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Time-varying media rely on a 
physical mechanism that alters 
their dielectric properties in 
response to a control stimulus.
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Time-varying media rely on a 
physical mechanism that alters 
their dielectric properties in 
response to a control stimulus.

Pump-probe framework: NL 
optical interactions mediated by a 
pump field can be exploited to 
produce a time-varying 
susceptibility for a probe field. 
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Effective linear regimes in 
plasmonic three-wave mixing*

*Luca Stefanini, Davide Ramaccia, Filiberto Bilotti, Shima Fardad, and Alessandro Salandrino, 
"Effective linear regimes in plasmonic three-wave mixing," J. Opt. Soc. Am. B 41, 1968-1978 (2024) 7
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Analysis of a realistic system

Ag

CdS
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Crystals belonging to the 𝐶6𝑣 point 

group symmetry are suitable for 

mixing  two co-polarized and one 

cross-polarized field.

For Cadmium Sulfide:

Bandgap 2.42 eV (512nm)

Permittivity ~5.4

Plasmonic Resonance 415 nm
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Nonlinear Polarization
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Dynamical equation
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Saturation
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Under what conditions is the 

steady state susceptibility 

linear in the pump amplitude?



Pump 
linearity 
region



Summary

• We developed the theory of three-wave mixing in planar 
plasmonic structures.

• We identified the parametric resonance conditions.

• We identified the regime of linear response with respect to the 
pump amplitude for the steady state susceptibility 
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Dynamic dielectric landscape 
engineering via modified 

Gerchberg-Saxton Algorithm*

18

*Bretton Scarbrough, Chase Ward, David Levy, Alessandro Salandrino, Shima Fardad; “Efficient 
Calculation of Computer-Generated Holograms via Phase Induced Compressive-Sensing Gerchberg-
Saxton Algorithm”  to be submitted.
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Optomechanical interactions
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General approach
• The amount of momentum that an EM field can 

deliver per unit of time to a volume is the flux of 
the Maxwell Stress Tensor through a surface 
enclosing the volume:

 = dAF nT ˆ


A
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Geometrical optics regime
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Reconfigurable 
dielectric 
landscape
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Optically-bound 
particle arrays

• Placement and manipulation of 
polarizable units with wavelength-
scale resolution.

25



Superposition Algorithm
• A single focus can be 

calculated by a Fresnel lens.

• The system we are utilizing is 
linear. Therefore, we can use 
superposition to generate 
multiple foci.

• This algorithm is fast. 
However, it is more 
susceptible to creating ghost 
traps when compared to 
alternatives. 

Fresnel Lens Equation

26



Basic HOT Setup
27

The SLM is programmed by 

displaying a phase mask on 

its liquid crystal display. 

Fluorescent nanoparticles 

are placed in solution to 

visualize the beam shape.



Basic HOT Setup
28

Phase mask 

for two lenses
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Two Trap Phase Mask Results:



Two Trap Phase Mask Results:

1

2

Glass Walls of 

the Cuvette
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Two Trap Phase Mask Results:

1

2

3

Glass Walls of 

the Cuvette
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What are Ghost Holograms and Ghost Traps:

• A ghost hologram is an 
unintentional structure or 
aberration in a generated 
hologram.

• A ghost trap is an unintentionally 
generated focus that is powerful 
enough to trap a particle just like a 
normal trap.

Two intentional traps with a ghost 
trap in between them.

32



Why do Ghost Holograms Occur: 
• Ghost holograms can be caused by 

physical limitations of the devices 
utilized:

• SLM pixel size

• SLM effective area

• Quantization error in phase

• Highly dependent on the structure. Ghost 
holograms are more likely to appear in 
highly symmetric structures (see [3] for 
discussion).

• Ghost holograms can also be caused by 
how a phase mask is calculated. The way 
the phase mask is calculated always 
introduces implicit or explicit assumptions.

33

Two intentional traps with a ghost 
trap in between them.



Gerchberg-Saxton Algorithm: How it Works
1. Record the desired amplitude in the image plane and 

diffraction plane, 𝑢0 and 𝑈0 respectively (this can be 

done from utilizing 𝑢0 = 𝐼0). 𝑢0 and 𝑈0 are related by 

the Fourier Transform.

2. On the first iteration, add a random phase to the image 
plane.

3. Take the Fourier Transform of this new complex field. 

4. The transformed field now has a new magnitude (𝑈) and 
phase (Φ). However, we know that we want the 
magnitude to be 𝑈0. Therefore, we replace the 
magnitude and keep the phase

5. This process can be repeated with the inverse Fourier 
transform, using 𝑢0 instead of 𝑈0. Every repetition of 
this process improves the accuracy of the phase, 𝜑. 

6. Whenever “enough” iterations have been completed, 
take 𝜑 and convert it to a grayscale image to display. 
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Alternating Projections and Convexity

41



Phase Mask Comparison: 

42

Superposition Algorithm Result with 

Ghost Trap

Gerchberg Saxton Algorithm Result 

without Ghost Trap



Why does the Gerchberg-Saxton Aglorithm 
Create Less Ghost Holograms?

• The Superposition algorithm looks at the system as individual traps, not as a complete entity. 

• The GS algorithm considers all traps simultaneously. This results in “smoother” phase masks.

• The GS algorithm is iterative. Therefore, if the results are unsatisfactory, more iterations can 
always be done. 

43

The same phase mask calculated via superposition and the GS algorithm subtracted 

from each other to highlight their differences. Five traps were placed randomly in a 

100 𝜇m × 100 𝜇m × 200 𝜇m volume simulating a cuvette structure.

GS Abs DifferenceSP



Algorithm Comparison for 2 Symmetric Foci

44

Superposition Algorithm Result with 

Ghost Trap

Gerchberg-Saxton Algorithm Result 

without Ghost Trap

1

2

3

1

2



Quantifying the Quality of Phase Masks
• A phase masks quality can be 

quantified into three numbers: 

• Uniformity – a measure of 
how closely distributed the 
intensity of each trap is.

• Efficiency – fraction of the 
total intensity directed at 
the generated traps. 

• Standard deviation – how 
far on average each trap’s 
intensity deviates from the 
mean intensity.
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Dynamical 
phase masks

• To create a time-dependent 
structure, the particles array must 
be dynamically rearranged.

• Being holographic in nature, 
updating the positions of the trap 
sites requires the computation 
from scratch of a new phase mask.

• At each step the GS algorithm 
must iterate till convergence is 
achieved.

• We have developed a new 
algorithm that exploits the current 
state of the array to compute the 
new configurations.
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Phase-Induced Compressive Sensing 
(PICS) GS

47



Summary

• We developed a novel algorithm to compute phase masks to 
assemble and reconfigure particle arrays by means of optical 
force. 

• The proposed method outperforms competing strategies in 
terms of efficiency and computational cost.
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Theory of nondegenerate 
2-photon absorption in indirect 

bandgap semiconductors*

*David Ziemkiewicz, David Knez, Evan P. Garcia, Sylwia Zielińska-Raczyńska, Gerard 
Czajkowski, Alessandro Salandrino, Sergey S. Kharintsev, Aleksei I. Noskov, Eric O. Potma, Dmitry A. 
Fishman; Two-photon absorption in silicon using the real density matrix approach. J. Chem. Phys. 7 
October 2024; 161 (14): 144117. 49



Modeling 
pump-probe 
experiments 

in Si



Nonlinear Absorption – Theory vs 
Experiment

51



Summary

• We developed a theoretical model of nondegenerate 2-photon 
absorption in indirect bandgap semiconductor.

• The theory is based on the real density matrix approach and 
relies on a number of known measured hyperparameters.

• The model is in good agreement with the pump-probe 
experiment conducted at UC Irvine on Si samples.

52


	Slide 1: Phenomenology and underlying physics of time-varying media
	Slide 2: Time-varying media
	Slide 3: Time-varying media
	Slide 4: Time-varying media
	Slide 5: Amplitude  VS  response- time  tradeoff 
	Slide 6: Amplitude  VS  response- time  tradeoff 
	Slide 7: Effective linear regimes in plasmonic three-wave mixing*
	Slide 8: System of interest
	Slide 9: PPR in Planar Systems
	Slide 10: Analysis of a realistic system
	Slide 11: Nonlinear Polarization
	Slide 12: Dynamical equation
	Slide 13: Threshold Condition
	Slide 14: Saturation
	Slide 15
	Slide 16: Pump linearity region
	Slide 17: Summary
	Slide 18: Dynamic dielectric landscape engineering via modified Gerchberg-Saxton Algorithm*
	Slide 19
	Slide 20: Optomechanical interactions
	Slide 21: General approach
	Slide 22
	Slide 23: Geometrical optics regime
	Slide 24: Reconfigurable dielectric landscape
	Slide 25: Optically-bound particle arrays
	Slide 26: Superposition Algorithm
	Slide 27
	Slide 28
	Slide 29
	Slide 30: Two Trap Phase Mask Results:
	Slide 31: Two Trap Phase Mask Results:
	Slide 32: What are Ghost Holograms and Ghost Traps:
	Slide 33: Why do Ghost Holograms Occur: 
	Slide 34: Gerchberg-Saxton Algorithm: How it Works
	Slide 35: Gerchberg-Saxton Algorithm: How it Works
	Slide 36: Gerchberg-Saxton Algorithm: How it Works
	Slide 37: Gerchberg-Saxton Algorithm: How it Works
	Slide 38: Gerchberg-Saxton Algorithm: How it Works
	Slide 39: Gerchberg-Saxton Algorithm: How it Works
	Slide 40: Gerchberg-Saxton Algorithm: How it Works
	Slide 41: Alternating Projections and Convexity
	Slide 42: Phase Mask Comparison: 
	Slide 43: Why does the Gerchberg-Saxton Aglorithm Create Less Ghost Holograms?
	Slide 44: Algorithm Comparison for 2 Symmetric Foci
	Slide 45: Quantifying the Quality of Phase Masks
	Slide 46: Dynamical phase masks
	Slide 47: Phase-Induced Compressive Sensing (PICS) GS
	Slide 48: Summary
	Slide 49: Theory of nondegenerate  2-photon absorption in indirect bandgap semiconductors* 
	Slide 50: Modeling pump-probe experiments in Si
	Slide 51: Nonlinear Absorption – Theory vs Experiment
	Slide 52: Summary

