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Motivation: Modeling Topological Photonic 
Crystals

• Periodic dielectric material  

• Maxwell Equations (source free) satisfy Bloch’s Theorem 

• Eigenfrequencies form bands

ϵμν(r + a) = ϵμν(r)

∇ × (∇ × Enk) = ω2
nkDnk

Dnk(x) = ε(x)Enk(x)

Lu et al, Nat Phys (2016)

Joannopoulos, John D., et al. Photonic Crystals: Molding the Flow of Light - Second 

Edition, Princeton University Press, 2008



Motivation: Modeling Topological Photonic 
Crystals

• Gapped sets of bands can have nontrivial 
topology 

• Need methods for computing topological 
invariants in the bulk 

• Need models that capture topology 
without needing to solve Maxwell’s 
equations for large finite systems



Momentum Space: Wilson Loops and 
Symmetry Indicators

• General magnetoelectric material: 

Devescovi et al., Optical Materials Express 14, 2161-2177 (2024).



• Topological invariants can be computed from Berry phases 

• Eigenvalues  related to projected position eigenvalueseiwn(k⊥)

Momentum Space: Wilson Loops and 
Symmetry Indicators

Devescovi et al., Optical Materials Express 14, 2161-2177 (2024).



• Nontrivial topology appears in the winding of  

• Bulk-boundary correspondence: Winding of  related to edge spectral flow 

•                          iiiiiiiiiiiiiiimplies a deep connection between topology and localization

wn(k⊥)

wn(k⊥)

Momentum Space: Wilson Loops and 
Symmetry Indicators

Devescovi et al., Optical Materials Express 14, 2161-2177 (2024).



• Topological invariants are obstructions to finding exponentially localized 
Wannier functions 

• Wilson loop winding obstructs Fourier transform 

• Space group symmetries let us define symmetry indicators of band topology

Momentum Space: Wilson Loops and 
Symmetry Indicators

is invariant, even though the j ~c nki resulting from Eq. (8) are
no longer generally eigenstates ofH, and n is no longer a band
index in the usual sense.

Our goal is again to construct WFs out of these trans-
formed Bloch functions using Eq. (3). Figures 2(a) and 2(b)
show, for example, what the result might eventually look like
for the case of the four occupied valence bands of Si or GaAs,
respectively. From these four bands, one obtains four equiva-
lent WFs per unit cell, each localized on one of the four
nearest-neighbor Si-Si or Ga-As bonds. The presence of a
bond-centered inversion symmetry for Si, but not GaAs, is
clearly reflected in the shapes of the WFs.

Again, we emphasize that the gauge freedom expressed in
Eq. (8) implies that the WFs are strongly nonunique. This is
illustrated in Fig. 3, which shows an alternative construction
of WFs for GaAs. The WF on the left was constructed from
the lowest valence band n ¼ 1, while the one on the right is
one of three constructed from bands n ¼ 2–4. The former
has primarily As s character and the latter has primarily
As p character, although both (and especially the latter)
contain some Ga s and p character as well. The WFs of
Figs. 2(b) and 3 are related to each other by a certain manifold

of 4" 4 unitary matrices UðkÞ
nm relating their Bloch transforms

in the manner of Eq. (8).
However, before we can arrive at well-localized WFs such

as those shown in Figs. 2 and 3, we again have to address
questions of smoothness of the gauge choice expressed in
Eq. (8). This issue is even more profound in the present
multiband case, since this smoothness criterion is generally
incompatible with the usual construction of Bloch functions.
That is, if we simply insert the usual Bloch functions jc nki,
defined to be eigenstates of H, into the right-hand side of
Eq. (3), it is generally not possible to produce well-localized
WFs. The problem arises when there are degeneracies among
the bands in question at certain locations in the Brillouin

zone. Consider, for example, what happens if we try to
construct a single WF from the highest occupied band
n ¼ 4 in GaAs. This would be doomed to failure, since this
band becomes degenerate with bands two and three at the
zone center ! as shown in Fig. 3. As a result, band four is
nonanalytic in k in the vicinity of !. The Fourier transform of
Eq. (3) would then result in a poorly localized object having
power-law tails in real space.

In such cases, therefore, the extra unitary mixing expressed
in Eq. (8) is mandatory, even if it may be optional in the case
of a set of discrete bands that do not touch anywhere in the
BZ. So, generally speaking, our procedure must be that we
start from a set of Hamiltonian eigenstates jc nki that are not
per se smooth in k, and introduce unitary rotations UðkÞ

mn that
‘‘cancel out’’ the discontinuities in such a way that smooth-
ness is restored, i.e., that the resulting j ~c nki of Eq. (8) obey
the smoothness condition that rkj ~c nki remains regular at all
k. Then, when these j ~c nki are inserted into Eq. (3) in place of
the jc nki, well-localized WFs should result. Explicitly, this
results in WFs constructed according to

jRni ¼ V

ð2!Þ3
Z
BZ

dke%ik&R XJ

m¼1

UðkÞ
mnjc mki: (10)

The question remains how to choose the unitary rotations

UðkÞ
mn so as to accomplish this task. We will see that one way to

do this is to use a projection technique, as outlined in Sec. II.A.3.
Ideally, however, we want the construction to result in WFs
that are ‘‘maximally localized’’ according to some criterion.
Methods for accomplishing this are discussed in Sec. II.C

3. Normalization conventions

In the above equations, formulated for continuous k, we
adopted the convention that Bloch functions are normalized
to one unit cell

R
V drjc nkðrÞj2 ¼ 1, even though they extend

over the entire crystal. We also define hfjgi as the integral of
f'g over all space. With this notation, hc nkjc nki is not unity;
instead, it diverges according to the rule

hc nkjc mk0 i ¼ ð2!Þ3
V

"nm"
3ðk% k0Þ: (11)

With these conventions it is easy to check that the WFs in
Eqs. (3) and (4) are properly normalized, i.e., hRnjR0mi ¼
"RR0"nm.

It is often more convenient to work on a discrete uniform k
mesh instead of continuous k space.2 Letting N be the
number of unit cells in the periodic supercell, or, equivalently,
the number of mesh points in the BZ, it is possible to keep the
conventions close to the continuous case by defining the
Fourier transform pair as

(a) (b)

FIG. 2 (color online). Maximally localized Wannier functions
(MLWFs) constructed from the four valence bands of Si (a) and
GaAs [(b); Ga at upper right, As at lower left], displaying the
character of #-bonded combinations of sp3 hybrids. Isosurfaces of
different shades of gray correspond to two opposite values for the
amplitudes of the real-valued MLWFs.

FIG. 3 (color online). MLWFs constructed from the s band (left)
or from the three p bands (right) of GaAs.

2The discretization of k space amounts to imposing periodic
boundary conditions on the Bloch wave functions over a supercell in
real space. Thus, it should be kept in mind that the WFs given by
Eqs. (12) and (14) are not truly localized, as they also display the
supercell periodicity (and are normalized to a supercell volume).
Under these circumstances the notion of ‘‘Wannier localization’’
refers to localization within one supercell, which is meaningful for
supercells chosen large enough to ensure negligible overlap between
a WF and its periodic images.

Marzari et al.: Maximally localized Wannier functions: Theory . . . 1423

Rev. Mod. Phys., Vol. 84, No. 4, October–December 2012

Marzari et al., Rev. Mod. Phys. 2012
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Momentum Space: Wilson Loops and 
Symmetry Indicators

• Eigenstates transform in irreps of the little 
group at each k 

• Collect irreps at high symmetry points into a 
symmetry data vector v 

• Topological Quantum Chemistry: for each 
space group, we can define a matrix  of 
symmetry indicators 

•  implies nontrivial topology

Σ

Σv ≢ 0



Challenges
• General:  

• There exist topological invariants invisible to symmetry indicators 

• Symmetry indicators don’t capture that different trivial phases may still be 
distinct 

• Photonic specific: The lowest photonic bands are singular in 3D -> no well-
defined symmetry data vector 

All have the same solution - Stable Real Space Invariants



Wannier Functions and Band 
Representations

• End goal will be finite-rank modeling of photonic bands via tight-binding 
models -> need to understand where symmetry data vectors come from 

• Topologically trivial bands have symmetric, localized Wannier functions by 
definition, determine symmetry data vectors by induction



Wannier Functions and Band 
Representations

• Band representations do not change under adiabatic deformation 

• We can characterize trivial bands in terms of the symmetry properties and 
centers of the Wannier functions that induce them



Wannier Functions and Band 
Representations

• Classify trivial bands by specifying location and symmetry properties of 
Wannier functions (orbitals) in the unit cell

Points in the unit cell fall into orbits called Wyckoff Positions (WP)



Wannier Functions and Band 
Representations

⇢G(h)

R�↵

g↵q

g�q

g↵q

⇢(g�1
� {E|�R�↵}hg↵)



• Trivial band Wannier functions characterized by orbital multiplicity vector 

• Induction: .  is the band representation matrix 

• Overcomplete: m is not a topological invariant, can be changed by a choice of 
gauge. Corresponds to “moving” Wannier orbitals without breaking 
symmetry

v = Bm B

Wannier Functions and Topology



Wannier Functions and Topology
• Trivial band Wannier functions characterized by orbital multiplicity vector 

• Induction: .  is the band representation matrix 

• Overcomplete: m is not a topological invariant, can be changed by a choice of 
gauge. Corresponds to “moving” Wannier orbitals without breaking 
symmetry

v = Bm B



Adiabatic Processes
• For every space group, we can consider the collection of these “adiabatic 

processes” into a matrix  

• Columns of :                                       ->   

• Can use Smith Decomposition to derive a set of adiabatic invariants: 

• Since R and L are unimodular matrices, under any adiabatic process

q

q (1,1, − 1)

<latexit sha1_base64="R2ol4lxaWDODHjelyXxDbSteyiM="></latexit>

(L→1 ·!m)i =

{
0 mod ”ii for i → rank(q)

0 for i > rank(q).



Stable Real Space Invariants - Construction

• This means that  defines a set of invariants that do not change under any 
adiabatic process 

• These are the stable real space invariants (stable RSIs). Tabulated for all 
space groups

L−1



Stable Real Space Invariants - Meaning
• Theorem: Two sets of trivial bands  and  have the same stable RSIs, i.e.  

if and only if there exists some auxiliary trivial bands  such that  
and  can be adiabatically deformed into each other -> stable 
equivalence

m1 m1

maux m1 + maux
m2 + maux

<latexit sha1_base64="oeCAdmG416A08y/2Nr0lySX87pA="></latexit>

(L→1 · (m1 →m2))i =

{
0 mod !ii for i ↑ rank(q)

0 for i > rank(q).



Stable Real Space Invariants - Meaning
• Theorem: Two sets of trivial bands  and  have the same stable RSIs, i.e.  

if and only if there exists some auxiliary trivial bands  such that  
and  can be adiabatically deformed into each other -> stable 
equivalence

m1 m1

maux m1 + maux
m2 + maux

<latexit sha1_base64="oeCAdmG416A08y/2Nr0lySX87pA="></latexit>

(L→1 · (m1 →m2))i =

{
0 mod !ii for i ↑ rank(q)

0 for i > rank(q).



Stable Real Space Invariants - Meaning
•Integer valued stable RSIs uniquely determine the symmetry data vector, and 
vice versa:  

•mod n stable RSIs contain info beyond momentum space data

v = ℳθℤ



Stable Real Space Invariants - Meaning
•Integer valued stable RSIs uniquely determine the symmetry data vector, and 
vice versa:  

•mod n stable RSIs contain info beyond momentum space data

v = ℳθℤ



Example: Space Group 212
• Generators: Cubic 3fold rotation, fourfold screw rotation, twofold screw 

rotation



Example: Space Group 212
• Generators: Cubic 3fold rotation, fourfold screw rotation, twofold screw 

rotation 

• Adiabatic processes
a

:(x,x,x)

A1

A1

:(x´,x´,x´)

C2,x-y
~

:(1/8,1/8,1/8)

b

A1+A2

x8c,1

x8c,2

x4a,1 x4a,1



Example: Space Group 212

<latexit sha1_base64="DlMOOIK6uMsQVd1sG6OFZQr5Cww="></latexit>

(A1)a

(A2)a

(E)a

(A1)b

(A2)b

(E)b

(A1)c

(1E2E)c

(A)d

(B)d

(A)e



Example: Space Group 212



Example: Space Group 212

• Three integer invariants, and one mod 2 invariant



Photonics- The Lowest Bands
• The lowest photonic bands are pathological



• We can cure the pathology by adding back in ficticious longitudinal bands as a 
mathematical trick, as long as we can subtract them later

Photonics- The Lowest BandsPhotonics- The Lowest Bands
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Stable Equivalence and Photonic Bands
• Useful for modeling - can algorithmically search for the minimal auxiliary 

bands needed for a faithful tight binding model 

• But what about classification? If we add even more auxiliary bands, nothing 
should change about the physics



• This means photonic bands are classified by stable equivalence classes of 
pairs  

• These are classified by stable real space invariants! 

• Transversality constraint: inequalities on the invariants that must be satisfied 
for any topologically trivial photonic band structure 

• Can be solved via linear programming

(ℬreg, ℬaux)

Stable Equivalence and Photonic Bands

<latexit sha1_base64="wBHrp3fwK8Kv95ZnMqjPeMv2KO4=">AAACKnicbVDLSgNBEJyNrxhfUY9eBoPgKeyKRI9RL14EBWOC2RBmJ73JkNmHM71CWPZ7vPgrXjwo4tUPcZKsoIkFAzVV3XR3ebEUGm37wyosLC4trxRXS2vrG5tb5e2dOx0likODRzJSLY9pkCKEBgqU0IoVsMCT0PSGF2O/+QhKiyi8xVEMnYD1Q+ELztBI3fKZGzAccCbTq2xCPT91cQDIsu7076X3GXX78EB/fC+3VJDGg6xbrthVewI6T5ycVEiO62751e1FPAkgRC6Z1m3HjrGTMoWCS8hKbqIhZnzI+tA2NGQB6E46OTWjB0bpUT9S5oVIJ+rvjpQFWo8Cz1SOV9Sz3lj8z2sn6J92UhHGCULIp4P8RFKM6Dg32hMKOMqRIYwrYXalfMAU42jSLZkQnNmT58ndUdWpVWs3x5X6eR5HkeyRfXJIHHJC6uSSXJMG4eSJvJA38m49W6/Wh/U5LS1Yec8u+QPr6xsPaamD</latexit>

MωZ → bph



• Key point: This allows us to isolate “interesting” topology of the lowest band 
from the Euler characteristic of the polarization vector 

•  implies photonic systems can realize trivial band structures 
that cannot appear in condensed matter 

• Allows us to model band structures in a way that captures topological 
properties of Wilson loops

bph ≠ belectron

Stable Equivalence and Photonic Bands



Example: Space Group 212



Example: Space Group 212
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Example: Space Group 212
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Conclusion
• Stable real space invariants characterize band topology beyond symmetry 

indicators 

• They also give the natural classification of topologically trivial photonic bands 

• Complete the extension of the theory of topological quantum chemistry to 
photonics 

• References: 

Devescovi et al., Optical Materials Express 14, 2161-2177 (2024). 
Hwang et al., to appear 2025 (x2)


