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Motivation: Modeling Topological Photonic
Crystals

e Periodic dielectric material ¢ (r +a) = €,,(r)

® Maxwell Equations (source free) satisfy Bloch's Theorem

VX(VXE,) = w:D,,

D (X)) = eX)E, , (X)

® Eigenfrequencies form bands

Lu et al, Nat Phys (2016)
Joannopoulos, John D., et al. Photonic Crystals: Molding the Flow of Light - Second
Edition, Princeton University Press, 2008



Crystals

® Gapped sets of bands can have nontrivial
topology

® Need methods for computing topological
invariants in the bulk

® Need models that capture topology
without needing to solve Maxwell’s
equations for large finite systems
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Motivation: Modeling Topological Photonic




Momentum Space: Wilson Loops and
Symmetry Indicators

® General magnetoelectric material:
(D(t, r)) o (E(t, r))
B(z,r) H(z,r)
N LUREC
£7(r)  u(r)

M(k)un,k(r) — wn(k)un,k(r)a

M(k) = K~ 'Rot(k) = K~! ( 0 +(iVr - k)x)

—(iVy — k)X 0

Devescovi et al., Optical Materials Express 14, 2161-2177 (2024).



Momentum Space: Wilson Loops and
Symmetry Indicators

® Topological invariants can be computed from Berry phases
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® Eigenvalues e related to projected position eigenvalues

(mod 1),

Devescovi et al., Optical Materials Express 14, 2161-2177 (2024).



Momentum Space: Wilson Loops and
Symmetry Indicators

® Nontrivial topology appears in the winding of w (K | )
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® Bulk-boundary correspondence: Winding of wn(k | ) related to edge spectral flow

e Wnp (k_L) _ Xn (kL)
2T Ay

implies a deep connection between topology and localization

(mod 1),

Devescovi et al., Optical Materials Express 14, 2161-2177 (2024).



Momentum Space: Wilson Loops and
Symmetry Indicators

® Topological invariants are obstructions to finding exponentially localized
Wannier functions

L I X K I
® Wilson loop winding obstructs Fourier transform

® Space group symmetries let us define symmetry indicators of band topology



Momentum Space: Wilson Loops and
Symmetry Indicators

® Eigenstates transform in irreps of the little

0.3/ TN
group at each k ‘
0.30
® Collect irreps at high symmetry points into a 0.25
symmetry data vector v &
~_ 0.20
® Topological Quantum Chemistry: for each & 015
space group, we can define a matrix 2 of
symmetry indicators 0.10
0.05
® >v Z () implies nontrivial topology
0.00
kl k2




Challenges

® General:

® There exist topological invariants invisible to symmetry indicators

® Symmetry indicators don't capture that different trivial phases may still be
distinct

® Photonic specific: The lowest photonic bands are singular in 3D -> no well-
defined symmetry data vector

All have the same solution - Stable Real Space Invariants



Wannier Functions and Band
Representations

® End goal will be finite-rank modeling of photonic bands via tight-binding
models -> need to understand where symmetry data vectors come from

® Topologically trivial bands have symmetric, localized Wannier functions by
definition, determine symmetry data vectors by induction

Trivial bands = BR
Periodic lattice

Real space ——9¢
1 ¢+ © | @ |
‘ | W W ‘:> £ = — — —
- —> ¢t ¢ Trivial k-space data
unit cell o ‘ s ‘ o
W W
oo o o o r x M Y



Wannier Functions and Band
Representations

® Band representations do not change under adiabatic deformation

Momentum space

® We can characterize trivial bands in terms of the symmetry properties and
centers of the Wannier functions that induce them



Wannier Functions and Band
Representations

® Classify trivial bands by specifying location and symmetry properties of

Wannier functions (orbitals) in the unit cell
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e.g. “A, orbital” or “irrep”
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Points in the unit cell fall into orbits called Wyckoff Positions (WP)

2. WP 2g{(0,y)+(0,-y)} A

At (0,y): PGm
Same at (0,-y)

3. WP 4i{(%,y)+(-x,"y)+(-x,y)+(x,-Y)}
At each position e.g. (x,y): trivial PG
Only trivial A orbital



Wannier Functions and Band

Representations
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T
m = [m(orbl,wpl), m(Orbz’Wpl); “ee) m(orbM,WPN)]

Wannier Functions and Topology

® Trivial band Wannier functions characterized by orbital multiplicity vector

® Induction: v = Bm. B is the band representation matrix

® Overcomplete: mis not a topological invariant, can be changed by a choice of
gauge. Corresponds to “moving’ Wannier orbitals without breaking

symmetry

('Y:X) ’ (X’Y)

@
('Xr'Y) ‘

Q"

(Y:‘x)

4

@

=

(xy’)

¥

Unit cell




Wannier Functions and Topology

® Trivial band Wannier functions characterized by orbital multiplicity vector
m = [m(orbl’wpl), m(orbz,wpl), e) m(orbM,WpN)]T
® Induction: v = Bm. 5 is the band representation matrix

® Overcomplete: mis not a topological invariant, can be changed by a choice of
gauge. Corresponds to “moving’ Wannier orbitals without breaking

symmetry

(A)a + (B)a A (A)b

m[(A)a] =1, m[(B)a] =1 m[(A)a] =0, m[(B)a] =0
Caz A pair of orbitals (A)
P ALY o "
Xp 1=(X,Y) x,=(0,0) Xp 2=(-X,-Y) .‘ Hybridization + D@ +

('X:'Y)



Adiabatic Processes

For every space group, we can consider the collection of these “adiabatic
processes" into a matrix g

Columnsofg: (A).,+B.e @A), ->(1,1,—1)

Can use Smith Decomposition to derive a set of adiabatic invariants:

g=L -AR
dlag(A) — (Al,...,)\l,)\g,...,)\2,...,)\]\4,...,/\]\/[,0,...,0)
Since R and L are unimodular matrices, under any adiabatic process

0 mod A;; for i < rank(q)
0 for ¢ > rank(q).

(L_l ' Am)z — {



Stable Real Space Invariants - Construction

® This means that L~' defines a set of invariants that do not change under any
adiabatic process

,..I’

® These are the stable real space invariants (stable RSIs). Tabulated for all
space groups



Stable Real Space Invariants - Meaning

® Theorem: Two sets of trivial bands m, and m, have the same stable RSls, i.e.

0 mod A;; for ¢ < rank(q)

(L7 (my —my)); = {

0 for ¢ > rank(q).

if and only if there exists some auxiliary trivial bands m_, . such thatm; + m_
and m, + m_, . can be adiabatically deformed into each other -> stable

equivalence



Stable Real Space Invariants - Meaning

® Theorem: Two sets of trivial bands m, and m, have the same stable RSls, i.e.

_ 0 mod A,;; forz <rank
(L () —my)); = { @

0 for ¢ > rank(q).

if and only if there exists some auxiliary trivial bands m_, . such thatm; + m_
and m, + m_, . can be adiabatically deformed into each other -> stable

equivalence
Two phases Al1 and Al2 may not be (Al1 + Aux) and (Al2 + Aux) are equivalent for
deformable (topologically distinct) certain additional orbitals (trivial bands) Aux
Al1 \ ( Al2 \ f Al1+Aux \ ( Al2+Aux
m; & m; m, + mMjyux & m; + Mjyx
\ (BZ’BZH) ) \ (BZ’GZH) ) \ (eZ’BZn)+(BZ,aux’BZn,aux) ) \ (GZ’GZH)"'(BZ,aux’eZn,aux) )

*BR multiplicity m determines Deformabl? with
stable RSIs (8z, 8z, ) [many-to-one] extra orbitals!



Stable Real Space Invariants - Meaning

sInteger valued stable RSIs uniquely determine the symmetry data vector, and
viceversa: v = /0,

*mod n stable RSIs contain info beyond momentum space data



Stable Real Space Invariants - Meaning

sInteger valued stable RSIs uniquely determine the symmetry data vector, and

viceversa: v = /0,

*mod n stable RSIs contain info beyond momentum space data

*Atomic insulator (Al)*

m,;: well-defined BR/orbital

k-space data : Well-defined

(02,07 ): Integer valued (Z or Zn)

_ Zero S

-

-

*Topological insulator (TI)*
m;: NOT defined (by definition)
k-space data: Still well-defined

0,: Determined from k-space data

Fractional 8, & Nonzero SI

Z-type stable
RSIs OZ

U

Y, M
=+ 4]

e Xe
—+ ++

k-space data

v

/

Symmetry

indicators (SIs)




Example: Space Group 212

® Generators: Cubic 3fold rotation, fourfold screw rotation, twofold screw
rotation
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Example: Space Group 212

® Generators: Cubic 3fold rotation, fourfold screw rotation, twofold screw

rotation

WP W

Gw

(p)w

4a(1/8,1/8,1/8)
4b(5/8,5/8,5/8)

C3.111,C2,z—y

(A1)a, (A2)a, (E)a
(A1)b, (A2)s, (E)b

8c(x, x, ) C3.111 (A1), (IEQE)C
12d(y,1/4 — y,1/8) Ca,oy (A)d, (B)a
246(.’13, Y, Z) {ElO} (A)C

® Adiabatic processes (A1 + A2)a & (A1)
(Al -+ Ag)b = (Al)m

(A1 4+ E)q & (A)g,

(A1 + E)py & (A)q,

(A+'E?E). & (A).

2(E)a & (‘E*E).,
2(E), & (*E*E).,
(As + F), < (B)qg,
(As + E)p < (B)g,

(A + B)d <~ (A)ea




Example: Space Group 212
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Example: Space Group 212
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Example: Space Group 212

0),

)
1
1|
2

(L g« mod 2= (1,1,1,0,
1

0,
(L7194 10010010
(LD« |=]101001010
(L™ M) 11, 00100102

® Three integer invariants, and one mod 2 invariant

1 0
0 1
11

|+ m[(A1)p] +m[(A1)]
+m|(A)a] +m|[(A)e],
]
)

+ m[(A2)s] + m[(A1).]
+ m[(B)a| + m[(A)e],
03 =m|[(E)a] +m[(E)s] + 2m[(* E*E).]
+m[(A)a] + m[(B)d] + 2m[(A)e],
| +m[(A2)q] + m[(E)s] (mod 2).




Photonics- The Lowest Bands

® The lowest photonic bands are pathological

Two transverse (T) modes Transverse polarization
w/ linear dispersion vectors ntq 12 (K)
Gap (Lowest) \ /
21T modes

Di(r) ~ ¢®Tk L mode forbidden by
T transversality constraint
V-D=0ie.k-Dy =0

1L mode




Photonics- The Lowest Bands

® We can cure the pathology by adding back in ficticious longitudinal bands as a
mathematical trick, as long as we can subtract them later

Lowest gap Lowest gap Breg
=
o, |SPvs
o) %
| A N Bphys
x |Ok, oF =
= Ky N
3 3
Pk,
Pk, T modes ol
Baux I
Singularity Regular (T+L)
Ol — Pr=7 Pv=(Pr)H(PL)r
~ _

K, r(k=0) K, K, r(k=0) Ki,



Stable Equivalence and Photonic Bands

® Useful for modeling - can algorithmically search for the minimal auxiliary
bands needed for a faithful tight binding model

® But what about classification? If we add even more auxiliary bands, nothing
should change about the physics

Bphys Breg_Baux (Breg+Badd) —(Baux+Badd)
4 ™ 4 ™
\_/ B V - — e
S ) 5 #7728 Badd )
I Adiabatic
deformation
Breg % B reg
(B 'reg+Badd) _(Baux'l'Badd)
Breg B'reg "

Badd Badd Bphys =B ,reg—Baux



Stable Equivalence and Photonic Bands

® This means photonic bands are classified by stable equivalence classes of

pairs (B .., KB

aux)

® These are classified by stable real space invariants!

® Transversality constraint: inequalities on the invariants that must be satisfied
for any topologically trivial photonic band structure

M‘QZ Z bph

® Can be solved via linear programming



Stable Equivalence and Photonic Bands

® Key point: This allows us to isolate “interesting’ topology of the lowest band
from the Euler characteristic of the polarization vector

® b, # bejeciron implies photonic systems can realize trivial band structures

that cannot appear in condensed matter

® Allows us to model band structures in a way that captures topological
properties of Wilson loops



Example: Space Group 212

Photonic bands |
0, (m)r =T, — [4]

. . 02=(0,1,0): (M) + I'y + I'2, R3, My M3 + Ms, X; + X5)
0z=(-1,0,1): (M) + I's, R1 Ro, Mo M3 + M5, X1 + X3),

Common:

-¥ e
(0,1,0)
Photonic only:w ZwElectronic only:

(-1,0,1 " (1,0,0) ) Electronic bands
’ o 02=(0,1,0): (FQ +F47R37M2M3 T M57X1 _'_XQ)

0z=(1,0,0): (I'1 +I's, R3, M1 My + M5, X7 + X5)



Example: Space Group 212

. R
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Example: Space Group 212

Cylindrical Wilson loop (k,=0.4m) Cylindrical Wilson loop (k,=0.1m) Spherical Wilson loop (k,=0.2rm)

”/\/\ ’7 m 7 FiY
Y $

o W p .

0 <0 0 :

® ®

Op(@:k)

0 0 m 0 0 m 0 0 m
Cylindrical Wilson loop (k,=0.4m) Cylindrical Wilson loop (k,=0.1m) Spherical Wilson loop (k,=0.2m)
7 I7 I7
& & <
S S S
>0 >0 =0
® O] ®
-7 -7 -7




Conclusion

® Stable real space invariants characterize band topology beyond symmetry
indicators

® They also give the natural classification of topologically trivial photonic bands

® Complete the extension of the theory of topological guantum chemistry to
photonics

® References:

Devescovi et al., Optical Materials Express 14, 2161-2177 (2024).
Hwang et al., to appear 2025 (x2)



