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FY2024: we delve into the defects in Al Ga, N
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Exploring Al/GaN Defects with Molecular Dynamics
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TEM image showing Al dependent defect
formation by 950 MeV Au ion irradiation
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HEMT GaN device under irradiation

To reflect the space radiation environment, two radiation conditions
are considered:

« Swift heavy ion (SHI) irradiation: single events effects

* MeV level ion irradiation: accumulated damage effects
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SHI induced single event in devices

 HEMT: Single event transient current due to the punch-through effect by local increase of
electrostatic potential.

* SHJEFET: Improved E-field management and a more favorable potential profile to suppress
transient current peak.
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Structural changes due to SHI

« 950 MeV Au ions in GaN (44.5keV/nm, LET: 72.36MeV-cm?/mg) induce
cavities along the track.

* Minimal amorphization even at very high fluences (8x1012 /cm?2).
Molecular dynamics simulations Transmission electron microscopy
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irradiation." Applied Physics Letters 124.11 (2024).



Al-content dependent cavity formation

 MD simulations predict experiment-consistent trends (Dr. Wang’s talk).

10%Al 25%Al 50%Al 75%Al

With increasing Al concentration, less likely to form cavities.



First-principles understanding of lattice instability

 Varying the electron temperature: phonon dispersion in GaN
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Effect of electron temperature

* Al-content dependent dynamics: increasing Al content enhances lattice stability.

* N sublattice appears to break first.
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MeV-level ion radiation response

* Primary radiation damage simulations of energetic recoils.

* Residual defects from 10 KeV Ga at 300K: Similar in defect production along
different crystalline directions; Strong dependence on Al-content.

Higher Al, faster peak
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Vacancy

defects & clusters

* Majority of the defects are nitrogen vacancies
* Notable vacancy clusters: N-N, Ga-N.
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Interstitial defects & clusters

 More than half are N interstitials (octahedral site with formation

energy of 4.14eV in N-rich condition)
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Extended radiation response

* GaN highest defect accumulation rate
* AIN highest damage at high dose
* Optimal Al fraction exists
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Radiation-induced strain

* Highly consistent with experimental measurements.

 MD simulations nicely capture the radiation phenomena before phase
transition. Difference in responses is attributed to extended defects formation.
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Enhancement with Al

* Defect energetics based on machine learning interatomic potentials.

* Working on publication for potential assessment.

Defect Formation Energy (eV)

Zhu et al.
2body 3body

Veanin GaN 6.42 4.92 6.66
Gagpin GaN 10.09 8.36 10.07

Ngp in GaN 7.31 8.59 7.32

Al in AIN 10.44 16.79 9.74 10.47
Nep in AIN 9.25 9.35 9.73 10.52
V. in AIN 6.06 7.25 763 | 816

Wu et al. (2024). Deep-potential enabled multiscale simulation of gallium nitride devices on boron arsenide cooling substrates. Nature Communications, 15(1), 2540.
Li et al. (2024). Deep learning interatomic potential for thermal and defect behaviour of aluminum nitride with quantum accuracy. Computational Materials Science, 232, 112656.

Huang et al. (2023). First-principles based deep neural network force field for molecular dynamics simulation of N-Ga-Al semiconductors. Physical Chemistry Chemical Physics, 25(3), 2349-2358.

Lei et al. (2023). Comparative studies of interatomic potentials for modeling point defects in wurtzite GaN. AIP Advances, 13(1).
Zhu et al. (2023). Computational study of native defects and defect migration in wurtzite AIN: an atomistic approach. Journal of Materials Chemistry A, 11(28), 15482-15498.




Next:
Theory of Radiation-induced Defects in Al-Ga-N



Threshold Displacement Energy (TDE) Study
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Summary of Study
* Developed high-throughput computational TDE search tool

* The calculated GaN TDE values agree with experiment

* N FP defects recombine = undetected by Luminescence
 Effect of lattice temperature reduces TDE by ~ 1 eV
 New TDE values provided for AIN and Ga-rich AlGaN

* Al TDE in AlGaN sensitive to local environment but Ga not

Appl. Phys. Lett. 124, 152107 (2024)
https://doi.org/10.1063/5.0190371
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VASP ML Potential TDE Failure

First Training
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Second Training
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Ga Frenkel Pair in GaN

e Created model for electron transfer from Ga interstitial to Ga
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Vacancy Pair in GaN
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Defect formation energies

* First-principles formation energies show the most energetically favorable

charge states (integer slopes) for each defect as a function of Fermi level
across the band gap.
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Carrier capture

Defects can introduce trap states
into the electronic band gap which
may enhance nonradiative
recombination by several
mechanisms utilizing metastable
defect configurations.

Franck-Condon Principle.

Configuration coordinate diagrams
show potential energy curves for
interpolated/extrapolated
structures between two
equilibrium configurations,
yielding energy barriers for
transitions between the states.

Energy (eV)

[
|

Potential 1

Kim et al., 2020

Q (amu™? A)



Energy (eV)

N

=

C\ Capture Cross-Section

« Capture Cross-Section @ 600 K based on Alkauskas et al., 2014: 180 A2
* Current result on capture cross-section @ 600 K: 47.2 A2
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Vea—Vy Capture Cross-Sections

e Capture Cross-Section @ 300 K (Chichibu et al.,

2020): 700 A2
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Hole Capture: 7.28 A2
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Summary: theoretical and computational work

Poster by Farshid Reza:
Exploring Al/GaN Defects with Molecular Dynamics

+* Electronic effects
+* Radiation-induced defects
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Relevant efforts & next steps
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Upcoming key tasks:

* High-throughput evaluation of defect electronical properties
* Electric field on defect production and dynamics (ReaxFF)
* Feedback loop between device modeling & atomistic

modeling

Chu, Wang, Jayan, Lang
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Thanks for
your attention!

Mia Jin (mmjin@psu.edu)
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Research on radiation effects in semiconductors for applications in extreme environments remains an active and crucial area of study. Radiation-hardening
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diation-hard i tect relies on key breakthroughs and fundamental discoveries in semiconductor materials and device designs. This
symposium hopes to bring together prominent efforts in this field. Particular emphasis will be laid on novel experimental and modeling approaches that
approach radiation responses of (ultra)wide bandgap materials and devices.

Topics will include:

*  Advanced experimental, modeling, and data-driven approaches to predict the effects of ionizing radiation

*  Behavior and properties of radiation-induced defects

*  Radiation-induced single-event effects

* Radiation-induced degradation of electronic performance

* Innovative strategies for enhancing the radiation hardness of semiconductor devices

*  Novel semiconductor materials or modifications to existing materials to improve their inherent resistance to radiation-induced damage
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Effect of electron temperature

* GaN
Lattice parameter Bader Charge analysis Reduction of
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