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Duality in control and estimation

1. Solving control problem with an estimation algorithm (5 mins):

2. Solving estimation problems with control techniques (25 mins):

Papers related to Part 1:

Joshi, Taghvaei, M., Meyn. Controlled interacting particle algorithms for simulation-based reinforcement learning. SCL
2022.

Joshi, Taghvaei, M., Meyn. Dual Ensemble Kalman Filter for Stochastic Optimal Control. CDC 2024.

Joshi, Chang, Taghvaei, M., Meyn. Design of Interacting Particle Systems for Fast and Efficient Reinforcement Learning.
arxiv preprint.
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LQ Optimal Control Problem

Quick review

Linear quadratic (LQ) optimal control problem:

T
min JT(u):/O (S1exP+ Sluf3 ) dr+ Sxrl?,

Subj. to i =Ax,+Bu; =: f(x;,u;)

LQR problem: represents the [T = =] where additional conditions are necessary to relate the
asymptotic solution of the DRE to the p.d. solution of the ARE.

Policy optimization algorithms: Starting with a stability control gain K°, obtain
KOs K s K2 s K s KN

by designing a suitable gradient-descent algorithm to reduce the value Jr(u) with u, = Kx;.

Literature: [Fazel, 2018], [Mohammadi, 2022] [Zhang, 2021] [Cui, 2023], [Krauth, 2019],
Abbasi-Yadkori, 2019] and others. At the j-th step, simulations are used to evaluate the gradient
of the value function

X' =AX! + BKX!, i=1,2,...,N
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Dual EnKF (the details)

Filtering (data assimilation) algorithm to solve the LQ problem

dual EnKF [recall running cost = |cx|> + |u|%; terminal cost = x"Pyx]:

dY! = AYidr+Bdn, + . i=12,....,N

i-th copy of model

i % A0,P7Y), 1<i<N
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n!is a W.P. with cov. R™! (so cheap control directions are explored more).
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Filtering (data assimilation) algorithm to solve the LQ problem

dual EnKF [recall running cost = |cx|? + |u|%; terminal cost = x"Prx]:

. )
. . Yi
dv! = AYidr+Bdn, +KV (CIZC’> &, i=1,2,...,N

i-th copy of model
coupling process

i % A0,P5Y), 1<i<N

SDE is run backward in time (starting from time t=T to t =0).

n!is a W.P. with cov. R™! (so cheap control directions are explored more).
Mean-field terms:

2 1 i
W= ﬁZCY{ is the empirical mean.
J

] . .
- Kx(N) o NZY{(CY{)T is the gain.
J
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Dual EnKF (the details)

Filtering (data assimilation) algorithm to solve the LQ problem

dual EnKF [recall running cost = |cx|? + |u|%; terminal cost = x"Prx]:

. )
. . Yi
dv! = AYidr+Bdn, +KV (C’ZC’> dr,  i=12,...,N

i-th copy of model
coupling process

i % A0,P5Y), 1<i<N

SDE is run backward in time (starting from time t=T to t =0).
n!is a W.P. with cov. R™! (so cheap control directions are explored more).
Mean-field terms:

2 1 i
- CI(N) = N;CY{ is the empirical mean.
] . .
- Kx(N) o N;Y{(C‘Y{)T is the gain.

Connection to LQ:

@ The empirical covariance of the ensemble SV ~ P;"!. (duality: —logp is the value function of

an optimal control problem).
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Error analysis
Performance of dual EnKF

Error bound [Joshi, Taghvaei, M., Meyn, S&CL (2022)]

Under some technical conditions (controllability of (A,B) and a condition stronger than
observability of (A,C) and Py invertible)

N) - C _oA(T— _
Ells;" =Py lr) < %+ Coe VBT — Py ),

where Sﬁv is the empirical covariance of the ensemble {Y,’ :1<i< N} and P; is the solution of the
DRE at time ¢ (A is inherited from the theory of DRE).
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Figure: Performance on a 2 dimensional system (N = 100 particles).
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Error analysis
Performance of dual EnKF

/

Figure: Performance on a 10 dimensional system (N = 1000 particles).
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Numerical experiments (benchmark)
Comparison with policy optimization algorithms.

—e— EuKF  —— [M21] —— [FI§]

10° A\._\‘ N\‘
?103 ’\‘\. 10% \_\
=z
=
S
é 10! Error in gain 10! Error in cost
005 010 015 00000 00025 00050  0.0075
Algorithm particles/samples | simulation time iterations
EnKF 0(1/€%) O(log(1/¢)) 1
Fazel [F18] poly (1/¢) poly(1/¢) O(log(1/¢))
Jovanovic [M21] o(1) O(log(1/¢)) O(log(1/¢))

Table: Computational complexity comparison of the algorithms to achieve

€ error in approximating the infinite-horizon LQR optimal gain.
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Numerical Experiments for a nonlinear example
Inverted Pendulum on Cart
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Figure: Nonlinear EnKF on Inverted Pendulum on Cart
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Duality in control and estimation

Guiding philosophy (of this talk)

Faced with a control problem, do estimation

Faced with an estimation problem, do control

2. Solving estimation problems with control techniques:
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Background
Dissipation in the study of stability of M.P.

Markov process (M.P.): Suppose X = {X;:1>0} is a M.P.
taking values in state-space S (e.g., S={1,2,...,d} or S=R?);

with a given invariant measure fi.

D. Bakry, I. Gentil, and M. Ledoux. Analysis and geometry of Markov diffusion operators (2013).
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Background
Dissipation in the study of stability of M.P.

Markov process (M.P.): Suppose X = {X;:1>0} is a M.P.
taking values in state-space S (e.g., S={1,2,...,d} or S=R?);

with a given invariant measure [i.
Stochastic stability (definition):

(stochastic stability) E(f(X7)|Xo =x) = (f), asT — e (in L*(f1) or some suitable sense)

Dissipation (or variance decay) in the study of M.P.:

(Markov operator) (Prf)(x) :=E(f(X7)|Xo=x), x€S (linear deterministic oper
(variance)  VR(f) = vark (f(Xr)) = R(2) — A(f)?
(candidate Lyapunov function) %V‘_‘(Plf) =—p(C(Pf)) <0 (Tis the carre du champ operator)

(Poincare inequality (Pl)) RI()) > cVE(f) = VE(Prf) <e TVR(f) (stability)

Aim of this talk: Generalize this (Pl =—> variance decay —> stability) story to nonlinear filter.
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Math problem
Filter stability and key questions

Hidden Markov model (HMM):

(hidden state process) X ={X;:1> 0} = Markov(A, i) on state-space S

t
(observation) Z :/ h(Xs)ds+W; (additive white noise observations)
0

Nonlinear filter:

J. Xiong. An Introduction to Stochastic Filtering Theory. Oxford Press (2008).
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Math problem
Filter stability and key questions

Hidden Markov model (HMM):

(hidden state process) X ={X;:1> 0} = Markov(A, i) on state-space S

(observation) Zi= /Oth(Xx)derW, (additive white noise observations)
Nonlinear filter:
(cond. expect.) r(f) == E(f(Xr)|Zr), wheref e Cy(S)and Zr=06(Z:0<t<T)
(nonlinear filter) dm, (f) = m (Af) dt + (7 (hf) — m (D) m(F)) (dZ; — () de), w9 = p
(superscript notation) T (f) (resp., m}(f)) with prior u (resp., V)
(filter stability) E(|7} (f) — mf(f)]*) = 0, asT — o (asymptotic forgetting of prior)

Questions:

Q1. Model properties (e.g., detectability) that are necessary and sufficient for filter stability.

Q2. Bounds on (exponential) rate of convergence.

J. Xiong. An Introduction to Stochastic Filtering Theory. Oxford Press (2008).
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Example and Literature survey
HMM and filter stability

HMM (A4,H) on a finite state-space S={1,2,...,d}:

M M A
A=
—_———
AQ rate matrix

Model properties for filter stability:
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Example and Literature survey
HMM and filter stability

HMM (A4,H) on a finite state-space S={1,2,...,d}:

M M A h(1)
A= H=
—_—— ——
A{z rate matrix obs. matrix
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Example and Literature survey
HMM and filter stability

HMM (A4,H) on a finite state-space S={1,2,...,d}:

M A A(1)
A= H=
@ A'Z _2'2 h(2)
—_—— ——
A{z rate matrix obs. matrix
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Example and Literature survey
HMM and filter stability

HMM (A4,H) on a finite state-space S={1,2,...,d}:

M A A(1)
A= H=
—_—— ——
A{z rate matrix obs. matrix

Model properties for filter stability:
Markov process is ergodic iff Adj2 + 2421 > 0. (spectral condition).
HMM is observable iff (1) # h(2). (either of this properties is sufficient for filter stability.)
HMM is NOT detectable iff (both) 412+ 421 =0 and A(1) = 1(2). (necessary and sufficient).

1. Ergodic signal case: (filter ‘inherits’ the ergodic property)
= Kunita (1971, 1991); Ocone and Pardoux (1996); Deylon and Zetouni (1991); Atar and
Zeitouni (1997); Budhiraja (2003); Baxendale, Chigansky and Lipster (2004).

2. Non-ergodic signal case: (where observability becomes important)
m Clark, Ocone and Coumarbatch (1999); Baxendale, Chigansky and Lipster (2004); Stannat
(2005); Chigansky (2006); Chigansky and Lipster (2006); van Handel (2009, 2010);
Chigansky, Lipster and van Handel (2009); Liu and Bitmead (2011); Yuksel (2022).
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Outline of the talk
Filter stability

Part 1: Backward map (This is the important contribution)
What is variance decay for nonlinear filter?

How is it related to filter stability?

Part 2: Model properties
How to define observability for HMM? 1 slide.
How to define Poincare constant for HMM? 1 slide.

What is the relationship between these? 1 slide.

Part 3: (combines parts 1 and 2.) 2 slides.

Main results on filter stability.

Papers related to Part 1:

Kim and M. Variance decay property for filter stability, TAC (To appear).
Joshi, Kim, and M. Backward map for filter stability, IEEE CDC (2024).

Duality 2.

P.G.Mehta
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Math preliminaries
Definitions

Definitions for filter stability:

(L*stability)  EX(|nh (f) — =} (f)]*) = 0, asT — oo, f € Cp(S)
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Math preliminaries
Definitions
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Math preliminaries
Definitions

Definitions for filter stability:

(L*stability)  EX(|nh (f) — =} (f)]*) = 0, asT — oo, f € Cp(S)

_ dnk
T dmy

(likelihood ratio) ¥r(x) (x), xeS (well-defined for u < v)

(The problem of filter stability is to show that the ratio ¥ — 1 as T — o (in a suitable sense).)

(x? — divergence) 212wk |nf) = (lyr —1)%) (is a divergence metric)

(filter stability definition) EX (Y2 (mh|m¥) =0, asT — o0 p<Vv

Follows from elementary inequalities [Prop. 1 in Kim and M. (TAC, To appear)]

If the filter is stable in the sense of xz—divergence then it is stable in L?, and also in KL divergence
and in total variation.
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Backward map and variance decay

Definition of backward map:
(backward map) yo(x) :=EY(r(Xr)|Xo =x), x€S (this is the key definition)

(why is it useful?) [E* (x (x| o)) [* < var” (yo(Xo)) 22 (1|v) (this is the key estimate)
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Backward map and variance decay

Definition of backward map:
(backward map) yo(x) :=EY(r(Xr)|Xo =x), x€S (this is the key definition)

(why is it useful?) [E# (x* (e | 717}'))|2 <var’(yo(Xo)) x*(u|v) (this is the key estimate)

Definition of variance decay property:

(T=2)

T—oo
(variance decay prop.) var” (yo(Xo)) 0

Q. What is the appropriate notion of variance decay for a nonlinear filter?
And how is it related to filter stability?
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Backward map and variance decay

Definition of backward map:
(backward map) yo(x) :=EY(r(Xr)|Xo =x), x€S (this is the key definition)

(why is it useful?) [E* (x (x| o)) [* < var” (yo(Xo)) 22 (1|v) (this is the key estimate)

Definition of variance decay property:

(7o)

(variance decay prop.) var” (yo(Xp)) — 0

Q. What is the appropriate notion of variance decay for a nonlinear filter?
And how is it related to filter stability?

Answer. [Prop. 2 in Kim and M. (TAC, To appear)]

Consider the backward map yr — yp. Suppose 752([.1|v) < oo and the variance decay property holds.
Then the filter is stable in the sense of y*-divergence.
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Filter stability

Can we also get rates?

t=0 t=T
(definition) Yo(Xo) — 1 = EY (vr(Xr) — 1|Xo)

(Jensen’s inequality) EY (lyo(Xo) — 11*) < EY(|yr(X7) — 1%) (backward map is non-expansive)
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Filter stability

Can we also get rates?

Y.

t=0 t=T
(definition) Yo(Xo) — 1 = EY (vr(Xr) — 1|Xo)

(Jensen’s inequality) EY (lyo(Xo) — 11*) < EY(|yr(X7) — 1%) (backward map is non-expansive)

(I am feeling lucky!) EY(lyo(Xo) — 11%) <EY(e T |yr(Xr) —1?) (trivially holds with ¢ = 0)

Filter stability
Suppose i < v. Then

—

(filter stability) — E*(x2(mh | #})) < —e T x*(u|v)

IS)

where a = essinfp(x).
xeS
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Embedding the backward map
BSDE (this is the only part that requires white noise observations)

(backward map) Yo(x) =E"(rr(Xr)|[Xo =x), x€8
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Embedding the backward map

BSDE (this is the only part that requires white noise observations)

Y.

t=0 t=T
(backward map) Yo(x) =E"(yr(Xr)[Xo=x), x€S
(BSDE) — dY,(x) = ((AY)(x) + A" (x) (Vi(x)) dt = V[ (x)dZ;, x€S, 0<t<T

Yr(x)=v(x), x€S

Q. What is the appropriate generalization of the dissipation equation for the nonlinear filter?

Answer. [Prop. 2 in Joshi, Kim, M. [CDC 2024]]

Consider the BSDE. Then at time =0,

Yo(x) =yo(x), x€S

and
d
(dissipation equation) Evarv(Y,(X,)) =E'(x/(CY)+m'(|Vi[}), 0<¢<T

where var” (Y;(X,)) == E¥(|Y,(X;) — 1]?).
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Rate bounds

Rate bounds for finite state HMM (A is the rate matrix and [ is the invariant measure):

# Bound Literature Our work

) m;n\/A(i,j)A(j,i) [Atar and Zetouni (1997)] Ex. 4 [CDC "21]
I#]

2) Z,a(i) n;éinA(i,j) [Baxendale et. al. (2004)] Ex. 2 [CDC '21]
ieS Ll

(3) Zn_;inA(i,j) [Moulines 2006] Ex. 3 [CDC '21]
7%
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Outline of the talk
Filter stability

Part 1: Backward map

Part 2: Model properties for filter stability (white noise observations)
How to define observability for HMM?

How to define Poincare constant for HMM?

Part 3: Combines parts 1 and 2

Papers related to Part 1:

Kim and M. Duality for nonlinear filtering: I. Observability., TAC (2024).
Kim and M. Duality for nonlinear filtering: Il. Optimal Control., TAC (2024).

Kim and M. Variance decay property for filter stability. TAC (To appear).
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Math problem
Filter stability and key questions

Questions:
Q1. Model properties (e.g., detectability) that are necessary and sufficient for filter stability.

Q2. Bounds on (exponential) rate of convergence.

J. Xiong. An Introduction to Stochastic Filtering Theory. Oxford Press (2008).

P.G.Mehta



Dual optimal control problem
Answer to Q1. Model properties for filter stability

Dual optimal control problem for HMM (A, k) [Kim and M. (TAC 2004)]

T
minimize J(U)=FP (varp(Yo(Xo)) +/ 0Y:, Vi, U Xy) dt)
UeL% ([0,T]:R™) 0

subj. to —dY; = ((AY) (x) +h(x) (U + Vi (x))) dt = Vi(x)dZ;, x€S, 0<t<7
Yi(x) =F(x), x€S

The cost function is: £(y,v,u;x) = ([y)(x) + |utv(x)[2.
——

carre du champ

HMM on S={1,2,...,d}:

(dual control system) —dY; = ((AY)(x) +h(x)(Us + Vi(x))) dt — Vi(x)dZ;, Yr=cl
(solution operator) L: U~ Yy € RY

(controllability defn.) C;:= Range(£) =R?

Duality 2. Part 2. P.G.Mehta
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Dual optimal control problem
Answer to Q2. Poincare constant for the filter

RT

Definition of Poincare constant:
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UP = VP (h,Y))— P (Vi), 0<1<71 (linear feedback control law)
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T
(enery) 2= ([ e v Ui ar)
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(optimality equation) var? (Yo(Xp)) +EP(F) = EP (VP (F)) (value function)
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Dual optimal control problem
Answer to Q2. Poincare constant for the filter

R+

P(S) cR¢

Definition of Poincare constant:

(optimal control system)  — d¥;(x) = ((AY)(x) + A" (x)(Uf™ + V;(x))) dt — V] (x)dZ;, x€S,0<1< 7t
UP = VP (h,Y))— P (Vi), 0<1<71 (linear feedback control law)

Yi(x) =F(x), x€S

(energy) EP(F) :=FP (/OTK(Y,,V,7 Ufpt;X,)dt)
(optimality equation) var? (Yo(Xp)) +EP(F) = EP (VP (F)) (value function)
(Poincare constant) = %log(l +BP), where BP =inf{EP(F): F € H? & var® (Yo(Xo)) =1
(incremental decay) var? (Yo(Xo)) < e *"EP (VE(F)), VFecHR

Duality 2. Part 2. P.G.Mehta 21/29



Dual optimal control problem
Answer to Q2. Poincare constant for the filter

For S={1,2,...,d}, we show that

—_—_— cP is attained as a minimum (i.e., a

minimizer FP exists in H?).
P(S) cR? b . )
p — cP is continuous w.r.t the separating

norm topology on P(S)\ .

Definition of Poincare constant:

(optimal control system) — — d¥;(x) = ((AY)(x) + A" (x)(Uf™ + V;(x))) dt — V] (x)dZ,, x€S,0<1< 7t
UP = VP (h,Y))— P (Vi), 0<1<71 (linear feedback control law)

Yi(x) =F(x), x€S

(energy) EP(F):=FEP (/OTK(Y,,V,7 Ufpt;X,)dt)
(optimality equation) var? (Yo(Xp)) +EP(F) = EP (V2 (F)) (value function)
(Poincare constant) = %log(l +BP), where BP =inf{EP(F): F € H? & var® (Yo(Xo)) =1
(incremental decay) var? (Yo(Xo)) < e *"EP (VE(F)), VFecHR
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Dual optimal control problem
In finite state-space settings, all of this is easily computed

Prop 1 in [Kim, M. (TAC 2004)]

The controllable subspace C; is the smallest such subspace C C R that satisfies two properties:
(i) The constant function 1 € C; and

(i) If g€ C then AgeC and gheC.

Definition (of HMM model properties (from duality))
HMM (A, h) is observable if C = RY,
HMM (A, h) is detectable if C C Sy :={f € R? | [f(x) =0V xS}

Relationship to positivity of ¢” [Prop. 6 in [Kim and M., TAC 2025]
Suppose S ={1,2,...,d} and any of the following conditions holds:
(i) A is ergodic.
(ii) (A,h) is observable.
(iii) (\A,h) is detectable.
Then ¢ > 0.
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Outline of the talk
Filter stability

Part 1: Backward map

Part 2: Model properties for filter stability

Part 3: Combines parts 1 and 2

Main results on filter stability.
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Recap of parts 1 and 2

Backward map, BSDE, and Poincare constants

Y.

(Jensen’s for backward map) EY (Iyo(Xo) —11%) < EV(|yr(X7) — 1%)

d
(dissipation equation) avarV(Y,(X,)) =E"(n’(T'Y,) +7rt"(|V,|2)), 0<t<T
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Recap of parts 1 and 2

Backward map, BSDE, and Poincare constants

Y.

(Jensen’s for backward map) EY (Iyo(Xo) —11%) < EV(|yr(X7) — 1%)

d
(dissipation equation) EvarV(Y,(X,)) =E"(n’(T'Y,) +7rt"(|V,|2)), 0<t<T

727 Nt
0

N-1
(cummulative) Cyvi=Y e
k=0

Y

(variance decay) var' (yo(Xo)) < EY (e’TCNxz(n’ler}'))
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Filter stability

Main results

Because {Cy : N =1,2,...} is non-negative and monotone, define

Coo (@) := Al}lg:oT Cy(w), e

Theorem (2 in Kim and M. TAC (To appear))
Suppose {Vy(yr) : T >0} is PV-u.i. and ¢? : P(S)\N — R is continuous. Then

(i) Either P¥([Coo = 0]) =1, in which case the variance decay property holds and the filter is
stable in x*-divergence; or

(i) PY([Cw =9]) <1, in which case

@ T2 0 PY_ae 0c[Co <o

Theorem (3 in Kim and M. TAC (To appear))

Suppose S ={1,2,...,S}, mjélyo(x) >0, and (A,h) is detectable. Then the filter is stable in
x€
x>-divergence.
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Conclusions

“establishing duality [of the optimal estimator] with the optimal regulator is a favorite
technique for establishing estimator stability’ — Rawlings, Mayne, and Diehl (MPC textbook).

For MHE and MEE, there have been a number of important contributions: [Krener, 2003],
[Rao’s PhD Thesis (2000)], [Ch. 4 of Rawlings et. al.], [van Handel's PhD thesis (2006)].

Yet these attempts are somewhat dis-connected from stochastic filtering theory — both in

terms of model properties and rate estimates for convergence.

@ Minimum variance duality appears to be better suited for this purpose.
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Math preliminaries
Some technicalities (everything in Part 1 applies to general HMMs)

Probability space: (Q,Fr,P*) where u € P(S) is the true prior. HMM is (X,Z) with Xo ~ u.

Clark, Ocone, and Coumarbatch. Relative entropy and error bounds for filtering of Markov processes. Mathematics of Control,
Signals and Systems. (1999).
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Math preliminaries
Some technicalities (everything in Part 1 applies to general HMMs)

Probability space: (Q,Fr,P*) where u € P(S) is the true prior. HMM is (X,Z) with Xo ~ u.

Let p € P(S). On the common measurable space (Q, Fr), P is used to denote another prob.
measure such that the transition law of (X,Z) is identical but Xy ~ p. Examples:

m p=p. Then 7k (f) = E*(f(Xr)|2r). (The measure i has meaning of the true prior.)

= p=v. Then #}(f) =E"(f(X7)|2r). (v is the incorrect prior used to compute the filter.)

Lemma 2.1 in Clark, Ocone, Coumarbatch (1999).
Suppose 4 < v. Then

= P* < PV, and the change of measure is given by

Pt du
apv (@)= ay

(Xo(®)) PY-as. @

m For each 1> 0, ' < 1)/, P*|z,-ass..

Clark, Ocone, and Coumarbatch. Relative entropy and error bounds for filtering of Markov processes. Mathematics of Control,
Signals and Systems. (1999).
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