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Past results on numerical methods for the radiative transport

equation are only for inverse source problems, which are linear:

1. H. Fujiwara, K. Sadiq, and A. Tamasan,

2. A. V. Smirnov, M. V. Klibanov, and L. H. Nguyen.

However, CIPs are nonlinear.
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I am unaware about past numerical methods for the above

listed problems

I am also unaware about past rigorously justified globally

convergent numerical methods for problems of Mean Field

Games.
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A FEW WORDS ABOUT THE CONVEXIFICATION

METHOD

Currently the convexification is the single globally convergent

numerical method for CIPs without an overdetermination.

The vast majority of numerical methods for nonlinear Ill-Posed

Problems, including CIPs, is based on the least squares

minimization. This is a truly powerful method!

Still, it has a drawback (so as everything in life):

corresponding cost functionals are plagued by the

phenomenon of local minima and ravines.
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The goal of the convexification concept is to improve the least

square minimization via fixing this drawback.

The convexification was introduced in 1997 by Klibanov in

order to avoid that phenomenon. Active studies of the

convexification have started in 2017.

The convexification works for many nonlinear ill-posed

problems for PDEs as well as for many CIPs.
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HOW THE CONVEXIFICATION WORKS:

The convexification constructs a weighted Tikhonov-like

functional J, which is globally strongly convex on an

appropriate convex bounded set B (d) ⊂ H, where d > 0 is an

arbitrary but fixed diameter of B (d) and H is the Hilbert

space of solutions of the corresponding PDE.
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The weight is the Carleman Weight Function for the

corresponding PDE operator. CWF is used as the weight in

the Carleman estimate for this operator.

Convergence to the true solution of the gradient descent

method of the minimization of J is established if starting from

an arbitrary point of B (d) , provided that the noise in the

data tends to zero. Rates of convergence are written explicitly.

Since no restrictions are imposed on the diameter d , then this

is global convergence.
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Convexification for a Coefficient Inverse Problem for the

Radiative Transport Equation

For n ≥ 1, points in Rn+1 are denoted below as

x = (x1, x2, ..., xn, y) ∈ Rn+1. Let numbers A, a, b, d > 0, where

1 < a < b. (1)

Define the rectangular prism Ω ⊂ Rn+1 and parts ∂1Ω, ∂2Ω, ∂3Ω of

its boundary ∂Ω as:

Ω = {x : −A < x1, ..., xn < A, a < y < b}, (2)

∂1Ω = {x : −A < x1, ..., xn < A, y = a} , (3)

∂2Ω = {x :− A < x1, ..., xn < A, y = b} , (4)

∂3Ω = {xi = ±A, y ∈ (a, b) , i = 1, ..., n, } . (5)
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Let Γd be the line where the external sources are,

Γd = {xα = (α, 0, ..., 0) : α ∈ [−d , d ]}. (6)

Hence, Γd is a part of the x1−axis. It follows from (1) and (2) that

Γd ∩ Ω = ∅.
Let the points of external sources xα run along Γd , xα ∈ Γd . Let

ε > 0 be a sufficiently small number. To avoid dealing with

singularities, we model the δ (x)−function as:

f (x) = Cε

{
exp

(
|x|2

ε2−|x|2

)
, |x| < ε,

0, |x| ≥ ε
, (7)

where the constant Cε is chosen such that

Cε

∫
|x|<ε

exp

(
|x|2

ε2 − |x|2

)
dx = 1. (8)
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Hence, the function

f (x− xα) = f (x1 − α, x2, ..., xn, y) ∈ C∞ (Rn+1
)
plays the role of

the source function for the source xα. We choose ε so small that

f (x− xα) = 0,∀x ∈ Ω, ∀xα ∈ Γd . (9)

Let A1 = max (A, d) . Introduce three domains G ⊂ Rn+1 and

G+
a ,G−

a ⊂ G ,

G = {x : |x1| , ..., |xn| < A1, y ∈ (0, b)} , G+
a = G ∩ {y > a} ,

G−
a = G⧹G+

a . (10)

By (2), (6) and (10) Ω ⊂ G+
a . Everywhere below

(x, α) ∈ G × (−d , d) . (11)

Let u(x, α) denotes the steady-state radiance at the point x

generated by the source function f (x− xα) .
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The stationary RTE:

ν(x,α) · ∇xu(x, α) + a (x) u(x, α)

= µs(x)

∫
Γd

K (x, α, β)u( x, β)dβ + f (x− xα) , x ∈ G , xα ∈ Γd .

(12)

The kernel K (x, α, β) is called the “phase function”,

K (x, α, β) ≥ 0, x ∈G ; α, β ∈ [−d , d ] ,

K (x, α, β) ∈ C 1
(
G × [−d , d ]2

)
.

(13)

In equation (12),

a (x) = µa (x) + µs(x), (14)

where µa (x) and µs(x) are the absorption and scattering

coefficients respectively and a (x) is the emission coefficient.
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We assume that

µa (x) , µs(x) ≥ 0, µa (x) = µs(x) = 0, x ∈ G \ Ω,
µa (x) , µs(x) ∈ C 1

(
G
)
.

For two arbitrary points x, z ∈ Rn+1 let L (x, z) be the line segment

connecting these points and let ds be the element of the euclidean

length on L (x, z) . In (12) ν(x,α) denotes the unit vector, which is

parallel to L (x, xα) ,

ν(x,α) =
x− xα
|x− xα|

. (15)

14



Forward Problem. Let (1)-(15) hold. Find the function

u(x, α) ∈ C 1
(
G × [−d , d ]

)
satisfying equation (12) and the initial

condition

u(xα, α) = 0 for xα ∈ Γd . (16)
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Figure 1: A schematic diagram of the source/detector configuration for

CIP1.
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Coefficient Inverse Problem 1 (CIP1). Let (1)-(15) hold. Let

the function u (x, α) ∈ C 1
(
G × [−d , d ]

)
be the solution of the

Forward Problem. Assume that the coefficient a (x) of equation

(12) is unknown. Determine the function a (x) , assuming that the

following function g (x, α) is known:

g (x, α) = u (x, α) ,∀x ∈ ∂Ω⧹∂1Ω,∀α ∈ (−d , d) . (17)
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Theorem 1 (existence and uniqueness of the forward problem).

Assume that (1), (2), (6 )-(9) and (13)-(15) hold. Then there

exists unique solution u (x, α) ∈ C 1
(
G × [−d , d ]

)
of equation (12)

with the initial condition (16). Furthermore, the following

inequality holds:

u (x, α) ≥m > 0 for (x, α) ∈ G
+
a × [−d , d ] , (18)

m = min
G

+
a ×[−d ,d ]

[
exp

(
−
∫
L(x,xα)

a (x (s)) ds

)
·(∫

L(x,xα)
f (x (s)− xα) ds

)]
,

where L(x, xα) is the piece of the straight line connecting points x

and xα.
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THIS IS A NEW RESULT

Volterra Integral Equation of the second kind for u (x, α) is used to

prove this theorem and to solve the forward problem:

u(x,α) = u0(x,α) +
1

c(x,α)

∫
L( x,xα)

c(x (s) , α)µs(x (s))(∫
Γd

K (x (s) , α, β)u(x (s) , β)dβ
)
ds,

u0(x,α) =
1

c(x,α)

∫
L(x,xα)

f (x (s)− xα) ds,

c(x, α) = exp
(∫

L(x,xα)
a(x (s))ds

)
.

(19)
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Transformation

Change of variables:

w (x, α) = ln u (x, α) , (x, α) ∈ Ω× [−d , d ] .

Then

ν(x,α) · ∇xw(x, α) + a (x)

= e−w(x,α)µs(x)

∫
Γd

K (x, α, β)ew(x,β)dβ, x ∈ Ω, α ∈ (−d , d) ,

w(x, α) |∂Ω= ln g1 (x, α) ,

g1 (x, α) =

{
g (x, α) , x ∈ ∂Ω⧹∂1Ω, α ∈ (−d , d) ,

u0 (x, α) , x ∈ ∂1Ω, α ∈ (−d , d) .
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Differentiating with respect to α and using ∂αa (x) ≡ 0,

ν(x,α) · ∇xwα(x, α) + ∂αν(x,α) · ∇xw(x, α)

= µs(x)
∂

∂α

[
e−w(x,α)

∫
Γd

K (x, α, β)ew(x,β)dβ

]
,

x ∈ Ω, α ∈ (−d , d) .

(20)
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An orthonormal basis in L2(−d , d) (Klibanov, 2017)

Consider the set of linearly independent functions, which is

complete in L2(−d , d) :

{αseα}∞s=0.

Applying the Gram-Schmidt orthonormalization procedure to this

set, we obtain the orthonormal basis {Ψs (α)}∞s=0 in L2(−d , d).

Ψs(α) = Ps(α)e
α,∀s ≥ 0,
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where Ps(α) is a polynomial of the degree s.

as,k =
d∫

−d

Ψ′
s (x)Ψk (x) dx ,

Matrix: MN = (as,k)
(N−1,N−1)
(s,k)=(0,0) ,

detMN = 1,∀N

MN = (amn)
N−1
m,n=0 =



1 ∗ · · · · · · ∗

0 1 ∗
...

... 0
. . .

. . .
...

...
. . .

. . . ∗
0 · · · · · · 0 1


∈ RN×N .
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Remark: The invertibility of analogs of MN does not take place

for classical orthonormal polynomials and trigonometric basis.
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A coupled system of nonlinear integral differential

equations

Represent

w(x,α) =
N−1∑
s=0

ws(x)Ψs(α), wα(x,α) =
N−1∑
s=0

ws(x)Ψ
′
s(α). (21)

Therefore, the main problem now is: Find the vector

function W (x),

W (x) = (w0, ...,wN−1)
T (x).

Substitute (21) in (20)

ps(x) =

∫ d

−d
ln [g1 (x, α)]Ψs (α) dα, s = 0, ...,N − 1.

(22)
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Multiply sequentially resulting equation by functions

Ψk (α) , k = 0, ...,N − 1 and integrate with respect to

α ∈ (−d , d) . Use boundary conditions.

Boundary value problem:

(MN + An+1 (x))Wy (x) +
n∑

i=1
Ai (x)Wxi (x) + F (W (x) , x) = 0,

x ∈ Ω,

W (x) |∂Ω= P (x) ,
(23)
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where An+1 ∈ CN2

(
Ω
)
and Ai ∈ CN2

(
Ω
)
, i = 1, ..., n are N × N

matrices, the N−D vector function

F (s, x) ∈ C 2
(
RN+n+1

)
. (24)

F (W (x) , x) is nonlinear with respect to W (x) .

Recall that a < y < b. Then

∥Ai (x)∥CN2(Ω) ≤
C

a
, i = 1, ..., n + 1. (25)
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Denote

DN (x) = (MN + An+1 (x)) = MN

(
I +M−1

N A1 (x)
)
. (26)

Since the matrix MN is invertible, then it follows from (25) and

(26) that there exists such a number a0 = a0 (A, d ,MN) > 1

depending only on listed parameters that

the matrix D−1
N (x) exists for all a ≥ a0 and for all x ∈ Ω. (27)
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Convexification Functional for Problem (23)

Let

kn =
[n
2

]
+ 1.

Hence, by Sobolev embedding theorem Hkn (Ω) ⊂ C 1
(
Ω
)
. Let

H1
0 (Ω) =

{
u ∈ H1 (Ω) : u |∂Ω= 0

}
.

Let R > 0 be an arbitrary number. Define the set B (R) as

B (R) =
{
W ∈ Hkn

N (Ω) : W (x) |∂Ω= P (x) , ∥W ∥H1
N(Ω) < R

}
.

(28)
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Minimization Problem. Minimize the following Tikhonov-like

weighted functional on the set B (R) :

Jλ (W ) = e−2λb

∥∥∥∥(DNWy +
n∑

i=1
AiWxi + F (W (x) , x)

)
eλy
∥∥∥∥2
L2N(Ω)

+

+α ∥W ∥2Hkn (Ω) .

(29)

Here, e−2λb is the balancing multiplier since α ∈ (0, 1) .
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Theorem 2 (Carleman estimate). Assume that the number

a ≥ a0, as in (27). Then there exists a sufficiently large number

λ0 = λ0 (d ,N, a, b) ≥ 1 depending only on listed parameters such

that the following Carleman estimate holds∥∥∥∥(DNWy +
n∑

i=1
AiWxi

)
eλy
∥∥∥∥2
L2N(Ω)

≥ Cλ2
∥∥Weλy

∥∥2
L2N(Ω)

,

∀W ∈ H1
N,0 (Ω) ,∀λ ≥ λ0.
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THE CENTRAL RESULT: STRONG CONVEXITY Theorem

3 (strong convexity). The following three assertions hold:

1. The functional Jλ (W ) in (29) has the Fréchet derivative

J ′λ (W ) ∈ H1
N,0 (Ω) at any point W ∈ B (R) and for any value of

the parameter λ ≥ 0. The Lipschitz condition holds∥∥J ′λ (W1)− J ′λ (W2)
∥∥
Hkn
N (Ωh) ≤ C1 ∥W1 −W2∥Hkn

N (Ω)
,

∀W h
1 ,W

h
2 ∈ B (R)

for all λ ≥ 0, where the number C1 > 0.
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Assume that the number a ≥ a0, as in (27). Then:

2. There exists a sufficiently large number λ1

λ1 = λ1 (R,A, d ,N, a, b) ≥ λ0 ≥ 1 (30)

depending only on listed parameters such that the functional

Jλ (W ) in (29) is strictly convex on the set B (R), i.e. the

following inequality holds:

Jλ (W2)− Jλ (W1)− J ′λ (W1) (W2 −W1)

≥ C2e
−2λ(b−a) ∥W2 −W1∥2H1

N(Ω) + α ∥W2 −W1∥2Hkn
N (Ω)

,

∀λ ≥ λ1, ∀W1,W2 ∈ B (R,P). (31)
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3. For each λ ≥ λ1 there exists unique minimizer Wmin,λ ∈ B (R)

of the functional Jλ (W ) on the set B (R) . Furthermore, the

following inequality holds:

J ′λ

(
W h

min,λ

)(
W h −W h

min,λ

)
≥ 0, ∀W h ∈ B (R,Ph). (32)
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Theorem 4 (uniqueness). Assume that the number a ≥ a0, as in

(27). Then there exists at most one pair of function W ∈ H1
N (Ω)

satisfying conditions (23).
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Estimating the accuracy of the minimizer W h
min,λ

Following the concept of Tikhonov for ill-posed problems, we

assume the existence of the exact solution

W ∗ ∈ B∗ (R) =
{
W ∈ Hkn

N (Ω) : W (x) |∂Ω= P∗ (x) , ∥W ∥H1
N(Ω) < R

}
(33)

of problem (23) with the exact, i.e. noiseless data P∗, i.e. for

x ∈ Ω

DN (x)W ∗
y (x) +

n∑
i=1

Ai (x)W
∗
xi
(x) + F (W ∗ (x) , x) = 0, (34)

W ∗
(
xh
)
|∂Ω= P∗ (x) . (35)
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Suppose that there exists a vector function S (x) ∈ B (R) . Let the

vector function S∗ ∈ B∗ (R). Let δ ∈ (0, 1) be the noise level in

the data. We assume that

∥S − S∗∥
Hkn
N (Ω)

< δ. (36)
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Theorem 5. Assume that the number a ≥ a0, as in (27). Suppose

that conditions (34)-(36) hold. Consider the number λ2,

λ2 = λ1 (2R,A, d ,N, a, b) , (37)

where λ1 (R,A, d ,N, a, b) is the number of Theorem 3. Let

Wmin,λ2 be the minimizer of the functional Jλ (W ) on the set

B (R), which was found in Theorem 3. Let β ∈ (0,R) be a

number. Suppose that

W ∗ ∈ B∗ (R − β) (38)

and the noise level δ is so small that C2δ < β. Then the vector

function Wmin,λ2 belongs to the open set B (R) and the following

accuracy estimate holds:

∥Wmin,λ2 −W ∗∥H1
N(Ω) ≤ C2δ. (39)
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The global convergence of the gradient descent method of

the minimization of functional Jλ (W ) on the set B (R)

Let the starting point of iterations W0 ∈ B (R/3) be an arbitrary

point of this set. The sequence of this method is:

Wn = Wn−1 − γJ ′λ2
(Wn−1) , n = 1, 2, ..., (40)

where γ > 0 is a small number and λ2 is the same as in (37).
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Theorem 6. Let

W ∗ ∈ B∗ ((R − α) /3) and C2δ < α/3. (41)

Then there exists a sufficiently small number γ > 0 and a number

θ = θ (γ) ∈ (0, 1) such that in (40) all functions Wn ∈ B (R) and

the following convergence estimates hold:

∥Wn −Wmin,λ2∥H1
N(Ωh) ≤ θn ∥W0 −Wmin,λ2∥Hkn

N (Ω)
,

∥Wn −W ∗∥
H1,h
N (Ωh) ≤ C2δ + θn

∥∥∥W h
0 −W h

min,λ2

∥∥∥
Hkn
N (Ω)

,

∥an − a∗∥L2(Ω) ≤ C2δ + θn ∥W0 −Wmin,λ2∥Hkn
N (Ω)

.
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Numerical Examples

In our tests, we have perturbed the data with 3% and 5% of the

random noise.

Choice of the number N:

Table 1: The L2 (Ω)−norms of functions ws (x), s = 0, 1, ..., 11 for the

reference Test 1.

s 0 1 2 3 4 5

∥ws(x)∥L2 5.7122 1.6383 0.1630 0.0118 0.0091 0.0077

s 6 7 8 9 10 11

∥ws(x)∥L2 0.0067 0.0061 0.0055 0.0057 0.0058 0.0054

Thus, N = 3 is the optimal number.
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Figure 2: The choice of the optimal number N. Thus, N = 3 is the

optimal number. The inclusion/background contrast here is 2 : 1.

42



Exact
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Figure 3: The choice of the optimal number λ in the Carleman Weight

Function eλy . Here N = 3. Thus, λ = 5 is the optimal one. The

inclusion/background contrast here is 2 : 1.
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Figure 4: Numerical reconstruction of the Ω−shaped abnormality. The

inclusion/background contrast here is 2 : 1.
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MEAN FIELD GAMES: CARLEMAN ESTIMATES AND

CONVEXIFICATION

The mean field games (MFG) theory examines the collective

behavior of an infinite number of rational agents. This theory was

initially introduced in 2006 in the seminal works of Lasry and Lions

and Huang, Caines, and Malhamé.

In fact, the MFG theory can govern ALMOST ANY societal

phenomenon via a system of two coupled nonlinear parabolic

Partial Differential Equations!

This is the so-called MEAN FIELD GAMES SYSTEM.
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PRICE TO PAY FOR THIS GREAT ADVANTAGE:

Those equations have two opposite directions of time. Therefore,

the classical theory of parabolic equations is inapplicable.

The nonlinearity.

One of equations has an important term: an integral operator,

which does not allow to “project” the theory of CIPs for one

parabolic equation on CIPs for this system.

The MOST CHALLENGING difficulty is that the Laplace

operator of the solution of the first equation is a part of the second

equation.
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Prior to eight works of Klibanov with coauthors in 2023-2024,

there were no:

1 Uniqueness theorems for the forward problems for the MFGS

without restrictive conditions.

2 No stability theorems for forward problems.

3 No rigorous numerical methods for forward problems.

4 No rigorous theoretical numerical investigations for inverse

problems for the MFGS.

5 Introducing Carleman estimates in the MFG theory, Klibanov

et. al. addressed the above points 1-4 in 2023-2024.

6 The ideology of the theory of Ill-Posed Problems was

introduced in the MFG theory.
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NOTATIONS:

Ω ⊂ Rn is a bounded domain in Rn, QT = Ω× (0,T ) .

THE MEAN FIELD GAMES SYSTEM (MFGS)

vt(x , t) + β∆v(x , t) + k(x)(∇v(x , t))2/2+

+F

(
x , t,

∫
Ω

K (x , y)m (y , t) dy ,m (x , t)

)
= 0, (x , t) ∈ QT ,

mt(x , t)− β∆m(x , t)+

+∇ · (k(x)m(x , t)∇v(x , t)) = 0, (x , t) ∈ QT ,

β = const. > 0.
(42)

The standard boundary conditions are either periodicity, or

∂nv |ST= ∂nm |ST= 0. (43)

The conventional initial and terminal conditions:

v (x ,T ) = vT (x) ,m (x , 0) = m0 (x) . (44)
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Uniqueness theorems for problem (42)-(44) are known only under

restrictive so-called “monotonicity” conditions of Lasry and Lions.

v(x , t) is the value function, m(x , t) is the distribution of agents.

κ (x) characterizes the reaction of the controlled object to an

action applied at the point x .

The function F characterizes interaction between players.∫
Ω

K (x , y)m (y , t) dy

is the global interaction term. On the other hand, the term like

p (x , t)m (x , t) is the local interaction term.
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RETROSPECTIVE PROBLEM. Let the initial and terminal

conditions (44) are supplemented by the following terminal

condition:

m (x ,T ) = mT (x) . (45)

Find the pair of functions (v(x , t),m(x , t)) satisfying conditions

(42)-(45).

H2
0 (QT ) =

{
u ∈ H2 (QT ) : ∂nu |ST= 0

}
.

The Carleman Weight Function φλ,ν (t) :

φλ,ν (t) = e2λ(t+a)ν , t ∈ (0,T ) ;λ, ν >> 1.
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Theorem 7 (the first Carleman estimate). There exists a number

C = C (T , a) > 0 depending only on listed parameters such that

the following Carleman estimate is valid:∫
QT

(ut + β∆u)2 φ2
λ,νdxdt ≥

∫
QT

(
u2t /4 + β2 (∆u)2

)
φ2
λ,νdxdt+

+Cλνβ
∫
QT

(∇u)2 φ2
λ,νdxdt + Cλ2ν2

∫
QT

u2φ2
λ,νdxdt−

−e2λ(T+a)ν
∫
Ω

[
β (∇xu)

2 + λν (T + a)ν−1 u2
]
(x ,T ) dt,

∀λ > 0,∀ν > 2, ∀u ∈ H2
0 (QT ) .
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Theorem 8 (the second Carleman estimate). There exist a

sufficiently large number ν0 = ν0 (β,T , a) > 2 and a number

C = C (T , a) > 0 depending only on listed parameters such that

the following Carleman estimate holds:∫
QT

(ut − β∆u)2 φλ,νdxdt ≥

≥ Cβ
√
ν
∫
QT

(∇u)2 φλ,νdxdt + Cλν2
∫
QT

u2φλ,νdxdt−

−Cλν (T + a)ν−1 e2λ(T+a)ν
∫
Ω

u2 (x ,T ) dx−

−Ce2λa
ν ∫
Ω

[
(∇u)2 +

√
νu2
]
(x , 0) dx ,

∀λ > 0,∀ν ≥ ν0,∀u ∈ H2
0 (QT ) .
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Theorem 9 (Lipschitz stability estimate). Let M1,M2,M3,M4 > 0

be certain numbers. Assume that in (42) the function

F = F (x , t, y , z) : QT × R2 → R be bounded in any bounded

subset of the set QT × R2 and such that there exist derivatives

Fy ,Fz ∈ C
(
QT × R2

)
satisfying

max

(
sup

QT×R2

|Fy (x , t, y , z)| , sup
QT×R2

|Fy (x , t, y , z)|

)
≤ M1.

Let the function K (x , y) ∈ L∞ (Ω× Ω), the function κ ∈ C 1
(
Ω
)

and

sup
Ω×Ω

|K (x , y)| , ∥k∥C1(Ω) ≤ M2.

53



Consider the sets of functions B3 (M3) ,B4 (M4) defined as

B3 (M3) =

{
u ∈ H2

0 (QT ) : sup
QT

|u| , sup
QT

|∇u| , sup
QT

|∆u| ≤ M3

}
,

B4 (M4) =

{
u ∈ H2

0 (QT ) : sup
QT

|u| , sup
QT

|∇u| ≤ M4

}
.
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Let

M = max (M1,M2,M3,M4) .

Assume that two pairs of functions

(v1,m1) , (v2,m2) ∈ B3 (M3)× B4 (M4)

satisfy equations (42), zero Neumann boundary conditions (43) as

well as the following initial and terminal conditions:

v1 (x ,T ) = v
(1)
T (x) , v2 (x ,T ) = v

(2)
T (x) , x ∈ Ω,

m1 (x ,T ) = m
(1)
T (x) , m2 (x ,T ) = m

(2)
T (x) , x ∈ Ω,

m1 (x , 0) = m
(1)
0 (x) ,m2 (x , 0) = m

(2)
0 (x) , x ∈ Ω.
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Then there exists a number C1 = C1 (β,M,T ) > 0 depending

only on listed parameters such that the following two Lipschitz

stability estimates are valid:

∥∂tv1 − ∂tv2∥L2(QT )
+ ∥∆v1 −∆v2∥L2(QT )

+ ∥v1 − v2∥H1,0(QT )
≤

≤ C1

(∥∥∥v (1)T − v
(2)
T

∥∥∥
H1(Ω)

+
∥∥∥m(1)

T −m
(2)
T

∥∥∥
L2(Ω)

)
+

+C1

∥∥∥m(1)
0 −m

(2)
0

∥∥∥
H1(Ω)

,

(46)
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∥m1 −m2∥H1,0(QT )
≤ C1

(∥∥∥v (1)T − v
(2)
T

∥∥∥
H1(Ω)

+
∥∥∥m(1)

T −m
(2)
T

∥∥∥
L2(Ω)

)
+

+C1

∥∥∥m(1)
0 −m

(2)
0

∥∥∥
H1(Ω)

.

In particular, if the domain Ω is a rectangular prism, then estimate

(46) is strengthened as

∥v1 − v2∥H2,1(QT )
≤ C1

(∥∥∥v (1)T − v
(2)
T

∥∥∥
H1(Ω)

+
∥∥∥m(1)

T −m
(2)
T

∥∥∥
L2(Ω)

)
+

+C1

∥∥∥m(1)
0 −m

(2)
0

∥∥∥
H1(Ω)

.
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Next, if

v
(1)
T (x) ≡ v

(2)
T (x) ,m

(1)
0 (x) ≡ m

(2)
0 (x) ,m

(1)
T (x) ≡ m

(2)
T (x) , x ∈ Ω,

then v1 (x , t) ≡ v2 (x , t) and m1 (x , t) ≡ m2 (x , t) in QT , which

means that problem (42)-(45) has at most one solution.
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CONVEXIFICATION NUMERICAL METHOD FOR THE

RETROSPECTIVE PROBLEM

THIS IS THE FIRST NUMERICAL METHOD IN THE MFG

THEORY WITH THE RIGOROUSLY ESTABLISHED

GLOBAL CONVERGENCE PROPERTY

L1 (v ,m) =

= vt(x , t) + β∆v(x , t) + k(x)(∇v(x , t))2/2+

+
∫
Ω

K (x , y)m (y , t) dy + f (x , t)m (x , t) + F1 (x , t) = 0, (x , t) ∈ QT ,

L2 (v ,m) =

= mt(x , t)− β∆m(x , t) + div(k(x)m(x , t)∇v(x , t))+

+F2 (x , t) = 0, (x , t) ∈ QT ,

(47)
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where L1 (u, p) and L2 (u, p) are two operators. Just as above, we

add the zero Neumann boundary conditions

∂νv |ST= ∂νm |ST= 0. (48)

PROBLEM 2. Given:

v (x ,T ) = vT (x) , m (x , 0) = m0 (x) , x ∈ Ω,

m (x ,T ) = mT (x) , x ∈ Ω.
(49)

Find the pair of functions (v ,m) .

kn = [(n + 1) /2] + 3.

By embedding theorem Hkn (QT ) ⊂ C 2
(
QT

)
, and

∥g∥C2(QT ) ≤ C0 ∥g∥Hkn (QT )
, ∀g ∈ Hkn (QT ) . (50)

60



Let R > 0 be an arbitrary number. Consider the set B(R),

B (R) =


(v ,m) ∈ Hkn (QT )× Hkn (QT ) : u,m ∈ H2

0 (QT ) ,

v (x ,T ) = vT (x) , m (x ,T ) = mT (x) , m (x , 0) = m0 (x) ,

∥v∥Hkn (QT )
, ∥m∥Hkn (QT )

< R.


(51)
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CARLEMAN WEIGHT FUNCTION:

φλ (t) = e2(t+a)λ , t ∈ (0,T ) ;λ >> 1. (52)

Let L1 (v ,m) and L2 (v ,m) be two operators defined in (47).

Consider four functionals

J1,λ, J2,λ, J3, J : B (R) → R,
J1,λ (v ,m) =

∫
QT

(L1 (v ,m))2 φλdxdt,

J2,λ (v ,m) =
∫
QT

(L2 (v ,m))2 φλdxdt,

J3 (v ,m) = γ
(
∥v∥2Hkn (QT )

+ ∥m∥2Hkn (QT )

)
,

Jλ,γ (v ,m) = J1,λ (v ,m) +
(
1/2 + C1/λ

2
)
J2,λ (v ,m) + J3 (v ,m) .

(53)
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To solve our target Problem, we consider

Minimization Problem. Minimize the functional Jλ,γ (v ,m) in

(52) on the set B (R) defined in (51).

Below [, ] is the scalar product in the Hilbert space

Hkn (QT )× Hkn (QT ) . Define the subspace H̃ of this space as

H̃ =


(h, q) ∈ Hkn (QT )× Hkn (QT ) : h, q ∈ H2

0 (QT ) ,

h (x ,T ) = q (x ,T ) = q (x , 0) = 0,

∥(h, q)∥2
H̃
= ∥h∥2Hkn (QT )

+ ∥q∥2Hkn (QT )
.



63



Theorem 10 (brief formulation).

1. The functional Jλ,γ has the Fréchet derivative J ′λ,γ (v ,m) ∈ H̃

at every point (v ,m) ∈ B (R). The Fréchet derivative J ′λ,γ (v ,m)

is Lipschitz continuos on B (R), i.e. the following inequality holds:

∥Jλ,γ (v1,m1)− Jλ,γ (v2,m2)∥Hkn (QT )×Hkn (QT )
≤

≤ D ∥(v1,m1)− (v2,m2)∥Hkn (QT )×Hkn (QT )
,

∀ (v1,m1) , (v2,m2) ∈ B (R),

where the number D = D (λ, γ,Ω,T ,M,R) > 0 depends only on

listed parameters.
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2. There exists a sufficiently large number λ = λ (Ω,T ,M,R) > 1

such that for all λ ≥ λ the functional Jλ,γ is strongly convex on

the set B (R), i.e. there exists a number C1 = C1 (Ω,T ,M,R) > 0

such that the following inequality holds:

Jλ,γ (v1,m1)− Jλ,γ (v ,m)−
[
J ′λ,γ (v ,m) , (v1 − v ,m1 −m)

]
≥

≥ C1e
2aλ
(
∥∆v1 −∆v∥2L2(QT )

+ ∥v1 − v∥2H1,1(QT )
+ ∥m1 −m∥2H1,0(QT )

)
+

+γ
(
∥v1 − v∥2Hkn (QT )

+ ∥m1 −m∥Hkn (QT )

)
,

∀ (v ,m) , (v1,m1) ∈ B (R), ∀γ > 0, ∀λ ≥ λ.

(54)

In particular, numbers C1 and λ are also involved in the term

(1 + C1/λ
2)J2,λ (v ,m) in (53). Both numbers λ and C1 depend

only on listed parameters.
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3. For every λ ≥ λ and for every γ > 0 there exists unique

minimizer (vmin,λ,γ , mmin,λ,γ) ∈ B(R) of the functional Jλ,α (u, p)

on the set B (R) and the following inequality holds:[
J ′λ,γ (vmin,λ,γ ,mmin,λ,γ) , (vmin,λ,γ − v ,mmin,λ,γ −m)

]
≤ 0,

∀ (v ,m) ∈ B (R).(55)
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Figure 5: An example of the solution of the retrospective problem of

Mean Field Games via the convexification method. This is the evolution

of the function v (x , t) . The optimal λ = 2.
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OTHER FORWARD PROBLEMS BEING ADDRESSED:

PROBLEM 3. Known:

v (x ,T ) , v (x , 0) ,m (x , 0) .

Lipschitz stability estimate.

PROBLEM 4. Known:

either (v (x ,T ) ,m (x ,T )) or (v (x , 0) ,m (x , 0)) .
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Hölder stability estimates.

PROBLEM 5. Known lateral Cauchy data:

v |ST ,m |ST , ∂nv |ST , ∂nm |ST ,
either K (x , y) = δ (y1 − x1)K1 (x , y) ,

or K (x , y) = H (y1 − x1)K2 (x , y) ,

K1,K2 ∈ L∞ (Ω× Ω) ,

H (z) is the Heaviside function.

(56)

Hölder stability estimate. The Carleman Weight Function is an

unusual one:

ψλ (x , t) = exp
[
2λ
(
x21 − c2 (t − T/2)2

)]
, λ >> 1. (57)
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COEFFICIENT INVERSE PROBLEMS OF MEAN FIELD

GAMES

vt(x , t) + ∆v(x , t)−k(x)(∇v(x , t))2/2−
−
∫
Ω

K (x , y)m (y , t) dy − s (x , t)m (x , t) = 0, (x , t) ∈ QT ,

mt(x , t)−∆m(x , t)−div(k(x)m(x , t)∇u(x , t)) = 0, (x , t) ∈ QT .

(58)
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Let x = (x1, x2, ..., xn) denotes points in Rn and let

x = (x2, ..., xn) . To simplify the presentation, we assume that our

domain of interest Ω ⊂ Rn is a rectangular prism. Let

a, b,Bi > 0, i = 1, ..., n be some numbers and a < b.

Ω = {x : a < x1 < b,−Bi < xi < Bi , i = 2, ..., n} ,
Ω1 = {x : −Bi < xi < Bi , i = 2, ..., n} ,

Γ+1 = {x ∈ ∂Ω : x1 = b} , Γ−1 = {x ∈ ∂Ω : x1 = a} , Γ±1,T = Γ±1 × (0,T ) ,

Γ±i = {x ∈ ∂Ω : xi = ±Bi} , Γ±iT = Γ±i × (0,T ) , i = 2, ..., n.
(59)
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Coefficient Inverse Problem 2 (CIP2). Assume that functions

v ,m ∈ C 4
(
QT

)
satisfy equations (58). Let

u (x ,T/2) = u0 (x) , m (x ,T/2) = m0 (x) , x ∈ Ω,

u |ST= g0 (x , t) , ∂nu |ST= g1 (x , t) ,

m |ST= p0 (x , t) , ∂nm |ST= p1 (x , t) .

(60)

Determine the coefficient k (x) ∈ C 1
(
Ω
)
.

Coefficient Inverse Problem 2 (CIP2). Assume that conditions

of CIP1 are satisfied. Determine the coefficient k (x) ∈ L∞ (Ω) in

k (x)

∫
Ω

K (x , y)m (y , t) dy .
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TWO MAIN DIFFICULTIES COMPARED WITH THE

CASE OF A SINGLE PARABOLIC PDE:

1 The presence of the integral operator∫
Ω

K (x , y)m (y , t) dy

does not allow to “project” methods for CIPs for one

parabolic PDE on the case of MFGS (58).

2 In CIP1, the unknown coefficient k(x) is involved with its first

derivatives, whereas still only a single measurement is taken.
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A NEW CARLEMAN ESTIMATE FOR THE

VOLTERRA-LIKE INTEGRAL

Theorem 11. Let the number α be such that

α ∈
(
0,

1

3

)
, (61)

Let d > 0 be a number and let the number α be as in (61), where

n1, n2 are two odd numbers. Then the following Carleman estimate

of the Volterra integral holds for all functions f ∈ L2 (−d , d) and

all λ > 0 :

d∫
−d

e−2λ|t|1+α

 t∫
0

f (τ) dτ

2

dt ≤ 1

λ3/2
· d (1−3α)/2

√
2 (1 + α)3/2

d∫
−d

f 2e−2λ|t|1+α
dt.
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The new element here is the multiplier 1/λ3/2. In the

conventional case 1 + α = 2 and the multiplier is

1/λ >> 1/λ3/2 for sufficiently large λ.

Let N2,N3 > 0 be two numbers,

S1 (N2) =
{
v ∈ C 4

(
QT

)
: ∥v∥C4(QT ) ≤ N2

}
,

S2 (N3) =
{
k ∈ C 1

(
Ω
)
: ∥k∥C1(Ω) ≤ N3

}
,

N = max (N1,N2,N3) .

Suppose that we have two triples

(ui ,mi , ki ) ∈ S2
1 (N2)× S2 (N3) , i = 1, 2.
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Let

ui (x ,T/2) = u0,i (x) , mi (x ,T/2) = m0,i (x) , x ∈ Ω, i = 1, 2,

ui |ST= g0,i (x , t) , ∂nui |ST= g1,i (x , t) , i = 1, 2,

mi |ST= p0 (x , t) , ∂nmi |ST= p1,i (x , t) , i = 1, 2.
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Denote

ũ = u1 − u2, m̃ = m1 −m2, k̃ = k1 − k2,

ũ0 = u0,1 − u0,2, m̃0 = m0,1 −m0,2,

g̃0 = g0,1 − g0,2, g̃1 = g1,1 − g1,2, p̃0 = p0,1 − p0,2, p̃1 = p1,1 − p1,2.

Let the number ε ∈ (0,T/2) . Denote

Qε,T = Ω× (ε,T − ε) .
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Theorem 12 (Hölder stability estimate). Consider CIP1. Assume

that the kernel K (x , y) has either of forms (56). Also, let

1

2
|∇u0,1 (x)|2 ≥ c , x ∈ Ω,

where c > 0 is a number. Let δ > 0 be a sufficiently small number.

Assume that

∥ũ0∥H1(Ω) , ∥m̃0∥H1(Ω) ≤ δ,

∥∂st g̃0∥H2,1(ST−) , ∥∂st p̃0∥H2,1(ST )
≤ δ, s = 0, 1, 2,

∥∂st g̃1∥H1,0(ST )
, ∥∂st p̃1∥H1,0(ST )

≤ δ, s = 0, 1, 2.
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Let ρ ∈ (0, 1) be an arbitrary number. Then for every ε satisfying

T

2
(1−√

ρ) < ε <
T

2
.

there exists a sufficiently small number

δ0 = δ0 (N, ε,Ω,T , c , ρ) ∈ (0, 1) ,

and a number C = C (N, ε,Ω,T , c) > 0, both numbers

depending only on listed parameters, such that the following

Hölder stability estimate holds:

∥∂st ũ∥H2,1(Qε,T ) , ∥∂
s
t m̃∥H2,1(Qε,T ) ,

∥∥∥k̃∥∥∥
L2(Ω)

≤ Cδ1−ρ, ∀δ ∈ (0, δ0) , s = 0, 1, 2.

Also, CIP2 has at most one solution (u,m, k) ∈ S2
1 (N2)× S2 (N3) .
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THE GLOBALLY CONVERGENT CONVEXIFICATION

METHOD FOR CIP2

1 The same Carleman Weight Function is

φλ (x1, t) = exp
[
2λ
(
x21 − (t − T/2)1+α

)]
.

used to construct a globally strongly convex cost functional.

2 λ = 3 is an optimal one.

3 This is the FIRST numerical method for a CIP for the MFGS

with the rigorously proven GLOBAL convergence.

4 We have recovered the coefficient k (x) in

K (x , y) = k (x) δ (y1 − x1)K1 (x , y) .
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Figure 6: An example of the solution of CIP2 for Mean Field Games by

the convexification method. The optimal λ = 3. Inclusion/background

contrasts are 4:1 and 8:1, which are considered as high contrasts.
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SUMMARY

1 Convexification is a versatile method, which is applicable to a

broad class of Coefficient Inverse Problems with

non-overdetermined data.

2 This is the only method at the time being, which has the

global convergence property.
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TRAVEL TIME TOMOGRAPHY PROBLEM IN 3-D

(=Inverse Kinematic Problem of Seismic)

This is the single MOST CHALLENGING INVERSE PROBLEM I

am aware of.

Let x = (x , y , z) ∈ R3. Let c (x) be the speed of waves

propagation, c (x) = 1/n (x), where n (x) is the refractive index.

The function n (x) generates the Riemannian metric [?, Chapter 3]

dτ = n (x)

√
(dx)2 + (dy)2 + (dz)2. (62)

Let x0 be a source of waves and x be an observation point.
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Let Γ (x, x0) be the geodesic line generated by metric (62) and

connecting points x and x0. The first arrival time τ (x, x0) is

τ (x, x0) =

∫
Γ(x,x0)

n (y (s)) ds.

Eikonal Equation:

(∇xτ)
2 = n2 (x) ,

τ (x, x0) = O (|x− x0|) as x → x0.

84



Travel Time Tomography Problem (=Inverse Kinematic

Problem of Seismic)

Assume that the function τ (x, x0) known for all source positions

running along the axis {x = 0, y = 0} of the cylinder of Figure 7.

Assume also that the function n (x) = 1 for
√
x2 + y2 < ε.
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Figure 7: Schematic diagram of the source/detectors configuration.
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Find the function n (x) inside that cylinder, assuming that the

function

τ (x, x0)

is known for all x on the entire surface of that cylinder for all x0
running along the axis of that cylinder.

Convexification works for this problem!
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Figure 8: A result of the convexification.
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Figure 9: A result of the convexification.
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