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Bounds and optimal performance in linear EM

« Channel counting in wave volumes, w/ David Miller @ Stanford
Tunneling escape of waves, D. A. B. Miller, Z. Kuang, and O. D. Miller, Nature Photonics (Dec. 2024)

« (Causality in nonreciprocal LTI systems
In preparation, C. Christie & O. D. Miller

* Linear programming for high-power lasers, w/ Hui Cao & Doug Stone @Yale

Optimal input excitations for suppressing nonlinear instabilities in multimode fibers, K. Wisal, C.-
W. Chen, Z. Kuang, O. D. Miller, H. Cao, and A. D. Stone, Optica (Dec. 2024)



Communication Channels
D. A. B. Miller et al. 2000+
Consider transmit and receive volumes:

Vi
Arg)

How many independent channels can one use to communicate on?

Consider a basis of transmit and receive waves, excited with coefficient
VeCtors Cqeng and creceive- 1NE Matrix relating them is known:

Creceive = I Csend

The number of independent degrees of freedom Is captured in singular

value decomposition (SVD) of T
D. A. B. Miller, Appl. Opt. 39, 1681 (2000); D. A. B. Miller, Adv. in Opt. and Phot. 11, 679 (2019)



Communication Channels

. — 1%
Creceive — TCsend . .
Krg)

T =UzVT
basis for basis for connection strengths between transmit
received waves transmitted waves eigenvectors and receive eigenvectors!

Can X have arbitrarily many nontrivial singular values? No!

Sumrule: Tr(T1T) = f f |G (x7, xp) |2dxrdxg = Tr(ZTZ)
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D. A. B. Miller, Appl. Opt. 39, 1681 (2000); D. A. B. Miller, Adv. in Opt. and Phot. 11, 679 (2019)



Bounds on the Coupling Strengths of Communication Channels and Their
Information Capacities

Zeyu Kuang,! David A. B. Miller,2 and Owen D. Miller!

! Department of Applied Physics and Energy Sciences Institute,
Yale University, New Haven, Connecticut 06511, USA
2 Ginzton Laboratory, Stanford University, 348 Via Pueblo Mall, Stanford, California 94305-4088, USA
(Dated: May 12, 2022)

[near publication in IEEE TAP]
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Channel strength scaling

|54/ < 2% d3 ax Channel strength falls off
S T k*V,V,(1 4+ d/Rmin) V29t quasi-exponentially after threshold.
Why?




Waves from arbitrary volumes

There are a finite number of well-coupled
channels from any volume

Outgoing radiation
(befOI'e eXpOnentlaI fa”_off) Bounding from spherical
spherical surface
surface

N\
-

Classical “diffraction” explanation suffices
In paraxial scenarios
 Waves “miss” receiver
- But what about enclosed volumes? e
We find an upper limit to the number of
channels by surrounding the volume with a
spherical bounding surface, and counting the

maximum number of well-coupled waves from
this surface :



Tunneling in the 1D Schrodinger equation

d*
[ ——+ v<x>] YD) = Ep(x)

L
d?
—P(x) = [V(x) — E]Pp(x)

dx?

V(x) > E: exponential growth/decay (e.g., tunneling)
V(x) < E: oscillations



Scalar wave “tunneling”

VUr) + k*U(r) =0

@ plane-wave solutions P = kxx
— 2 2 2
] V = (k2 + k2)/k
d_p2 Ux) =1V —-EJU(x) E=1 eigen-energy
V—E tunneling
“barrier height”

4 Evanescent »
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Scalar spherical waves

n=1 m=0 n;1 m=1 n=3 m=2 n=4 m=2
- ( ‘ a2y & .
| - 7
W w’/ =’
VZU(r) + kZU(r) =0 n=8 m=4  n=6 m=0  n=6 m=6  n=20 m=10 | | °
. //‘ .§. — / \ ":/,.f;’.l: t?i\
W L1 Ww & "
Upm (1) = z,,(kr)Y,,,, (6, D) Y, : spherical harmonics

n nodal circles,
|m| of which cut through poles

z,(kr) are the spherical Bessel functions,

which satisfy
d*z,(p) dz,(p) 2mr
p? 07 +2p o +[p? —n(n + D]z, (p) =0 p=kr=—r
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The Riccati-Bessel “Schrodinger” equation

We can recast the spherical Bessel functions, removing 1/radius asymptotic behavior.
Such functions are known as the Riccati-Bessel functions {,,, which satisfy the
Riccati-Bessel differential equation

d*¢y,

p? i+ p? =+ DG, = 0

Which we can rearrange to the form

~ d?¢, nn+1)

dpz + ,02 (n = Cn
This is a Schrodinger equation! _nn+1) o ) -
With effective radial “potential” Vip) = 02 and “eigen-energy” E =1



Tunneling escape and escape radius

If the “potential energy” exceeds the “total energy,” i.e., if

nn+1)
02

> 1 or, equivalently, n(n + 1) > p?

Then the wave will be tunneling rather than propagating.

So, for each n, there is an “escape radius”

Or, equivalently, in dimensioned form

Pescn = \/n(n + 1)

\/n(n + 1) /10

7"eSC n — k

\/ (n+1)




Spherical escaping waves

The barrier height falls with distance for spherical waves (!)

Propagating + Wave on spherical scape radius

region surface Tunnelling :  Propagating
=== - region \ region
e \/\ s =
; ; \ 1.00 1L
Tunnelling ,’g; § i ® » . L0 2 n=22
i L/ "\ S 075 unnelling 1 @
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At a given radius, there is a finite number of channels that

Ao
Tescn = _n‘/n(n +D do not have to tunnel. All others must tunnel. 14



Channel counting

For a radius ry, the largest value n, of n that satisfies Jnn+1) < kryis

n,(ry) = floor|[\/1/4 + Ney |
“patch”
where Ngy is a “spherical heuristic number” ‘ of area
4mrg

Alr
A o
Ngy = (kry)? = =
Y Bym Agn

Ag = area of spherical surface

Then the total number of well-coupled (scalar) waves is

Nps = (np + 1)2




The diffraction limit of a volume

We can now construct a precise definition of the “diffraction limit” of a volume:

For a wave interacting with a volume
the wave passes the diffraction limit

iIf any spherical component of the wave must
tunnel to enter or leave the bounding
spherical surface enclosing the volume

16



More conseguences & conclusions

Electromagnetic waves have 2 polarizations and no n = 0 channel
* Proper counting yields per-polarization well-coupled “channel” count of

Nys = ny,(n, + 2)

* For ry less than approx. 0.2254, there are no well-coupled channels
(consistent with Wheeler-Chu limit)
« Scalar waves always have at least 1 well-coupled channel

Based on onset of spherical wave tunneling, this approach gives clear intuition that
« Explains how many waves can easily get in or out of a volume...
« ... and why the fall-off is so abrupt past this number
« Gives a rigorous and precise diffraction limit definition
e Can also derive previous heuristic results

Tunneling escape of waves, D. A. B. Miller, Z. Kuang, and O. D. Miller, Nature Photonics (Dec. 2024)



Extending causality-based bounds in electromagnetism

Pioneering works: Bode-Fano, Purcell, Gustafsson, Rozanov

2018: Near-field power-bandwidth limits (Phys Rev Xx)
2021: Refractive index bounds (Advanced Materials)
2023: EM scatterers as matrix-valued oscillators (Nature Communications)

2024 Optics & Photonics News
Research Highlight

Scattered field
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/ Opicin 2024

Today: Nonreciprocal, linear time-invariant (LTI) systems

18



Causality-based sum rules and bounds

Pext(w) = Im s(w)

= Abs + Scat

Extinction

Frequency, w



Causality-based sum rules and bounds

©

& Poxi(w) = Im s(w)
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Frequency, w
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Causality-based sum

rules and bounds

Extinction

0

Frequency, w



Causality-based sum rules and bounds

Wi

s(w)

22



Causality-based sum rules and bounds

Wi
s(w)
Wo
o) o
—00 X X X 0 X X X +00
X X
X X X X
X X X X
X X X X X X

r Uext(a)) dw = 7T—ezNe
J ZSOmeC

| -sumrule .. @ 0.001 0.01 0.10 1.0

v
Integrated extinction
]

Extinction cross section

0.2 0.4 0.6 0.8 -/ 00 42 84 126 16.8 21.0

wl w, Number of electrons (x10°%) . .
: Monticone & Alu, “Do Cloaked Obijects
R Gordon JCP 38, 1724 (1963) Really Scatter Less?,” Phys. Rev. X Rozanov, [EEE TAP

ZJ Yong et al. Nano Lett. 15, 7633 (2015) 3, 041005 (2013) 48, 8 (2000) 23

/ In [p(A)|dA| < 27%p, d
0



Arbitrary anisotropic response function y(w)
X11 X12 X13
X(w) = <X21 X27 Xzs)
X31 X32 X33

Exemplar objective: maximum nonreciprocity, e.g. max [ X;,(w) dw

%0 W,
0 2

Xyj(~0*) = Xjj(@)

Altarelli et al. PRB 1972

Issues: no positivity in off-diagonal components, integrand oscillates, total
integral equals zero, ...



Resolution:
« Entrywise components are the wrong place to look for bounds

* Instead, separate the Hermitian and anti-Hermitian parts of the matrix:

X11 X12 Xq3 T T
_|_ —_
X31 X3z X33
Crossing symmetry? Xij(—w") = X{;(w)

-yl = UCO I K@) @)




Resolution:
« Entrywise components are the wrong place to look for bounds

* Instead, separate the reciprocal and nonreciprocal parts of the matrix

X11 X12 Xp3 X 4+ X7 X — X7
X(w) =|X21 X22 X23 | =R(w) + N(w) R = > N =
X31 X3z X33

Crossing symmetries:
R(—w*) = RT(w)

N(—w*) = =NT(w)

26



KK relations

Sum rules

Passivity

2 (Yo' ImR(w") = |
Re R(w) = - @Y —w? dw

T

2 (®(w)?ImN(w'
Re [wN(w)] = = f (“’(3),)2“‘ . a()(:)da)’
0

2

> Twy,
j w Im R(w) dw =TH
0

* TWiw. 1 0§
2 _ tWpWc i
fo w* Im N(w) dw = 5 (—i O)

wImR(w) =0

—owImR(w) <wlmN(w) < wIm R(w)

Reciprocal part

Nonreciprocal part

[real w]



: 2 (P w'ImR(w’ .
KK relations Re R(w) = = wm R(w) do’ Reciprocal part
t), (w)?— w?

2 (®(0)*ImN(w") | |
Re [wN(w)] = —f N —dw Nonreciprocal part
), (@)—-w
o'e) 2
Sum rules 2 _MwpWe r 0
jo w” Im N(w) dw = > (—i O)

Extinction nonreciprocity:

o< if[lm N(w)]{; dw

Sum rule:
ijwz[lm N(w)]y, dw = +

nonreciprocal response
]
——

2
TWH W,

0 5 10 15 0 5 10 15
2 frequency, w frequency, w




High-Power Fiber Amplifiers
Applications

-
NEED

« High average power
« Narrow linewidth
 Good beam quality

( Easy to focus, collimate, shape )

Laser interferometer

J

_5_2 e IPG Photonics
=g

_

)
Ak /”””\

Zuo, Opt Laser Engin,
106187 (2020)

Lockheed Martin



Nonlinear Scattering in Multimode Fibers

[ Electronic vs mech/thermal nonlinearities are dominant under different excitation conditions

» Pulsed excitation, broadband,
high peak power => electronic
nonlinearities (Kerr) dominate

» Regime of eventual thermalization
and spatial beam cleaning

» CW narrowband excitation in
amplifying fiber => mechanical
(SBS) and thermo-optic (TMl)
nonlinearities dominate.

» These nonlinearities don’t

Spatial self beam cleaning WEFS in linear systems

conserve momentum and lead to Wu et al. Nature Photonics,
propagation instabilities 13(11), pp.776-782.
» Most applications thought to
require single-mode fiber (beam * WEFSwith SLM studied
quality) extensively in linear scattering
» Propose using multimode fiber systems
and wavefront shaping to mitigate * Lesssoinnonlinear cases => Cao et al. Nature Physics 18,

instabilities no transmission matrix no. 9 (2022): 994-1007.

30



SBS Theory: Multimode Excitation

Multimode excitation /
propagation
Forwards signal wave

Em B ZAIj;('\" }‘.“)e-iﬂ“: o ‘ “ ‘
[ /___ v

Esh\ - Z Bmf:n ('Ys )“‘)6 Vo
/

Backwards Stokes wave

SBS interaction

Optical Equation

n2w?. - coupled

—

—
V2 — B = pow?(Xy . B)

S 4

= —
Xy=m:VXu

Assumptions: translational invariance in z-direction
and paraxial approximation

We derive growth equations for B,, in terms of input
wavefront and fiber properties

A series of well-justified approximations makes this
multiscale problem semi-analytically tractable

Acoustic Equation

VAV(V.D) + VAV X V X i@+ poQ%id = F

L1
F:—iv.[?:E@)E]

These equations simplify for isotropic fiber but tensor character remains in shear terms, small for Silica

31



Multimode Stokes Growth

Wisal et al., PRX 2024, detailed theory

parameters

dBm (£2) _ Z ]/“;nﬁj(Q)AEAIBjCi(.Si‘FTj_ﬁI —Ym )z

dz

1,71

Linear Growth
Equations

dA () :

1) Solve for acoustic modes and
integrate them out — cubic nonlinearity

2) Undepleted signal approximation
3) Phase Matching (8; + y;— B — ¥m = 0)

4) G,, depends input signal power
distribution (but not on phase) — phase
can be used for WFS output!

5) Problem is unstable to SBS from zero
input power — no onset threshold

6) Growth from noise => “threshold” is
conventional

d P]"
dz

= —Gyp P

32



Multimode SBS theory: Phase Matched

» Exponential growth in Stokes
Power in each mode

» Growth rate depends on signal power
distribution and SBS gain spectra

NCIRED Y niele
l

Determined by Controlled by
fiber properties input profile

» Resonant Gain spectrum with offset peaks,
strength depends on acousto-optic modal
overlap calculable

33



MM excitation: Experimental data, passive fiber

Far Use input focusing to ON-axis
: control number of '
contro 14 X OFF-axis
" o 3.0 X
) FM-only @
onl °| P
5 4l o
y s —
| a3 3t o 7
ON-axis n S ) 4
focusing a2
T o O O
0 |—aasuss—o-cp-000
?FF-e_ms 0 1 2 3 4 5 6 7
ocusing

*Step-index fiber, core: 20 um, NA = 0.3, length: 50 m

Expected transmitted power [W]

Chen et al, Nature Communications 14, no. 1 (2023):
7343.
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“Optimal input excitation for SBS suppression in multimode fibers”,

Optl mal EXCltatlon K. Wisal, C-W Chen. Z. Kuang, S. Warrensmith, Owen Miller,

Hui Cao, A. Douglas Stone (Optica 11, 1663, Dec 2024)

PM(0) = P™(L)ebm L G (D, (1)) = ZG m(Q) P
Effective SBS Gp = rgagc G (Q)) = r;llaé( Z Gzlem(Q)P l
Gain ' ' l

‘oot min Gz = min [ max Z GIm(Q)P,]
Objective o B = I g (Q)P]

Constraints zpl =1 , p=0 , [=123..M

35



“Optimal input excitation for SBS suppression in multimode fibers”,

Ll near Prog ram m | ng K. Wisal, C-W Chen. Z. Kuang, S. Warrensmith, Owen Miller,

Hui Cao, A. Douglas Stone (Optica 11, 1663, Dec 2024)

min| max GE"(Q)P,] Introduce a slack variable t
{P1}
Minimize t
Pl;Pz;---;PN;t 0.14F T T T T T T T X
: N pl _
subject to Z 1 P lPO 0.42F 9.5x Threshold enhancement! 1
G mpt <t
Pt>0 01 :
%o.oe— -
> Power spread across Z 006
multiple groups of modes 2
0.04
> More weight to Higher Order 0.02 ‘ M m
Modes I . | | | . i i

0 20 40 60 80 100 120 140 160
Mode number

Optimal Mode Content 36



Looking forward

Showed threshold improvement under SBS. Also found:

* Threshold improvements under transverse mode instabilities (TMlI)
* Threshold improvements subject to SBS & TMI simultaneously

* Input robustness: phase-only SLM okay!

More generally:
* Rich interplay of spatial and spectral DOFs in multimode fibers

* Linear control of nonlinear thresholds
* Progress towards highest-power single-frequency fiber lasers

Optimal input excitations for suppressing nonlinear instabilities in multimode fibers
K. Wisal, C.-W. Chen, Z. Kuang, O. D. Miller, H. Cao, and A. D. Stone, Optica (Dec. 2024)
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