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This Year

* Mostly overcame NZFRM sensitivity issues on Penn State GaN
devices.

 Built in situ NZFMR system for Sandia lon Beam- it works!

 Demonstrated strong NZFMR/EDMR response for proton
bombardment in SiC.

* Michael Flatte group- big advance in interpretation of NZFMR.
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This Work:

* We are developing and using a new electron spin related technique
called near zero-field magnetoresistance (NZFMR) spectroscopy,
and also using a relatively new technique, electrically detected
magnetic resonance (EDMR) to identify electrically active defects in
GaN and also SiC based devices.

* Qur focus is on particle bombardment induced defects. NZFMR and
EDMR offer ultra sensitive approaches to identify the chemical and
physical nature of electrically active defects.
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Near Zero Field Magnetoresistance
Spectroscopy

* New technique has much of the analytical power of EPR/EDMR
but requires a very simple, inexpensive apparatus which can be
directly coupled to widely utilized electronic characterization
gear.
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Background Physics EPR

Natural oscillation:> Unpaired electron

frequency
depends on what
field the compass
needle sees
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same story but
here local field
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Background Physics EPR

Deviations from the resonance
condition provide useful information
A about the nature of specific defects
Spin-Orbit Coupling: due to the
electron’s orbital angular
‘/( momentum about the nucleus
AE = hv =g fH +m;A
\‘\ Electron-Nuclear Hyperfine
Interaction: due to nearby nucleus

with magnetic moment
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Basic Physics NZFMR

* The energy of a magnetic moment (u) in a magnetic field (BO) is equal to —u-B.

« The energy of 2 magnetic moments pointing in the same direction is -2u-B.

+ The energy of 2 magnetic moments pointing in opposite directions is 0.

» The only case in which the 2 possibilities will yield the same energy is when the magnetic field
is 0

* When the states have the same energy, they can be mixed.

» This mixing of states has a similar effect to resonance in EDMR (renders forbidden event
allowed).

» We need to think about the magnetic field at the site of the spins. This is not simply the applied
field but effectively the sum of an applied and a local field.
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Stochastic Quantum Liouville
Equation (SQLE): Interpreting
NZFMR

» Most readily understood through Wagemens’

two-site model for carrier transport, as adapted
by Harmon, Flatte et. al:

» The density-matrix can be expressed as:

[ 1 1 1
0= ) [H, p] — 2 (Tap + Tae){As, P} — zrae{AT»p} + 1_6Tea

 For the steady-state condition, the four spin
states can be represented by the Hamiltonian: I
H=guz(§1+S3) B+ a,(S; 'I“)-l-aﬁ(Sz'Ip) £ £
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Earlier Penn State Devices
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We show a) an EDMR response and b) an NZFMR response on a GaN pn junction diode
fabricated by Dr. Chu’s group.
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New Penn State Devices

@ PennState

p-GaN: 200 nm, 1x10"* cm™ Mg

UID GaN Spacer: 40 nm

N-type GaN: 100 nm, 5x10"7 cm3 Si

UID GaN: 150 nm

A block diagram
schematic of the layers of
the structure under test.
There are also doping
concentrations and
thicknesses listed,.



New Penn State Devices

2.8V Big Device

250 T T T ‘ 300 - Small Devices Vs. Big Devices
200 b) s Small Device
Big Device
150 | 200 f
@ 100 .
< 2 100 f
> 50 g
g g
£ T
[} = (U
© 1
2 50 2
E Qo
L £ 100
=150 -
=200
-200
-250 : ' : . ' . 300 A , . : , . : .
F200N O 0 I I -0 1 (O 0 200 200 -150 100 50 0 50 100 150 200
Magnetic Field (Gauss) Magnetic Field (Gauss)

In a), we show an NZFMR response on a much larger device recently provided by Dr. Chu’s group. The
cross-sectional area of this device is about Tmm?2. In b), we illustrate a comparison between the measurements
inthe new larger devices and the earlier smaller device provided by Dr. Chu’s group.
The two traces were chosen to match as closely as possible spectrometer settings and device biasing
conditions.
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GaN Schottky Diode EDMR (from Suzanne Mohney)
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We show EDMR responses on a GaN Schottky diode at a) low field
(498MHz) and b) high field (9.626GHz).
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EDMR
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SiC Shottky
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Proton
bombarded
pin (from
NASA)
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Signal Amplitude (pA)
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In situ Top view: QASPR-iii ~17"

NZFMR ‘_‘_‘
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In situ
NZFMR

Early rendering
of new solenoid
spectrometer used in
CFD simulation.
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Preliminary Results from In Situ Spectrometer

IBL NZFMR Spectra Comparison
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Conclusion:
NZFMR approach works!



