Optimal Control Problem
Quick review

Linear quadratic (LQ) optimal control problem:

min
u

JT (u) =
∫ T

0

(
1
2 |Cxt|2 + 1

2 |ut|2R
)

dt+ 1
2 |xT |2PT

Subj. to ẋt = Axt +But =: f (xt,ut)

LQR problem: represents the [T = ∞] where additional conditions are necessary to relate the

asymptotic solution of the DRE to the p.d. solution of the ARE.

Policy optimization algorithms: Starting with a stability control gain K0, obtain

K0 7→ K1 7→ K2 7→ . . . 7→ Kj 7→ . . . 7→ KN

by designing a suitable gradient-descent algorithm to reduce the value JT (u) with ut = Kxt.

Literature: [Fazel, 2018], [Mohammadi, 2022] [Zhang, 2021] [Cui, 2023], [Krauth, 2019],

Abbasi-Yadkori, 2019] and others. At the j-th step, simulations are used to evaluate the gradient

of the value function

Ẋi
t = AXi

t +BKjXi
t , i = 1,2, . . . ,N
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Dual EnKF (the details)
Filtering (data assimilation) algorithm to solve the LQ problem

dual EnKF [recall running cost = |cx|2 + |u|2R; terminal cost = xTPT x]:

dY i
t = AY i

t dt+Bd
←
η

i
t︸ ︷︷ ︸

i-th copy of model

+K(N)
t

(
CY i

t + Ĉ(N)
t

2

)
︸ ︷︷ ︸

coupling process

dt, i = 1,2, . . . ,N

Y i
T

i.i.d∼ N (0,P−1
T ), 1≤ i≤ N
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i.i.d∼ N (0,P−1
T ), 1≤ i≤ N

1 SDE is run backward in time (starting from time t = T to t = 0).

2 η
i
t is a W.P. with cov. R−1 (so cheap control directions are explored more).

3 Mean-field terms:

Ĉ(N)
t :=

1
N ∑

j
CY j

t is the empirical mean.

K(N)
t :=

1
N ∑

j
Y j

t (CY j
t )

T is the gain.

Connection to LQ:

4 The empirical covariance of the ensemble SN
t ≈ P−1

t . (duality: − logp is the value function of

an optimal control problem).
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Ĉ(N)
t :=

1
N ∑

j
CY j

t is the empirical mean.

K(N)
t :=

1
N ∑

j
Y j

t (CY j
t )

T is the gain.

Connection to LQ:

4 The empirical covariance of the ensemble SN
t ≈ P−1

t . (duality: − logp is the value function of

an optimal control problem).

Duality 1. P.G.Mehta 3 / 29 P.G.Mehta



Dual EnKF (the details)
Filtering (data assimilation) algorithm to solve the LQ problem

dual EnKF [recall running cost = |cx|2 + |u|2R; terminal cost = xTPT x]:

dY i
t = AY i

t dt+Bd
←
η

i
t︸ ︷︷ ︸

i-th copy of model

+K(N)
t

(
CY i

t + Ĉ(N)
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Ĉ(N)
t :=

1
N ∑

j
CY j

t is the empirical mean.

K(N)
t :=

1
N ∑

j
Y j

t (CY j
t )

T is the gain.

Connection to LQ:

4 The empirical covariance of the ensemble SN
t ≈ P−1

t . (duality: − logp is the value function of

an optimal control problem).

Duality 1. P.G.Mehta 3 / 29 P.G.Mehta



Error analysis
Performance of dual EnKF

Error bound [Joshi, Taghvaei, M., Meyn, S&CL (2022)]

Under some technical conditions (controllability of (A,B) and a condition stronger than

observability of (A,C) and PT invertible)

E[‖S(N)
t −P−1

t ‖F ]≤
C1√

N
+C2e−2λ (T−t)E[‖SN

T −P−1
T ‖F ],

where SN
t is the empirical covariance of the ensemble {Y i

t : 1≤ i≤ N} and Pt is the solution of the

DRE at time t (λ is inherited from the theory of DRE).
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Figure: Performance on a 2 dimensional system (N = 100 particles).
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Error analysis
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Figure: Performance on a 10 dimensional system (N = 1000 particles).
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Numerical experiments (benchmark)
Comparison with policy optimization algorithms.

0.05 0.10 0.15

101

103

105

C
om

p
.

T
im

e
(s

)

EnKF [M21] [F18]
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101
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Error in gain Error in cost

Algorithm particles/samples simulation time iterations

EnKF O(1/ε
2) O(log(1/ε)) 1

Fazel [F18] poly(1/ε) poly(1/ε) O(log(1/ε))

Jovanovic [M21] O(1) O(log(1/ε)) O(log(1/ε))

Table: Computational complexity comparison of the algorithms to achieve

ε error in approximating the infinite-horizon LQR optimal gain.

Duality 1. P.G.Mehta 6 / 29 P.G.Mehta



Numerical Experiments for a nonlinear example
Inverted Pendulum on Cart

Figure: Nonlinear EnKF on Inverted Pendulum on Cart
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Duality in control and estimation

Guiding philosophy (of this talk)

Faced with a control problem, do estimation

Faced with an estimation problem, do control

1. Solving control problem with an estimation algorithm:

2. Solving estimation problems with control techniques:
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Background
Dissipation in the study of stability of M.P.

Markov process (M.P.): Suppose X = {Xt : t ≥ 0} is a M.P.

1 taking values in state-space S (e.g., S= {1,2, . . . ,d} or S= Rd);

2 with a given invariant measure µ̄.

Stochastic stability (definition):

(stochastic stability) E(f (XT )|X0 = x)→ µ̄(f ), as T→ ∞ (in L2(µ̄) or some suitable sense)

Dissipation (or variance decay) in the study of M.P.:

(Markov operator) (PT f )(x) := E(f (XT )|X0 = x), x ∈ S (linear deterministic operator)

(variance) V µ̄ (f ) := varµ̄ (f (XT )) = µ̄(f 2)− µ̄(f )2

(candidate Lyapunov function)
d
dt
V µ̄ (Ptf ) =−µ̄(Γ(Ptf ))≤ 0 (Γ is the carre du champ operator)

(Poincare inequality (PI)) µ̄(Γ(f ))≥ cV µ̄ (f ) =⇒ V µ̄ (PT f )≤ e−cTV µ̄ (f ) (stability)

D. Bakry, I. Gentil, and M. Ledoux. Analysis and geometry of Markov diffusion operators (2013).
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Math problem
Filter stability and key questions

Hidden Markov model (HMM):

(hidden state process) X = {Xt : t ≥ 0}= Markov(A,µ) on state-space S

(observation) Zt =
∫ t

0
h(Xs)ds+Wt (additive white noise observations)

Nonlinear filter:

(cond. expect.) πT (f ) := E(f (XT )|ZT ), where f ∈ Cb(S) and ZT = σ(Zt : 0≤ t ≤ T)

(nonlinear filter) dπt(f ) = πt(Af )dt+
(
πt(hf )−πt(h)πt(f )

)
(dZt−πt(h)dt), π0 = µ

(superscript notation) π
µ

T (f ) (resp., π
ν
T (f )) with prior µ (resp., ν)

(filter stability) E(|πµ

T (f )−π
ν
T (f )|2)→ 0, as T→ ∞ (asymptotic forgetting of prior)

Questions:

1 Q1. Model properties (e.g., detectability) that are necessary and sufficient for filter stability.

2 Q2. Bounds on (exponential) rate of convergence.

J. Xiong. An Introduction to Stochastic Filtering Theory. Oxford Press (2008).
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Filter stability and key questions
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Example and Literature survey
HMM and filter stability

HMM (A,H) on a finite state-space S= {1,2, . . . ,d}:

1 2

λ1

λ2

A =

−λ1 λ1

λ2 −λ2


︸ ︷︷ ︸

rate matrix

H =

h(1)

h(2)


︸ ︷︷ ︸

obs. matrix

Model properties for filter stability:

1 Markov process is ergodic iff λ12 +λ21 > 0. (spectral condition).

2 HMM is observable iff h(1) 6= h(2). (either of this properties is sufficient for filter stability.)

3 HMM is NOT detectable iff (both) λ12 +λ21 = 0 and h(1) = h(2). (necessary and sufficient).

1. Ergodic signal case: (filter ‘inherits’ the ergodic property)

Kunita (1971, 1991); Ocone and Pardoux (1996); Deylon and Zetouni (1991); Atar and

Zeitouni (1997); Budhiraja (2003); Baxendale, Chigansky and Lipster (2004).

2. Non-ergodic signal case: (where observability becomes important)

Clark, Ocone and Coumarbatch (1999); Baxendale, Chigansky and Lipster (2004); Stannat

(2005); Chigansky (2006); Chigansky and Lipster (2006); van Handel (2009, 2010);

Chigansky, Lipster and van Handel (2009); Liu and Bitmead (2011); Yuksel (2022).

Duality 2. P.G.Mehta 11 / 29 P.G.Mehta



Example and Literature survey
HMM and filter stability

HMM (A,H) on a finite state-space S= {1,2, . . . ,d}:

1 2

λ1

λ2

A =

−λ1 λ1

λ2 −λ2


︸ ︷︷ ︸

rate matrix

H =

h(1)

h(2)


︸ ︷︷ ︸

obs. matrix

Model properties for filter stability:

1 Markov process is ergodic iff λ12 +λ21 > 0. (spectral condition).

2 HMM is observable iff h(1) 6= h(2). (either of this properties is sufficient for filter stability.)

3 HMM is NOT detectable iff (both) λ12 +λ21 = 0 and h(1) = h(2). (necessary and sufficient).

1. Ergodic signal case: (filter ‘inherits’ the ergodic property)

Kunita (1971, 1991); Ocone and Pardoux (1996); Deylon and Zetouni (1991); Atar and

Zeitouni (1997); Budhiraja (2003); Baxendale, Chigansky and Lipster (2004).

2. Non-ergodic signal case: (where observability becomes important)

Clark, Ocone and Coumarbatch (1999); Baxendale, Chigansky and Lipster (2004); Stannat

(2005); Chigansky (2006); Chigansky and Lipster (2006); van Handel (2009, 2010);

Chigansky, Lipster and van Handel (2009); Liu and Bitmead (2011); Yuksel (2022).

Duality 2. P.G.Mehta 11 / 29 P.G.Mehta



Example and Literature survey
HMM and filter stability

HMM (A,H) on a finite state-space S= {1,2, . . . ,d}:

1 2

λ1

λ2

A =

−λ1 λ1

λ2 −λ2


︸ ︷︷ ︸

rate matrix

H =

h(1)

h(2)


︸ ︷︷ ︸

obs. matrix

Model properties for filter stability:

1 Markov process is ergodic iff λ12 +λ21 > 0. (spectral condition).

2 HMM is observable iff h(1) 6= h(2). (either of this properties is sufficient for filter stability.)

3 HMM is NOT detectable iff (both) λ12 +λ21 = 0 and h(1) = h(2). (necessary and sufficient).

1. Ergodic signal case: (filter ‘inherits’ the ergodic property)

Kunita (1971, 1991); Ocone and Pardoux (1996); Deylon and Zetouni (1991); Atar and

Zeitouni (1997); Budhiraja (2003); Baxendale, Chigansky and Lipster (2004).

2. Non-ergodic signal case: (where observability becomes important)

Clark, Ocone and Coumarbatch (1999); Baxendale, Chigansky and Lipster (2004); Stannat

(2005); Chigansky (2006); Chigansky and Lipster (2006); van Handel (2009, 2010);

Chigansky, Lipster and van Handel (2009); Liu and Bitmead (2011); Yuksel (2022).

Duality 2. P.G.Mehta 11 / 29 P.G.Mehta



Example and Literature survey
HMM and filter stability

HMM (A,H) on a finite state-space S= {1,2, . . . ,d}:

1 2

λ1

λ2

A =

−λ1 λ1

λ2 −λ2


︸ ︷︷ ︸

rate matrix

H =

h(1)

h(2)


︸ ︷︷ ︸

obs. matrix

Model properties for filter stability:

1 Markov process is ergodic iff λ12 +λ21 > 0. (spectral condition).

2 HMM is observable iff h(1) 6= h(2). (either of this properties is sufficient for filter stability.)

3 HMM is NOT detectable iff (both) λ12 +λ21 = 0 and h(1) = h(2). (necessary and sufficient).

1. Ergodic signal case: (filter ‘inherits’ the ergodic property)

Kunita (1971, 1991); Ocone and Pardoux (1996); Deylon and Zetouni (1991); Atar and

Zeitouni (1997); Budhiraja (2003); Baxendale, Chigansky and Lipster (2004).

2. Non-ergodic signal case: (where observability becomes important)

Clark, Ocone and Coumarbatch (1999); Baxendale, Chigansky and Lipster (2004); Stannat

(2005); Chigansky (2006); Chigansky and Lipster (2006); van Handel (2009, 2010);

Chigansky, Lipster and van Handel (2009); Liu and Bitmead (2011); Yuksel (2022).

Duality 2. P.G.Mehta 11 / 29 P.G.Mehta



Example and Literature survey
HMM and filter stability

HMM (A,H) on a finite state-space S= {1,2, . . . ,d}:

1 2

λ1

λ2

A =

−λ1 λ1

λ2 −λ2


︸ ︷︷ ︸

rate matrix

H =

h(1)

h(2)


︸ ︷︷ ︸

obs. matrix

Model properties for filter stability:

1 Markov process is ergodic iff λ12 +λ21 > 0. (spectral condition).

2 HMM is observable iff h(1) 6= h(2). (either of this properties is sufficient for filter stability.)

3 HMM is NOT detectable iff (both) λ12 +λ21 = 0 and h(1) = h(2). (necessary and sufficient).

1. Ergodic signal case: (filter ‘inherits’ the ergodic property)

Kunita (1971, 1991); Ocone and Pardoux (1996); Deylon and Zetouni (1991); Atar and

Zeitouni (1997); Budhiraja (2003); Baxendale, Chigansky and Lipster (2004).

2. Non-ergodic signal case: (where observability becomes important)

Clark, Ocone and Coumarbatch (1999); Baxendale, Chigansky and Lipster (2004); Stannat

(2005); Chigansky (2006); Chigansky and Lipster (2006); van Handel (2009, 2010);

Chigansky, Lipster and van Handel (2009); Liu and Bitmead (2011); Yuksel (2022).

Duality 2. P.G.Mehta 11 / 29 P.G.Mehta



Outline of the talk
Filter stability

Part 1: Backward map (This is the important contribution)

1 What is variance decay for nonlinear filter?

2 How is it related to filter stability?

Part 2: Model properties

1 How to define observability for HMM? 1 slide.

2 How to define Poincare constant for HMM? 1 slide.

3 What is the relationship between these? 1 slide.

Part 3: (combines parts 1 and 2.) 2 slides.

1 Main results on filter stability.

Papers related to Part 1:

1 Kim and M. Variance decay property for filter stability, TAC (To appear).

2 Joshi, Kim, and M. Backward map for filter stability, IEEE CDC (2024).
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Math preliminaries
Definitions

Definitions for filter stability:

(L2 stability) Eµ (|πµ

T (f )−π
ν
T (f )|2)→ 0, as T→ ∞, f ∈ Cb(S)

(likelihood ratio) γT (x) =
dπ

µ

T
dπν

T
(x), x ∈ S (well-defined for µ � ν)

(The problem of filter stability is to show that the ratio γT → 1 as T→ ∞ (in a suitable sense).)

(χ2−divergence) χ
2(π

µ

T |πν
T ) = π

ν
T (|γT −1|2) (is a divergence metric)

(filter stability definition) Eµ (χ2(π
µ

T |πν
T ))→ 0, as T→ ∞ µ � ν

Follows from elementary inequalities [Prop. 1 in Kim and M. (TAC, To appear)]

If the filter is stable in the sense of χ
2-divergence then it is stable in L2, and also in KL divergence

and in total variation.
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Backward map and variance decay

Definition of backward map:

(backward map) y0(x) := Eν (γT (XT )|X0 = x), x ∈ S (this is the key definition)

(why is it useful?) |Eµ
(
χ

2(π
µ

T | πν
T )
)
|2 ≤ varν (y0(X0)) χ

2(µ|ν) (this is the key estimate)

Definition of variance decay property:

(variance decay prop.) varν
(
y0(X0)

) (T→∞)−→ 0

Q. What is the appropriate notion of variance decay for a nonlinear filter?

And how is it related to filter stability?

Answer. [Prop. 2 in Kim and M. (TAC, To appear)]

Consider the backward map γT 7→ y0. Suppose χ
2(µ|ν)< ∞ and the variance decay property holds.

Then the filter is stable in the sense of χ
2-divergence.
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Filter stability
Can we also get rates?

y0 γT

t

t = 0 t = T

(definition) y0(X0)−1 = Eν (γT (XT )−1|X0)

(Jensen’s inequality) Eν (|y0(X0)−1|2)≤ Eν (|γT (XT )−1|2) (backward map is non-expansive)

(I am feeling lucky!) Eν (|y0(X0)−1|2)≤ Eν (e−cT |γT (XT )−1|2) (trivially holds with c = 0)

Filter stability

Suppose µ � ν. Then

(filter stability) Eµ
(
χ

2(π
µ

T | πν
T )
)
≤ 1

a
e−cT

χ
2(µ | ν)

where a = essinf
x∈S

γ0(x).
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Embedding the backward map
BSDE (this is the only part that requires white noise observations)

t

t = 0 t = T

(backward map) y0(x) = Eν (γT (XT )|X0 = x), x ∈ S

(BSDE) − dYt(x) =
(
(AYt)(x)+hT(x)(Vt(x)

)
dt−VT

t (x)dZt, x ∈ S, 0≤ t ≤ T

YT (x) = γT (x), x ∈ S

Q. What is the appropriate generalization of the dissipation equation for the nonlinear filter?

Answer. [Prop. 2 in Joshi, Kim, M. [CDC 2024]]

Consider the BSDE. Then at time t = 0,

Y0(x) = y0(x), x ∈ S

and

(dissipation equation)
d
dt

varν (Yt(Xt)) = Eν
(
π

ν
t (ΓYt)+π

ν
t (|Vt|2)

)
, 0≤ t ≤ T

where varν (Yt(Xt)) := Eν (|Yt(Xt)−1|2).
Duality 2. Part 1. P.G.Mehta 16 / 29 P.G.Mehta



Embedding the backward map
BSDE (this is the only part that requires white noise observations)

t

t = 0 t = T

(backward map) y0(x) = Eν (γT (XT )|X0 = x), x ∈ S

(BSDE) − dYt(x) =
(
(AYt)(x)+hT(x)(Vt(x)

)
dt−VT

t (x)dZt, x ∈ S, 0≤ t ≤ T

YT (x) = γT (x), x ∈ S

Q. What is the appropriate generalization of the dissipation equation for the nonlinear filter?

Answer. [Prop. 2 in Joshi, Kim, M. [CDC 2024]]

Consider the BSDE. Then at time t = 0,

Y0(x) = y0(x), x ∈ S

and

(dissipation equation)
d
dt

varν (Yt(Xt)) = Eν
(
π

ν
t (ΓYt)+π

ν
t (|Vt|2)

)
, 0≤ t ≤ T

where varν (Yt(Xt)) := Eν (|Yt(Xt)−1|2).
Duality 2. Part 1. P.G.Mehta 16 / 29 P.G.Mehta



Embedding the backward map
BSDE (this is the only part that requires white noise observations)

t

t = 0 t = T

(backward map) y0(x) = Eν (γT (XT )|X0 = x), x ∈ S

(BSDE) − dYt(x) =
(
(AYt)(x)+hT(x)(Vt(x)

)
dt−VT

t (x)dZt, x ∈ S, 0≤ t ≤ T

YT (x) = γT (x), x ∈ S

Q. What is the appropriate generalization of the dissipation equation for the nonlinear filter?
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varν (Yt(Xt)) = Eν
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π

ν
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ν
t (|Vt|2)
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where varν (Yt(Xt)) := Eν (|Yt(Xt)−1|2).
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Rate bounds

Rate bounds for finite state HMM (A is the rate matrix and µ̄ is the invariant measure):

# Bound Literature Our work

(1) min
i 6=j

√
A(i, j)A(j, i) [Atar and Zetouni (1997)] Ex. 4 [CDC ’21]

(2) ∑
i∈S

µ̄(i)min
j6=i

A(i, j) [Baxendale et. al. (2004)] Ex. 2 [CDC ’21]

(3) ∑
j

min
i 6=j

A(i, j) [Moulines 2006] Ex. 3 [CDC ’21]
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Outline of the talk
Filter stability

Part 1: Backward map

1 What is variance decay for nonlinear filter?

2 How is it related to filter stability?

Part 2: Model properties for filter stability (white noise observations)

1 How to define observability for HMM?

2 How to define Poincare constant for HMM?

Part 3: Combines parts 1 and 2

1 Main results on filter stability.

Papers related to Part 1:

1 Kim and M. Duality for nonlinear filtering: I. Observability., TAC (2024).

2 Kim and M. Duality for nonlinear filtering: II. Optimal Control., TAC (2024).

3 Kim and M. Variance decay property for filter stability. TAC (To appear).
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Math problem
Filter stability and key questions

Hidden Markov model (HMM):

(hidden state process) X = {Xt : t ≥ 0}= Markov(A,µ) on state-space S

(observation) Zt =
∫ t

0
h(Xs)ds+Wt (additive white noise observations)

Nonlinear filter:

(cond. expect.) πT (f ) := E(f (XT )|ZT ), where f ∈ Cb(S) and ZT = σ(Zt : 0≤ t ≤ T)

(nonlinear filter) dπt(f ) = πt(Af )dt+
(
πt(hf )−πt(h)πt(f )

)
(dZt−πt(h)dt), π0 = µ

(superscript notation) π
µ

T (f ) (resp., π
ν
T (f )) with prior µ (resp., ν)

(filter stability) E(|πµ

T (f )−π
ν
T (f )|2)→ 0, as T→ ∞ (asymptotic forgetting of prior)

Questions:

1 Q1. Model properties (e.g., detectability) that are necessary and sufficient for filter stability.

2 Q2. Bounds on (exponential) rate of convergence.

J. Xiong. An Introduction to Stochastic Filtering Theory. Oxford Press (2008).
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Dual optimal control problem
Answer to Q1. Model properties for filter stability

Dual optimal control problem for HMM (A,h) [Kim and M. (TAC 2004)]

minimize
U∈L2

Z ([0,T];Rm)
J(U) = Eρ

(
varρ (Y0(X0))+

∫
τ

0
`(Yt,Vt,Ut;Xt)dt

)
subj. to −dYt =

(
(AYt)(x)+h(x)(Ut +Vt(x))

)
dt−Vt(x)dZt, x ∈ S, 0≤ t ≤ τ

Yτ (x) = F(x), x ∈ S

The cost function is: `(y,v,u;x) = (Γy)(x)︸ ︷︷ ︸
carre du champ

+ |u+ v(x)|2R.

HMM on S= {1,2, . . . ,d}:

(dual control system) −dYt =
(
(AYt)(x)+h(x)(Ut +Vt(x))

)
dt−Vt(x)dZt, YT = c1

(solution operator) L : U 7→ Y0 ∈ Rd

(controllability defn.) Cτ := Range(L) = Rd

Duality 2. Part 2. P.G.Mehta 20 / 29 P.G.Mehta



Dual optimal control problem
Answer to Q2. Poincare constant for the filter

ρ

cρ

P(S)⊂ Rd

0
R+

Definition of Poincare constant:

(optimal control system) − dYt(x) =
(
(AYt)(x)+hT(x)(Uopt

t +Vt(x))
)

dt−VT
t (x)dZt, x ∈ S, 0≤ t ≤ τ

Uopt
t =−Vρ

t (h,Yt)−π
ρ

t (Vt), 0≤ t ≤ τ (linear feedback control law)

Yτ (x) = F(x), x ∈ S

(energy) Eρ (F) := Eρ

(∫
τ

0
`(Yt,Vt,U

opt
t ;Xt)dt

)
(optimality equation) varρ (Y0(X0))+Eρ (F) = Eρ (Vρ

τ (F)) (value function)

(Poincare constant) cρ :=
1
τ

log(1+β
ρ ), where β

ρ = inf
{
Eρ (F) : F ∈Hρ

τ & varρ (Y0(X0)) = 1
}

(incremental decay) varρ (Y0(X0))≤ e−τcρ

Eρ
(
Vρ

τ (F)
)
, ∀F ∈Hρ

τ
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Dual optimal control problem
Answer to Q2. Poincare constant for the filter

ρ
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0
R+

For S= {1,2, . . . ,d}, we show that
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τ ).
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Dual optimal control problem
In finite state-space settings, all of this is easily computed

Prop 1 in [Kim, M. (TAC 2004)]

The controllable subspace Cτ is the smallest such subspace C ⊂ Rd that satisfies two properties:

(i) The constant function 1 ∈ C; and

(ii) If g ∈ C then Ag ∈ C and gh ∈ C.

Definition (of HMM model properties (from duality))

1 HMM (A,h) is observable if C = Rd.

2 HMM (A,h) is detectable if C ⊂ S0 := {f ∈ Rd | Γf (x) = 0 ∀ x ∈ S}.

Relationship to positivity of cρ [Prop. 6 in [Kim and M., TAC 2025]

Suppose S= {1,2, . . . ,d} and any of the following conditions holds:

(i) A is ergodic.

(ii) (A,h) is observable.

(iii) (A,h) is detectable.

Then cρ > 0.
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Outline of the talk
Filter stability

Part 1: Backward map

1 What is variance decay for nonlinear filter?

2 How is it related to filter stability?

Part 2: Model properties for filter stability

1 How to define observability for HMM?

2 How to define Poincare constant for HMM?

Part 3: Combines parts 1 and 2

1 Main results on filter stability.
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Recap of parts 1 and 2
Backward map, BSDE, and Poincare constants

y0 γT

t

t = 0 t = T

(Jensen’s for backward map) Eν (|y0(X0)−1|2)≤ Eν (|γT (XT )−1|2)

(dissipation equation)
d
dt

varν (Yt(Xt)) = Eν
(
π

ν
t (ΓYt)+π

ν
t (|Vt|2)

)
, 0≤ t ≤ T

t

0
τ 2τ . . . Nτ

T

(cummulative) CN :=
N−1

∑
k=0

cπν
kτ

(variance decay) varν (y0(X0))≤ Eν

(
e−τCN χ

2(π
µ

T |πν
T )
)
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Filter stability
Main results

Because {CN : N = 1,2, . . .} is non-negative and monotone, define

C∞(ω) := lim
N→∞

↑ CN(ω), ω ∈Ω

Theorem (2 in Kim and M. TAC (To appear))

Suppose {Vν
T (γT ) : T ≥ 0} is Pν -u.i. and cρ : P(S)\N → R is continuous. Then

(i) Either Pν ([C∞ = ∞]) = 1, in which case the variance decay property holds and the filter is

stable in χ
2-divergence; or

(ii) Pν ([C∞ = ∞])< 1, in which case

cπν
T (ω) (T→∞)−→ 0, Pν -a.e. ω ∈ [C∞ < ∞]

Theorem (3 in Kim and M. TAC (To appear))

Suppose S= {1,2, . . . ,S}, min
x∈S

γ0(x)> 0, and (A,h) is detectable. Then the filter is stable in

χ
2-divergence.
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Conclusions

1 “establishing duality [of the optimal estimator] with the optimal regulator is a favorite

technique for establishing estimator stability” – Rawlings, Mayne, and Diehl (MPC textbook).

2 For MHE and MEE, there have been a number of important contributions: [Krener, 2003],

[Rao’s PhD Thesis (2000)], [Ch. 4 of Rawlings et. al.], [van Handel’s PhD thesis (2006)].

3 Yet these attempts are somewhat dis-connected from stochastic filtering theory – both in

terms of model properties and rate estimates for convergence.

4 Minimum variance duality appears to be better suited for this purpose.
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Math preliminaries
Some technicalities (everything in Part 1 applies to general HMMs)

Probability space: (Ω,FT ,P
µ ) where µ ∈P(S) is the true prior. HMM is (X,Z) with X0 ∼ µ.

Let ρ ∈P(S). On the common measurable space (Ω,FT ), Pρ is used to denote another prob.

measure such that the transition law of (X,Z) is identical but X0 ∼ ρ. Examples:

ρ = µ. Then π
µ

T (f ) = Eµ (f (XT )|ZT ). (The measure µ has meaning of the true prior.)

ρ = ν. Then π
ν
T (f ) = Eν (f (XT )|ZT ). (ν is the incorrect prior used to compute the filter.)

Lemma 2.1 in Clark, Ocone, Coumarbatch (1999).

Suppose µ � ν. Then

Pµ � Pν , and the change of measure is given by

dPµ

dPν
(ω) =

dµ

dν

(
X0(ω)

)
Pν -a.s. ω

For each t > 0, π
µ

t � π
ν
t , Pµ |Zt -a.s..

Clark, Ocone, and Coumarbatch. Relative entropy and error bounds for filtering of Markov processes. Mathematics of Control,

Signals and Systems. (1999).
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T (f ) = Eµ (f (XT )|ZT ). (The measure µ has meaning of the true prior.)

ρ = ν. Then π
ν
T (f ) = Eν (f (XT )|ZT ). (ν is the incorrect prior used to compute the filter.)

Lemma 2.1 in Clark, Ocone, Coumarbatch (1999).

Suppose µ � ν. Then

Pµ � Pν , and the change of measure is given by

dPµ

dPν
(ω) =

dµ

dν

(
X0(ω)

)
Pν -a.s. ω

For each t > 0, π
µ

t � π
ν
t , Pµ |Zt -a.s..

Clark, Ocone, and Coumarbatch. Relative entropy and error bounds for filtering of Markov processes. Mathematics of Control,

Signals and Systems. (1999).
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