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Bounds and optimal performance in linear EM

• Channel counting in wave volumes, w/ David Miller @Stanford

• Causality in nonreciprocal LTI systems

• Linear programming for high-power lasers, w/ Hui Cao & Doug Stone @Yale

Tunneling escape of waves, D. A. B. Miller, Z. Kuang, and O. D. Miller, Nature Photonics (Dec. 2024)

In preparation, C. Christie & O. D. Miller

Optimal input excitations for suppressing nonlinear instabilities in multimode fibers, K. Wisal, C.-
W. Chen, Z. Kuang, O. D. Miller, H. Cao, and A. D. Stone, Optica (Dec. 2024)
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Communication Channels

• Consider transmit and receive volumes:

• How many independent channels can one use to communicate on?

• Consider a basis of transmit and receive waves, excited with coefficient 

vectors 𝑐send and 𝑐receive. The matrix relating them is known:

• The number of independent degrees of freedom is captured in singular 

value decomposition (SVD) of T

D. A. B. Miller et al. 2000+

D. A. B. Miller, Appl. Opt. 39, 1681 (2000); D. A. B. Miller, Adv. in Opt. and Phot. 11, 679 (2019)

𝑐receive = 𝑇𝑐send
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Communication Channels

D. A. B. Miller, Appl. Opt. 39, 1681 (2000); D. A. B. Miller, Adv. in Opt. and Phot. 11, 679 (2019)

𝑐receive = 𝑇𝑐send

𝑇 = 𝑈Σ𝑉†

basis for 

received waves

basis for 

transmitted waves

connection strengths between transmit 

eigenvectors and receive eigenvectors!

Can Σ have arbitrarily many nontrivial singular values? No!

Sum rule: Tr 𝑇†𝑇 = න
𝑉𝑅

න
𝑉𝑇

𝐺(𝑥𝑇 , 𝑥𝑅) 2𝑑𝑥𝑇𝑑𝑥𝑅 = Tr Σ†Σ
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The singular values of the 𝑇 matrix obey 

a monotonicity theorem

Semi-analytical bounds to 

communication strengths follow using 

spherical / shell bounding volumes:

[near publication in IEEE TAP]
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The singular values of the 𝑇 matrix obey 

a monotonicity theorem

Semi-analytical bounds to 

communication strengths follow using 

spherical / shell bounding volumes:

[near publication in IEEE TAP]

Capacity bounds
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The singular values of the 𝑇 matrix obey 

a monotonicity theorem

Semi-analytical bounds to 

communication strengths follow using 

spherical / shell bounding volumes:

[near publication in IEEE TAP]

Channel strength scaling

Channel strength falls off 

quasi-exponentially after threshold. 

Why?
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Waves from arbitrary volumes

There are a finite number of well-coupled 

channels from any volume

  (before exponential fall-off)

Classical “diffraction” explanation suffices 

in paraxial scenarios 

• Waves “miss” receiver

• But what about enclosed volumes?

We find an upper limit to the number of 

channels by surrounding the volume with a 

spherical bounding surface, and counting the 

maximum number of well-coupled waves from 

this surface 8



Tunneling in the 1D Schrodinger equation

𝑉 𝑥 > 𝐸: exponential growth/decay (e.g., tunneling)

𝑉 𝑥 < 𝐸: oscillations

−
𝑑2

𝑑𝑥2
+ 𝑉 𝑥 𝜓 𝑥 = 𝐸𝜓(𝑥)

𝑑2

𝑑𝑥2
𝜓 𝑥 = 𝑉 𝑥 − 𝐸 𝜓(𝑥)
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Scalar wave “tunneling”

∇2𝑈 𝒓 + 𝑘2𝑈 𝒓 = 0

𝑑2

𝑑𝜌2
𝑈 𝑥 = 𝑉 − 𝐸 𝑈(𝑥)

plane-wave solutions 𝜌 = 𝑘𝑥𝑥

𝑉 = (𝑘𝑦
2 + 𝑘𝑧

2)/𝑘2

𝐸 = 1
tunneling 

“barrier height”

“eigen-energy”

𝑉 − 𝐸
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Scalar spherical waves

∇2𝑈 𝒓 + 𝑘2𝑈 𝒓 = 0

𝑌𝑛𝑚: spherical harmonics𝑈𝑛𝑚 𝒓 = 𝑧𝑛 𝑘𝑟 𝑌𝑛𝑚(𝜃, 𝜙)
𝑛 nodal circles, 

|𝑚| of which cut through poles

𝑧𝑛 𝑘𝑟  are the spherical Bessel functions,

              which satisfy

𝜌2
𝑑2𝑧𝑛(𝜌)

𝑑𝜌2
+ 2𝜌

𝑑𝑧𝑛 𝜌

𝑑𝜌
+ 𝜌2 − 𝑛 𝑛 + 1 𝑧𝑛 𝜌 = 0 𝜌 = 𝑘𝑟 =

2𝜋𝑟

𝜆
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The Riccati-Bessel “Schrodinger” equation

We can recast the spherical Bessel functions, removing 1/radius asymptotic behavior. 

Such functions are known as the Riccati-Bessel functions 𝜁𝑛, which satisfy the 

Riccati-Bessel differential equation

𝜌2
𝑑2𝜁𝑛

𝑑𝜌2
+ 𝜌2 − 𝑛 𝑛 + 1 𝜁𝑛 = 0

Which we can rearrange to the form

−
𝑑2𝜁𝑛

𝑑𝜌2
+

𝑛 𝑛 + 1

𝜌2
𝜁𝑛 = 𝜁𝑛

This is a Schrodinger equation!

With effective radial “potential”
𝑉 𝜌 =

𝑛 𝑛 + 1

𝜌2
and “eigen-energy” 𝐸 = 1
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Tunneling escape and escape radius

If the “potential energy” exceeds the “total energy,” i.e., if

So, for each 𝑛, there is an “escape radius” 

or, equivalently, 
𝑛 𝑛 + 1

𝜌2
> 1 𝑛(𝑛 + 1) > 𝜌2

Then the wave will be tunneling rather than propagating.

𝜌esc,𝑛 = 𝑛 𝑛 + 1

Or, equivalently, in dimensioned form 𝑟esc,𝑛 =
𝑛 𝑛 + 1

𝑘
=

𝜆0

2𝜋
𝑛 𝑛 + 1
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Spherical escaping waves

The barrier height falls with distance for spherical waves (!)

At a given radius, there is a finite number of channels that 

do not have to tunnel. All others must tunnel.
𝑟esc,𝑛 =

𝜆0

2𝜋
𝑛 𝑛 + 1

𝑛 = 22

𝑚 = 12

𝑟0 = 2.9𝜆

𝑟esc ≈ 3.58𝜆
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Channel counting

For a radius 𝑟0, the largest value 𝑛𝑝 of 𝑛 that satisfies 𝑛 𝑛 + 1 < 𝑘𝑟0 is

𝑛𝑝 𝑟0 = floor 1/4 + 𝑁𝑆𝐻 

where 𝑁𝑆𝐻 is a “spherical heuristic number”

𝑁𝑆𝐻 = 𝑘𝑟0
2 =

4𝜋𝑟0
2

𝜆0
2/𝜋

=
𝐴𝑆

𝜆0
2/𝜋

𝐴𝑆 = area of spherical surface

Then the total number of well-coupled (scalar) waves is

𝑁𝑝𝑠 = 𝑛𝑝 + 1
2
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The diffraction limit of a volume

We can now construct a precise definition of the “diffraction limit” of a volume:
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More consequences & conclusions

Electromagnetic waves have 2 polarizations and no 𝑛 = 0 channel

• Proper counting yields per-polarization well-coupled “channel” count of

• For 𝑟0 less than approx. 0.225𝜆, there are no well-coupled channels 

(consistent with Wheeler-Chu limit)

• Scalar waves always have at least 1 well-coupled channel 

Based on onset of spherical wave tunneling, this approach gives clear intuition that

• Explains how many waves can easily get in or out of a volume…

• … and why the fall-off is so abrupt past this number

• Gives a rigorous and precise diffraction limit definition

• Can also derive previous heuristic results

Tunneling escape of waves, D. A. B. Miller, Z. Kuang, and O. D. Miller, Nature Photonics (Dec. 2024)

𝑁𝑝𝑠 = 𝑛𝑝(𝑛𝑝 + 2)

17



Pioneering works: Bode-Fano, Purcell, Gustafsson, Rozanov

2018: Near-field power-bandwidth limits (Phys Rev X)

2021: Refractive index bounds (Advanced Materials)

2023: EM scatterers as matrix-valued oscillators (Nature Communications)

Today: Nonreciprocal, linear time-invariant (LTI) systems

Extending causality-based bounds in electromagnetism

2024 Optics & Photonics News

Research Highlight
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Causality-based sum rules and bounds

Frequency, 𝜔

Ex
ti

n
ct

io
n

 =
 A

b
s 

+ 
Sc

at

𝑃ext(𝜔) = Im 𝑠(𝜔)
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Causality-based sum rules and bounds

Frequency, 𝜔

Ex
ti

n
ct

io
n

 =
 A

b
s 

+ 
Sc

at

𝑃ext(𝜔) = Im 𝑠(𝜔)

න
0

∞

𝑃ext 𝜔  d𝜔 =?
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Frequency, 𝜔

0 +∞−∞

Ex
ti

n
ct

io
n

Causality-based sum rules and bounds
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𝜔𝑟

0 +∞−∞

𝜔𝑖

X
X

X X X

X X
X

X

X
X

X
X

XXX

XX
X

X

X
X

Causality-based sum rules and bounds

𝑠(𝜔)
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Causality-based sum rules and bounds

23

Rozanov, IEEE TAP

48, 8 (2000)

Monticone & Alu, “Do Cloaked Objects 

Really Scatter Less?,” Phys. Rev. X 

3, 041005 (2013)

න 𝜎ext(𝜔) d𝜔 =
𝜋𝑒2

2𝜀0𝑚𝑒𝑐
𝑁𝑒

ZJ Yong et al. Nano Lett. 15, 7633 (2015)

R Gordon JCP 38, 1724 (1963)



Arbitrary anisotropic response function 𝜒(𝜔)

𝕏(𝜔) =

𝑋11 𝑋12 𝑋13

𝑋21 𝑋22 𝑋23

𝑋31 𝑋32 𝑋33

න
0

∞

Im 𝑋𝑖𝑗 𝜔 𝑑𝜔 =
𝜋𝜔𝑝

2

2
𝛿𝑖𝑗

Altarelli et al. PRB 1972

Exemplar objective: maximum nonreciprocity, e.g. max ׬ 𝑋12 𝜔  d𝜔

𝑋𝑖𝑗 −𝜔∗ = 𝑋𝑖𝑗
∗ (𝜔)

Issues: no positivity in off-diagonal components, integrand oscillates, total 

integral equals zero, …
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Resolution:

• Entrywise components are the wrong place to look for bounds

• Instead, separate the Hermitian and anti-Hermitian parts of the matrix:

ℍ =
𝜒 + 𝜒†

2
𝔸 =

𝜒 − 𝜒†

2𝑖

𝑋𝑖𝑗 −𝜔∗ = 𝑋𝑖𝑗
∗ (𝜔)Crossing symmetry?

ℍ −𝜔∗
𝑖𝑗 =

𝑋𝑖𝑗 −𝜔∗ + 𝑋𝑗𝑖
∗ (−𝜔∗)

2
=

𝑋𝑖𝑗
∗ 𝜔 + 𝑋𝑗𝑖(𝜔)

2
≠ ℍ† 𝜔

𝑖𝑗

𝕏 𝜔 =
𝑋11 𝑋12 𝑋13

𝑋21 𝑋22 𝑋23

𝑋31 𝑋32 𝑋33

= ℍ + 𝑖𝔸
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Resolution:

• Entrywise components are the wrong place to look for bounds

• Instead, separate the Hermitian and anti-Hermitian parts of the matrix

• Instead, separate the reciprocal and nonreciprocal parts of the matrix

ℝ =
𝕏 + 𝕏𝑇

2

Crossing symmetries:

𝕏 𝜔 =
𝑋11 𝑋12 𝑋13

𝑋21 𝑋22 𝑋23

𝑋31 𝑋32 𝑋33

= ℝ(𝜔) + ℕ(𝜔) ℕ =
𝕏 − 𝕏𝑇

2

ℝ −𝜔∗ = ℝ† 𝜔

ℕ −𝜔∗ = −ℕ† 𝜔
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KK relations

Re 𝜔ℕ 𝜔 =
2

𝜋
න

0

∞ 𝜔′ 2 Im ℕ 𝜔′

𝜔′ 2 − 𝜔2
d𝜔′

Re ℝ 𝜔 =
2

𝜋
න

0

∞ 𝜔′Im ℝ 𝜔′

𝜔′ 2 − 𝜔2
d𝜔′ Reciprocal part

Nonreciprocal part

න
0

∞

𝜔 Im ℝ 𝜔  d𝜔 =
𝜋𝜔𝑝

2

2
𝕀

න
0

∞

𝜔2 Im ℕ 𝜔  d𝜔 =
𝜋𝜔𝑝

2𝜔𝑐

2
0 𝑖

−𝑖 0

Sum rules

Passivity

(for example)

𝜔 Im ℝ 𝜔 ≥ 0

−𝜔 Im ℝ 𝜔 ≤ 𝜔 Im ℕ 𝜔 ≤ 𝜔 Im ℝ 𝜔

27
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KK relations

Re 𝜔ℕ 𝜔 =
2

𝜋
න

0

∞ 𝜔′ 2 Im ℕ 𝜔′

𝜔′ 2 − 𝜔2
d𝜔′

Re ℝ 𝜔 =
2

𝜋
න

0

∞ 𝜔′Im ℝ 𝜔′

𝜔′ 2 − 𝜔2
d𝜔′ Reciprocal part

Nonreciprocal part

න
0

∞

𝜔2 Im ℕ 𝜔  d𝜔 =
𝜋𝜔𝑝

2𝜔𝑐

2
0 𝑖

−𝑖 0

Sum rules

Passivity

(for example)

Im ℝ 𝜔 ≥ 0

−Im ℝ 𝜔 ≤ Im ℕ 𝜔 ≤ Im ℝ 𝜔
𝑖 න𝜔2 Im ℕ 𝜔 12 d𝜔 = ±

𝜋𝜔𝑝
2𝜔𝑐

2

∝ 𝑖 න Im ℕ 𝜔 12 d𝜔

Extinction nonreciprocity:

Sum rule:

න
0

∞

𝜔2 Im ℕ 𝜔  d𝜔 =
𝜋𝜔𝑝

2𝜔𝑐

2
0 𝑖

−𝑖 0
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High-Power Fiber Amplifiers

Zuo, Opt Laser Engin, 

106187 (2020)

Laser interferometer

Defense

Lockheed Martin

Applications
NEED

• High average power

• Narrow linewidth

• Good beam quality

IPG Photonics

Laser processing

43

( Easy to focus, collimate, shape )

Nonlinearities problematic?
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Ø Growth rate depends on signal power 
distribution and SBS gain spectra

Ø Exponential growth in Stokes 
Power in each mode

� 	�

� �
= −� 	�

� Ω = �
Γ �

Ω− Ω + Γ

Ø Resonant Gain spectrum with offset peaks, 
strength  depends on acousto-optic modal 
overlap calculable

�

Determined by 
fiber properties

Controlled by 
input profile

� Ω, � = 	�
( , )

	�

Multimode SBS theory: Phase Matched
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Looking forward

Showed threshold improvement under SBS. Also found:

• Threshold improvements under transverse mode instabilities (TMI)

• Threshold improvements subject to SBS & TMI simultaneously

• Input robustness: phase-only SLM okay!

More generally:

• Rich interplay of spatial and spectral DOFs in multimode fibers

• Linear control of nonlinear thresholds

• Progress towards highest-power single-frequency fiber lasers

37

Optimal input excitations for suppressing nonlinear instabilities in multimode fibers
K. Wisal, C.-W. Chen, Z. Kuang, O. D. Miller, H. Cao, and A. D. Stone, Optica (Dec. 2024)
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