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Challenges of Lippmann-Schwinger-Lanczos imaging

1D inverse wave problem

For simplicity consider a plane wave 1D problem on [0,∞],

−c2(z)
∂2

∂z2
w(z , t) +

∂2

∂t2
w(z , t) = gt(t)δ(z − 0+),

with proper homogeneous initial and boundary conditions where
c(z) > 0 is variable wave-speed, g(t) is a (possibly narrow band)
radar excitation.

Transforming to travel-time coordinate dx = dz
c(z) and using the

Liouville transform we obtain the ”plasma wave equation”

− ∂2

∂x2
u(x , t) + q(x)u(x , t) +

∂2

∂t2
u(x , t) = gt(t)δ(x − 0+),

q =
d2

dx2

√
c(x)√

c(x)
is ”reflectivity” of the media, i.e., q = 0 in absence of

reflectors.

Inverse problem: u(0, t) 7→ q(x).



Challenges of Lippmann-Schwinger-Lanczos imaging

Lippmann-Schwinger nonlinear formulation

Consider also background solution u0

− ∂2

∂x2
u0(x , t) + q0(x)u0(x , t) +

∂2

∂t2
u0(x , t) = g(t)δ(x − 0+)

.

Convolving the background solution with the internal solution we
arrive at the Lippmann-Schwinger (LS) integral equation

u(0, t)−u0(0, t) = −
∫ ∞

0

∫ t

0

d

ds
u0(x , t−s)

d

ds
u(x , s)(q(x)−q0(x)) dx ds.

Given u(0, t) the LS become nonlinear integral equation with respect
to q(x)



Challenges of Lippmann-Schwinger-Lanczos imaging

Lippmann-Schwinger-Lanczos (LSL)

Assuming we have an estimate of the internal solution

uapprox(x , t) ≈ u(x , t)

we reduce the nonlinear LS inverse IE to linear IE with respect to q(r)

u(0, t)−u0(0, t) = −
∫ ∞

0

∫ t

0

d

ds
uapprox(x , t−s)

d

ds
u0(x , s)(q(x)−q0(x)) dx ds.

Born approximation
uapprox = u0(x , t)

The LSL uses a more accurate estimate uapprox computed via a
data-driven nonlinear transform from u0(x , t) .



Challenges of Lippmann-Schwinger-Lanczos imaging

Prior data-driven ROM and LSL developments

Data-driven reduced order model (ROM) for wave imaging
[Dr.,Mamonov, Zaslavskiy, Thaler, 2016; Dr.,Mamonov Zaslavkiy,
2018; Borcea, Dr., Mamonov, Zaslavskiy, 2019, 2020; Borcea,
Garnier, Mamonov, Zimmerling, 2023,2024 ]

Computation of data-driven internal solutions [Borcea, Dr., Moskow,
Mamonov, Zaslavkiy, 2020]

LSL in frequency and time domain [Dr., Moskow, Zaslavkiy, 2021,
2022, 2024 ]

LSL imaging with SAR-to-MIMO data completion (lifting) [Dr.,
Moskow, Zaslavkiy, 2024 ]

Layered media with propagation and losses, optimal grid inversion
[Borcea, Dr, Zimmerling, 2021].



Challenges of Lippmann-Schwinger-Lanczos imaging

2024 developments, in this talk

1 Foundation of data-driven internal solutions: ROM theory of
transmutation matrices.

2 Incorporation of sparse inversion, application to narrow bound pulses;

3 Application to 3D synthetic models

4 Extension of the LSL to simultaneous determination of the impedance
and loss profiles



ROM theory of transmutation matrices

Marchenko-Gelfand-Levitan transmutation operators

Let u(x , t) is the internal solution for unknown q(x) and u0(x , t) is
the background solution for q0(x) = 0. Then
Marchenko-Gelfand-Levitan theory gives

u(x , t) =

∫ t

0
T (t, t ′)u0(x , t

′)dt,

where T (t, t) is data-driven Volterra transmutation operator Kernel
[Marchenko, Gelfand, Levitan, 1950s]

Discrete transmutation [Bube, Burridge, 1983; Natterer, 1989]:

Uapprox = U0T

Uapprox = [uapprox(x , 0), uapprox(x , τ), . . . , uapprox(x , (m − 1)τ)],
U0 = [u0(x , 0), u0(x , τ), . . . , u0(x , (m − 1)τ)],
T ∈ Rm×m is upper triangular.

Exactness for a specially chosen class of piecewise-constant media
[Bube, Burridge 1983; Borcea et al, 2024].



ROM theory of transmutation matrices

Operator initial-value problem

Denote symmetrized solution u(x , t) = u(x ,t)+u(x ,−t)
2 , for practical

purposes u(x , t) ≈ u(x , t)
Then 1

Au(x , t) +
d2

dt2
u(x , t) = 0, u(t = 0) = b(x),

d

dt
u(t = 0) = 0

where Au(x) = − d2

dx2
u(x) + q(x)u(x).

Representation via function of the operator:

u(x , t) = cos(t
√
A)b(x).

1Dr., Mamonov, Thaler, Zasl. 2016



ROM theory of transmutation matrices

Data sampling and Gramian of data-driven ROM

Assume that u(0, t) is discretized with sampling rate τ (consistent
with Nyquist frequency of g(t) ). We want to estimate the unknown
internal solutions u(x , tk) = cos(kτ

√
A)b for x > 0, k = 0, . . . , n − 1

from data u(0, jτ), j = 0, . . . , 2n − 1.

Denote L2[0,∞] inner product ⟨u(x); v(x)⟩ =
∫∞
0 u(x)v(x)dx

Let M ∈ Rn×n is the Gramian of the internal snapshots. The Gramian
completely defines the ROM of the wave propagation that reproduces
u(0, jτ), j = 0, . . . , 2n − 1. M’s elements are given by

Mkl = ⟨u(tk);u(tl)⟩ = ⟨cos(kτ
√
A)b; cos(lτ

√
A)b⟩ =

1

2
⟨b; cos((k + l)τ

√
A)b⟩+ 1

2
⟨b; cos((k − l)τ

√
A)b⟩ =

(u[0, τ(k + l)] + u(0, τ |k − l |))/2.

Now we from the Gramian we estimate the projection of the true
snapshots on the background ones using their causality.



ROM theory of transmutation matrices

Uniqueness of casual transmutation matrices

Denote M0 the Gramian computed for the background (known)
solution with q0(x) = 0.

Theorem

The row vector of data-generated internal fields Uapprox = U0T with
upper triangular transmutation matrix T is uniquely defined by the data.
The transmutation matrix is given by

T = (L⊤0 )
−1L⊤,

where upper triangular matrices L and L0 are defined via Cholesky
factorizations

M = LL⊤ M0 = L0L
⊤
0

The Cholesky factorization of M constitutes the nonlinear part of the
data transform.



ROM theory of transmutation matrices

Optimal properties of data-generated internal solutions

Assume g(t) = δ(t−τ/2)+δ(t+τ/2)
τ , that yields the space of background

solution u0(x , iτ) as the space of piecewise-constant functions with
step τ . Denote Uopt = [uopt(x , 0), uopt(x , τ), . . . , uopt(x , i(m − 1)τ)]
the L2[0,∞] projection of U onto the space of the background
solution.

Theorem

For reqular enough q(x) and small ∥U−Uopt∥L2

∥Uapprox −U∥L2[0,∞] = ∥U−Uopt∥L2[0,∞][1 + o(1)].

The analysis extendable to problems with band-limited pulses,
multi-dimensional MIMO/SAR and losses, with possibly weaker
results.



Applications Adding sparsity constraints

Sparsity-promoting regularization for narrow-band signals

Lower resolution compared to wide-band signals

Need to constrain the model to sparsely distributed scatterers

L1-penalty term or similar can be employed



Applications Adding sparsity constraints

Linear Born processing

True medium

Born image

Scattered field for a highly
modulated Gaussian pulse.

Low resolution, multiple scattering
artifacts. Can we do better with
conventional nonlinear data

processing, e.g., sparsity promoting
imaging?
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Applications Adding sparsity constraints

Lippmann-Schwinger imaging using data-driven ROMs

True medium

LS + ROM

Cheated solution

Born
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Applications Adding sparsity constraints

LASSO regularization for 2D problem

True medium

LSL+LASSO

Born+LASSO

Similar penalty term can be
used in Born imaging

Takes care of narrow-band
signals

Ghost images still stay in Born
results
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results



Applications 2D imaging of 3D objects

Cross-section imaging of 3D object

3D object (donut) in half-space

Data is collected along a single
trajectory

Multiple bouncing between
donut and ground

Similar effects as in GOTCHA
dataset

True model

Data is simulated using fast time-domain integral-equation-based
solver to generate data (Barnett, Greengard, Hagstrom, 2019)

2D imaging in cross-section is viable solution



Applications 2D imaging of 3D objects

Imaging of 3D donut

True model

Born

LSL

Multiple bouncing artifact
(yellow ghost image below the
donut) is suppressed

Quality can be hopefully
improved by fully 3D imaging
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Applications Simultaneous imaging of impedance and loss profiles

Wave propagation in lossy medium in 1D

First-order frequency-domain formulation in travel-time coordinates((
0 ∂x
∂x 0

)
+

(
r 1

2(log(σ))x
−1

2(log(σ))x 0

)
+ iωI

)(
u
v

)
=

ĝ(ω)

iω
δ(x)

Data of given by u(0, ωi ), u′(0, ωi ), i = 1, . . . , n

Lippmann-Schwinger integral equation”for i = 1, . . . n

u(0, ωi )− u0(0, ωi ) =

−
∫ ∞

0

(
u0(x)
v0(x)

)T (
r 1

2(log(σ))x
−1

2(log(σ))x 0

)(
u(x)
−v(x)

)
dx .

Given data u(0, ωi ), i = 1, . . . , n, it is nonlinear integral equation
with respect to losses r and impedance σ



Applications Simultaneous imaging of impedance and loss profiles

Imaging in 1D lossy medium



Conclusions

Conclusions

Data-driven transmutation matrices allows to produce near best
approximation of the internal solution in the subspace of the
background solution, that can be treated as a finite-element subspace.

The data-driven internal solutions suppress imaging artifacts due to
multi-scattering and losses, as shown on 1D, 2D and 3D examples.

Similarly to linear inversion, sparsity constraints improve resolution in
our nonlinear framework, in particular for band-limited signals

Current limitation: theoretical computational cost is comparable with
Born inversion, however efficient implementation requires developing
more efficient linear algebra. Work in progress.

To-Do: Application to industry standard experimental data-sets
(GOTCHA, etc.); Imaging though walls, vegetation, underground,
including losses and dispersion in multiple dimensions.
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