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Electromagnetic Device Simulation and Optimization

• Maxwell’s equations for EM devices:

➢ Nanophotonics

➢ Radio-Frequency Devices (antennas, 

waveguide couplers, passives)

•Analytical solutions: Exist for very few problems

•Optimal design given target metrics usually not intuitive

Increasing networking and communication demands necessitate 

highly-optimized, energy-efficient technology down to the device level
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BIE and High-Order Nyström Methods

⬗Meshing surfaces vs volumes: O(N2) unknowns vs 

O(N3)
⬙Solve for Integral Equation over scattering surface

⬗Frequency-domain
⬙Dispersion-free

⬙Small linear system solved with LU decomposition 
⬙Iterative methods (e.g. GMRES) for large problems

⬗Nyström
⬙High-order numerical convergence
⬙5 points per wavelength can outperform FDTD at 50 points per 

wavelength resolution

Bruno & Garza, JCP 2020



Chebyshev-Based Boundary Integral Equations (CBIE)

Mesh geometry on 

Chebyshev grid

Precompute 

singular 
integrals

Solve BIE 

iteratively

Compute 

fields

Hu, J., Garza, E., and Sideris, C. "A Chebyshev-based high-order-accurate integral equation solver 

for Maxwell’s equations." IEEE Transactions on Antennas and Propagation 69.9 (2021): 5790-5800.

Garza, E., Hu, J., and Sideris, C. "High-order Chebyshev-based Nyström Methods for Electromagnetics." 2021 

International Applied Computational Electromagnetics Society Symposium (ACES) . IEEE, 2021.



IFGF for Maxwell’s Equations

⬖ Unaccelerated BIE methods: 𝑂 𝑁2 time complexity.

⬖ Numerous algorithmic acceleration approaches exist (e.g., FMM, Butterfly, 

AIM), but they are either specialized for low-frequency problems or require 

FFTs which are challenging to parallelize.

⬖ Interpolated Factored Green’s Function (IFGF) introduced for acoustic 

scattering in 2021 by Bauinger and Bruno*.

⬖ Single-level IFGF: 𝑂 𝑁3/2 , Multi-level IFGF: 𝑂 𝑁𝑙𝑜𝑔𝑁 time complexity

⬖ Completely FFT free: Parallelizes very easily across many CPUs.

⬖ Simple approach: Interpolate a properly factored Green’s function kernel 

using low-order Chebyshev polynomials.

Paul, J. and Sideris, C. “Accelerated 3D Maxwell Integral Equation Solver Using the Interpolated Factored 

Green Function Method” In revision (IEEE TAP). Available on Arxiv.



⬖ Factor out “centered” factor:     
𝑒𝑖𝑘 𝑥−𝑦

𝑥−𝑦
=

𝑒𝑖𝑘𝑟
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𝑟
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𝑟
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⬖ Analytic factor:
𝑟𝑒𝑖𝑘( 𝑥−𝑦 −𝑟)

|𝑥−𝑦|
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IFGF Concept
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Green 
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(easily approximated 

by polynomial 
interpolation)



⬖ 𝑁 total points, 𝑀 boxes, 
𝑁

𝑀
points per box.

⬖ Near interactions cost: 𝑂
𝑁2

𝑀

⬖ Far interactions cost: 𝑂 𝑀𝑁

⬖ Set them equal and solve for optimal 𝑀 to minimize cost: 𝑀𝑁 =
𝑁2

𝑀

⬖ Optimal 𝑀 = 𝑁

⬖ Resulting asymptotic time complexity: 𝑂 𝑁
3

2

Single-level IFGF Complexity Analysis (Last Year)



Single-level IFGF: PEC Sphere Array (Last Year)

Problem Size

(# unknowns)

Dual AMD 7763 (128 cores @ 2.45 GHz) + A100 GPU

CPU 

Direct
CPU IFGF Speedup

GPU 

IFGF
Speedup

5,895,600 4586 sec 394 sec 11.6x 13.7 sec 335x

⬖ 17x17x17 array of PEC spheres 

⬖ (D = 0.125𝜆, spacing = 0.148𝜆)

⬖ 5,895,600 unknowns: 4913 spheres * 6 patches per 

sphere * 10x10 * 2 unknowns per point

⬖ Solved with MFIE: 46 GMRES iterations to reach 

residual 9x10−4

⬖ Total solution time (GPU-IFGF): 656 sec (~11min)



Multi-Level IFGF

⬖ How can we go from 𝑂 𝑁
3

2 to 

𝑂 𝑁𝑙𝑜𝑔𝑁 ?



Multi-Level IFGF

⬖ How can we go from 𝑂 𝑁
3

2 to 

𝑂 𝑁𝑙𝑜𝑔𝑁 ?

⬖ Build an octree and use nested 

interpolation.

Level: d=1



Multi-Level IFGF

⬖ How can we go from 𝑂 𝑁
3

2 to 

𝑂 𝑁𝑙𝑜𝑔𝑁 ?

⬖ Build an octree and use nested 

interpolation.

Level: d=2



Multi-Level IFGF

⬖ How can we go from 𝑂 𝑁
3

2 to 

𝑂 𝑁𝑙𝑜𝑔𝑁 ?

⬖ Build an octree and use nested 

interpolation.

Level: d=3



Multi-Level IFGF

⬖ How can we go from 𝑂 𝑁
3

2 to 

𝑂 𝑁𝑙𝑜𝑔𝑁 ?

⬖ Build an octree and use nested 

interpolation.

Level: d=4



Multi-Level IFGF

Level: d=4

⬖ How can we go from 𝑂 𝑁
3

2 to 

𝑂 𝑁𝑙𝑜𝑔𝑁 ?

⬖ Build an octree and use nested 

interpolation.

⬖ Start from lowest level (in this 

example, d=4)



Multi-Level IFGF

Level: d=4

⬖ How can we go from 𝑂 𝑁
3

2 to 

𝑂 𝑁𝑙𝑜𝑔𝑁 ?

⬖ Build an octree and use nested 

interpolation.

⬖ Start from lowest level (in this 

example, d=4) and use direct 

computation for all target points in 

neighboring boxes.



Multi-Level IFGF

⬖ Next use direct computation to 

compute cone interpolants at level 

d=4.

Level: d=4



Multi-Level IFGF

⬖ Next use direct computation to 

compute cone interpolants at level 

d=4.

⬖ Use these cone interpolants to 

compute the values of target points 

in ”cousin” boxes: A ”cousin” box is 

box on the same level that is NOT a 

neighbor but is a child of a neighbor 

of the parent of the current box.

⬖ Do NOT compute any more target 

points at this level for further away 

boxes– higher levels can be used 

for this. Level: d=4



Multi-Level IFGF

⬖ Instead, use cone interpolants at 

level d to compute points needed to 

compute the cone interpolants for 

the next level up d-1 (in this case 

d=3).

⬖ 8x cones one level higher, but 8x 

fewer boxes, so approx. constant 

O(N) operations per level

⬖ ~log2 N levels due to octree splitting

⬖ O(N log N) overall complexity after 

traversing through all levels

Level: d=4



Maxwell’s Equations: PEC and Dielectric Case

⬖ Consider the Magnetic Field Integral Equation (MFIE) for PECs:

⬖
𝑱

2
+𝒦 𝑱 = 𝒏 × 𝑯𝑖𝑛𝑐 with 𝒦 𝐚 (r) = −𝐧 𝒓 × ∇ × Γ𝐺׬ 𝒓, 𝒓′ 𝒂 𝒓′ 𝑑𝜎(𝒓′)

⬖ 𝒦 can be rewritten in terms of the single layer as:

⬖ 𝒦 𝒂 𝒓 =
𝜕

𝜕𝒏
𝒮 𝒂 𝒓 − 𝒆1 𝒓 𝒏 𝒓 ⋅

𝜕

𝜕𝑢
+ 𝒆2 𝒓 𝒏 𝒓 ⋅

𝜕

𝜕𝑣
𝒮 𝒂 𝒓

⬖ Similarly, N-Muller formulation for dielectrics can also be broken down into 

evaluations of the single layer and its normal derivative.

⬖ Single layer 𝒮 𝒂 𝒓 = Γ𝐺׬ 𝒓, 𝒓′ 𝑎(𝒓′)𝑑𝜎(𝒓′) straightforward to accelerate with 

IFGF: Create an interpolant for each Cartesian component of the density.

⬖ What about the normal derivative?



Maxwell’s Equations: PEC and Dielectric Case

⬖ IFGF cones comprise 3D Chebyshev polynomial approximations of the single layer 

operator within their spatial support: 𝑔𝑠 𝑢, 𝑣, 𝑤 = σ𝑖σ𝑗σ𝑘𝛼𝑖𝑗𝑘𝑇𝑖 𝑢 𝑇𝑗 𝑣 𝑇𝑘(𝑤)

⬖ 𝒮 = centered factor ∗ 𝑔𝑠= G 𝐱, 𝒚𝒄 ∗ 𝑔𝑠

⬖
𝜕

𝜕𝒏
𝒮 = lim

ℎ→0

𝒮 𝒙+ෝ𝒏ℎ −𝑆(𝒙)

ℎ
≈

𝒮 𝒙+ෝ𝒏ℎ −𝑆(𝒙)

ℎ
for h>0.

⬖ Easily computed with one additional IFGF single layer evaluation a distance h 

away from the target point 𝐱 in the normal direction.

⬖ Faster than analytically computing derivatives of the IFGF Chebyshev expansions 

and no accuracy impact for small enough h.



Multi-Level IFGF: Dielectric Sphere

Problem 

Size
(# 

unknowns)

Dual AMD 7763 (128 cores @ 

2.45 GHz)

kinterior

CPU 

Direct 

(sec)

CPU 

IFGF
Speedup

24,576 3𝛑 0.064 0.076 X

98,304 6𝛑 0.909 0.440 2.1x

393,216 12𝛑 13.05 2.25 5.8x

1,572,864 24𝛑 151.05 10.85 13.9x

6,291,456 48𝛑 2463.5 50.14 49.1x

48𝝀𝒊𝒏𝒕 diameter sphere
𝜖𝑒𝑥𝑡 = 1.0, 𝜖𝑖𝑛𝑡 = 2.25

|𝐸𝑡𝑜𝑡𝑎𝑙|



Multi-Level IFGF: Dielectric Sphere

N (Number of Points)



Additional Examples: Glider

⬖ 45-wavelength in longest dimension (𝜖𝑟
𝑒 = 1, 𝜖𝑟

𝑖 = 2.16; 𝑘𝑒 = 25.1, 𝑘𝑖 = 36.9)

⬖ N = 1,281,600 unknowns

⬖ 9 sec for forward map using IFGF vs. 110 without acceleration (12.2x speedup)



Additional Examples: Hummingbird

⬖ 77-wavelength wingspan (𝜖𝑟
𝑒 = 1, 𝜖𝑟

𝑖 = 2.16; 𝑘𝑒 = 50.3, 𝑘𝑖 = 73.9)

⬖ N = 2,723,328 unknowns

⬖ 27 sec for forward map using IFGF vs. 588 without acceleration (22x speedup)



Additional Examples: Nanophotonic Power Splitter

⬖ 77-wavelength wingspan (𝜖𝑟
𝑒 = 2.08, 𝜖𝑟

𝑖 = 12.08; 𝑘𝑒 = 5.85, 𝑘𝑖 = 14.09)

⬖ N = 161,280 unknowns

⬖ 0.5 sec for forward map using IFGF vs. 2.5 without acceleration (5x speedup)

Re(Ex) Abs(Ex)
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Introduction: Corner Regularized Integral Equations

⬖ Fields at edges/corners for PECs tend to infinity or 0 algebraically.

⬖ Near the corner, the behavior is well modeled by quasistatic fields and the 

exponent is dependent on the angle[1]

⬖ Polynomial basis functions are poor approximators of these singular fields

⬖ Convergence of high-order methods significantly suffers for non-smooth 

geometries with sharp edges or corners.

PEC

TM Mode (Hz, Ex, Ey)

𝑯𝒛
𝒊𝒏𝒄 = 𝒆𝒊𝒌𝟎𝒙

[1] Zargaryan SS, Mazya VG (1984) The asymptotic form of the solutions of integral equations of potential theory in the neighborhood of the 

corner points of a contour. Prikl Mat Mekh 48:169–174

Sideris, C., Aslanyan, D., and Bruno, O. 

“High-order-accurate Solution of Scattering 

Integral Equations with Unbounded 

Solutions at Corners”. In preparation.



⬖ 𝑢𝑠𝑐𝑎𝑡(𝒓) = σ𝑝׬Γp 1−׬
1 𝑑𝐺 𝒓,𝒓′(𝜃)

𝑑𝑛(𝒓)
𝜙𝑝 𝒓′(𝜃) 𝜏(𝜃)𝑑𝜃 = σ𝑝𝒦[𝜙𝑝] with 𝜏 =

𝑑ℓ

𝑑𝜃
being 

the line element and the density on each patch: 𝜙𝑝 𝜃 = σ𝑛𝛼𝑛
𝑝
𝑇𝑛 𝜃

⬖ Test using point-matching on same grid as unknowns:
𝐼

2
− 𝐾 𝜙 =

𝑑𝐻𝑧
𝑖𝑛𝑐

𝑑𝑛(𝑟)

• Zero centered circle (D=2) 

and square (edge length = 2)
• 𝜆0 = 0.628
• Incident field: 𝐻𝑧

𝑖𝑛𝑐 = 𝑒𝑖𝑘0𝑥

• N=10 points patch

• Target point for comparison: 
(1.5, 1.5).

• Circle achieves expected 10th

order convergence slope.
• Square suffers from poor 1st

order convergence.

CBIE Convergence: PEC Circle vs. Square Geometry



Last Year: PEC Objects with Sharp Edges: MFIE

⬖ Consider TM case with incident plane wave excitation: 𝐻𝑧
𝑖𝑛𝑐 = 𝑒𝑖𝑘0𝑥

⬖ Representation theorem: 𝐻𝑧
𝑠𝑐𝑎𝑡 = Γ𝐺׬ 𝑟, 𝑟′ 𝜙 𝑟′ 𝑑ℓ 𝑟′

⬖ MFIE satisfying Neumann boundary conditions: 
𝑑𝐻𝑧

𝑠𝑐𝑎𝑡

𝑑𝑛
+

𝑑𝐻𝑧
𝑖𝑛𝑐

𝑑𝑛
= 0

⬖ Corresponding integral equation:

⬖ -
1

2
𝜙 𝑟 +

𝑑

𝑑𝑛(𝑟)
Γ𝐺׬ 𝑟, 𝑟′ 𝜙 𝑟′ 𝑑ℓ 𝑟′ = −

𝑑𝐻𝑧
𝑖𝑛𝑐

𝑑𝑛(𝑟)

Corner Field 

Singularity



⬖ BIEs with Neumann boundary conditions have operators similar to the 3D case (e.g., hypersingular operator, 

target point normal derivatives, etc.)

⬖ Introduce 1:1 change of variables (CoV) for patches with corners, e.g.: 𝑠(𝜃) = 𝜃𝑝.

⬖ Integral for source patch 𝑞′ with CoV with target point on patch 𝑞 becomes:

⬖ 0׬
1 𝑑𝐺𝑘 ෤𝒓𝑞 𝜃 ,෤𝒓𝑞′ 𝜃′

𝑑𝒏 ෤𝒓𝑞 𝜃
𝜙𝑞′ 𝜃′ ෨𝐿𝑞′(𝜃′)𝑑𝜃′where ෤𝒓𝑞 𝜃 = 𝒓𝒒(𝑠𝑞 𝜃 ) and ෨𝐿𝑞′(𝜃′) =

𝑑ℓ

𝑑𝑠𝑞

𝑑𝑠𝑞(𝜃
′)

𝑑𝜃′
= 𝐿𝑞′ 𝑠(𝜃′)

𝑑𝑠𝑞(𝜃
′)

𝑑𝜃′
is 

the new line element.

⬖ NOTE: 𝑝 − 1 derivatives of 𝑠 𝜃 are 0 at 𝜃 = 0, may cancel the singularity in 𝜙

⬖ MFIE with CoV for system with M patches becomes:

Last Year: Modified CBIE Approach for MFIE

−
1

2
𝜙𝑞 𝜽 + ෍

𝑞′=1

𝑀

න
0

1𝑑𝐺 ෤𝒓𝑞 𝜃 , ෤𝒓𝑞′ 𝜃′

𝑑𝒏 ෤𝒓𝑞 𝜃
𝜙𝑞′ 𝜃′ ෨𝐿𝑞′(𝜃′)𝑑𝜃′ = −

𝑑𝐻𝑧
𝑖𝑛𝑐

𝑑𝒏 ෤𝒓𝑞 𝜃



Last Year: Modified Approach for MFIE (Cont.)

⬖ Multiply integral equation through by target point line element, ෨𝐿𝑞(𝜃):

⬖ −
1

2
෨𝐿𝑞(𝜃)𝜙𝑞 𝜃 + ෨𝐿𝑞(𝜃)σ𝑞′=1

𝑀 0׬
1 𝑑𝐺 ෤𝒓𝑞 𝜃 ,෤𝒓𝑞′ 𝜃′

𝑑𝒏 ෤𝒓𝑞 𝜃
𝜙𝑞′ 𝜃

′ ෨𝐿𝑞′(𝜃′)𝑑𝜃′ = −
𝑑𝐻𝑧

𝑖𝑛𝑐

𝑑𝒏 ෤𝒓𝑞 𝜃
෨𝐿𝑞(𝜃)

⬖ Define new unknown: 𝜓𝑞 𝜃 = 𝜙𝑞 𝜃 ෨𝐿𝑞 𝜃 and solve for:

⬖ 𝜓𝑞 𝜃 is easier to approximate using polynomials than the original 𝜙 density 

since the ෨𝐿𝑞(𝜃) line element due to the CoV makes it (and p-1 of its 

derivatives) go to 0 at 𝜃 = 0 where the field singularity is located.

⬖ Multiplication by line element forces the incident field(RHS) to go to zero at 

the corners        density also tends to 0 at the corner due to identity.

−
1

2
𝜓𝑞 𝜃 + ෨𝐿𝑞(𝜃) ෍

𝑞′=1

𝑀

න
0

1𝑑𝐺 ෤𝒓𝑞 𝜃 , ෤𝒓𝑞′ 𝜃′

𝑑𝒏 ෤𝒓𝑞 𝜃
𝜓𝑞′ 𝜃

′ 𝑑𝜃′ = −
𝑑𝐻𝑧

𝑖𝑛𝑐

𝑑𝒏 ෤𝒓𝑞 𝜃
෨𝐿𝑞(𝜃)



⬖ The TM MFIE equation has resonances and is not uniquely solvable

⬖ Consider the representation theorem[7,8,9]:

⬖ TM CFIE satisfying Neumann boundary conditions: 
𝑑𝐻𝑧

𝑠𝑐𝑎𝑡

𝑑𝒏
+

𝑑𝐻𝑧
𝑖𝑛𝑐

𝑑𝒏
= 0

⬖ Corresponding combined field integral equation:

⬖ 𝑖𝜂

2
𝜙 𝐫 − 𝑖𝜂𝑇1 𝜙 𝒓 + 𝑘2𝑇2 𝜙 𝒓 + 𝑇3 𝜙 𝒓 = −

𝑑𝐻𝑧
𝑖𝑛𝑐

𝑑𝑛 𝑟

⬖ 𝑇1 𝜙 𝒓 = Γ׬
𝑑𝐺𝑘 𝒓,𝒓′

𝑑𝒏 𝒓
𝜙 𝒓′ 𝑑ℓ 𝒓′

⬖ 𝑇2 𝜙 𝒓 = Γ׬ 𝐺𝑘 𝒓, 𝒓′ (𝒏 𝒓 ⋅ 𝒏′ 𝒓′ )𝜙 𝒓′ 𝑑ℓ(𝒓′)

⬖ 𝑇3 𝜙 𝒓 = 𝜕𝜏(𝒓) Γ׬ 𝐺𝑘 𝒓, 𝒓′ 𝜕𝜏(𝒓′)𝜙 𝒓′ 𝑑ℓ(𝒓′)

PEC Objects with Sharp Edges: CFIE

[7] Burton, A., Miller J., The application of integral equation methods to the numerical solution of some exterior boundary-value problems, 

Proc. Royal Soc. London 323 (1971), 201-210

[8] Burton, A., Numerical solution of acoustic radiation problems, NPL Contract Rept. OC5/S35 National Physical Laboratory, Teddington,

Middlesex, (1976).

[9] Brackhage H, Werner P. Uber das Dirichletsche aussenraumproblem fur die Helmholtsche schwingungsgleichung. Archiv der Mathematik 1965; 16:325–329. 

CFIE system is badly conditioned 

due to the hypersingular kernel of 

EFIE operator

𝐻𝑧
𝑠𝑐𝑎𝑡(𝒓) = −𝑖 Γ𝐺𝑘׬ 𝒓, 𝒓′ 𝜙 𝒓′ 𝑑ℓ 𝒓′ Γ׬+

𝑑𝐺𝑘 𝒓,𝒓′

𝑑𝒏(𝑟′)
𝜙 𝒓′ 𝑑ℓ 𝒓′

MFIE EFIE



Modified CBIE Approach: CR-CFIE

⬖ We can add a regularization operator to the EFIE[11]:

𝑅 𝜙 = න
Γ

𝐺𝑖𝑘 𝒓, 𝒓′′ 𝜙 𝒓′′ 𝑑ℓ 𝒓′′

⬖ Then the EFIE part will take the form:

⬖ Parameterize and consider the  1:1 change of variables (CoV) for patches with corners 

like before, the discretized regularization operator takes the form:

𝑅 𝜙 (෤𝒓𝑞′ 𝜃
′ ) = ෍

𝑞′=1

𝑀

න
0

1

𝐺𝑖𝑘 ෤𝒓𝑞′ 𝜃
′ , ෤𝒓𝑞′′ 𝜃

′′ 𝜙𝑞′′ ෤𝒓𝑞′′ 𝜃
′′ ෨𝐿𝑞′′(𝜃′′)𝑑𝜃′′

⬖ NOTE: Regularization introduces the line element ෨𝐿𝑞′′(𝜃′′) next to the density which can 

be absorbed into the unknowns
[11] Bruno, O., Elling, T. and Turc, C. (2012), Regularized integral equations and fast high-order solvers for sound-hard acoustic scattering 

problems. Int. J. Numer. Meth. Engng, 91: 1045-1072.

𝑘2 Γ𝐺𝑘׬ 𝒓, 𝒓′ 𝒏(𝒓) ∙ 𝒏(𝒓′) 𝑅[𝜙]𝑑ℓ 𝒓′ +
𝑑

𝑑𝜏(𝒓)
,Γ𝐺𝑘(𝒓׬ 𝒓′)

𝑑

𝑑𝑟′
𝑅[𝜙] 𝑑ℓ 𝒓′ = −

𝑑𝐻𝑧
𝑖𝑛𝑐

𝑑𝒏(𝒓)



The Corner Regularized CFIE: CR-CFIE

⬖ Multiplying through by the line element ෨𝐿𝑞 𝜃 as was done for the MFIE and 

replacing the unknown with 𝜓, the final CR-CFIE is obtained:

𝑖𝜂

2
𝜓𝑞 𝜃 − 𝑖𝜂෨𝐿𝑞 𝜃 ෍

𝑞′=1

𝑀

න
0

1𝑑𝐺𝑘 ෤𝒓𝑞 𝜃 , ෤𝒓𝑞′ 𝜃
′

𝑑𝒏 ෤𝒓𝑞 𝜃
𝜓𝑞′ 𝜃

′ 𝑑𝜃′

+ 𝑘2෨𝐿𝑞 𝜃 ෍

𝑞′=1

𝑀

න
0

1

𝐺𝑘 ෤𝒓𝑞 𝜃 , ෤𝒓𝑞′ 𝜃
′ 𝒏 ෤𝒓𝑞 𝜃 ⋅ 𝒏 ෤𝒓𝑞′ 𝜃

′ ෨𝐿𝑞′ 𝜃
′ 𝑅 𝜓 𝑑𝜃′

+
𝜕

𝜕𝜃
෍

𝑞′=1

𝑀

න
0

1

𝐺𝑘 ෤𝒓𝑞 𝜃 , ෤𝒓𝑞′ 𝜃
′

𝜕

𝜕𝜃′
𝑅 𝜓 𝑑𝜃′ = −

𝑑𝐻𝑧
𝑖𝑛𝑐

𝑑𝒏 ෤𝒓𝑞 𝜃
෨𝐿𝑞(𝜃)

CR-MFIE

CR-EFIE



Comparison: TM MFIE vs TM R-ICFIE on a Square

⬖ The TM MFIE equation has resonances and is not uniquely solvable, however the 

CFIE does not have resonances and is uniquely solvable



Numerical Results: Square

PEC

d= 10−2

⬖ Comparison of scattered field convergence for a point near the corner: 𝑑 = 𝟏𝟎−𝟐 (left) and 

𝑑 = 𝟏𝟎−𝟖(right) ,k0 = 10 (𝜆0 = 0.63)

PEC

d= 10−8



Numerical Results: Teardrop

Hz ExEy

⬖ TM mode Total(Incident + Scattered) field distribution: Incident Plane wave excitation, 

PEC scatterer in the form of a Teardrop,   k0 = 10 (𝜆0 = 0.63)



Numerical Results: Teardrop

⬖ Comparison of scattered field convergence for a point near the corner: 𝑑 = 𝟎. 𝟓 (left) and 

𝑑 = 𝟏𝟎−𝟖(right) ,k0 = 10 (𝜆0 = 0.63)

d= 10−8

PEC

d= 0.5

PEC



Outline

1. Introduction

2. The Multi-Level Interpolated Green Function (IFGF) Method for 3D Maxwell

3. Corner Regularized Combined Field Integral Equations (CR-CFIE) for Scattering 

from Objects with Geometric Singularities

4. The Precomputed Numerical Green Function (PNGF) Method for Ultra-fast 

Inverse Design
a) Introduction to PNGF

b) Applications to metallic RF devices

c) Applications to dielectric nanophotonic devices

5. Conclusions



From Last Year: Ultra-fast Antenna Design

⬖ Pixelated electromagnetic structures made up of a grid of tiles, each of which 

is either filled with metal or left empty, in a predefined optimization region

Design

environment

Optimization

region

Tiles

Zheng, Y., Elsawaf, M., Hung, J., Lin, H.-C., Hsu, 

C.W., Sideris, C. “”Ultra-fast Inverse Design of 

Radio-Frequency Electromagnetic Devices”. In 

preparation.

Zheng, Y. and Sideris, C. “Ultra-fast 

Simulation and Inverse Design of Metallic 

Antennas”. IEEE International Microwave 

Symposium (2023).



Current Equivalence Principle

⬖ Fields due to scattering from metals do not satisfy additivity

⬖ However, tiles can be replaced with equivalent current densities



Leveraging Current Equivalence

⬖ Choose values for surface 𝑗’s to enforce 𝐸𝑡𝑎𝑛 = 0 over desired PEC region

⬖ Find a numerical Green function (NGF) 𝐺: 𝐽𝑠𝑢𝑟𝑓 → 𝐸𝑡𝑎𝑛 that maps 

equivalent currents in the optimization region to corresponding electric fields 

in the same region

*Y. Zheng and C. Sideris “Ultra-fast Simulation and Inverse Design of Metallic Antennas”. IEEE IMS 2023.



Numerical Green Function

⬖ NGF incorporates effect of the static environment outside the optimization region

⬖ Allows candidate designs to be evaluated by solving a linear system over the 

optimization region only, as opposed to the entire design environment

⬖ Ultra-fast approach: Timescale of milliseconds to seconds for objective 

function evaluation on personal computer

Design environment NGF

Ji

e1 e2
...

Optimization

region

N

e1

e2

... ...

i N

...

eN

NGF

N



Precomputations

⬖ NGF is precomputed once for the design environment and can be used for any 

number of subsequent optimizations

⬖ Need to solve system for all 𝐽𝑥
𝑖,𝑗

and 𝐽𝑦
𝑖,𝑗

source excitations in design region and 

record collocated tangential 𝐸𝑥
𝑖,𝑗

and 𝐸𝑦
𝑖,𝑗

fields and 𝐸𝐻𝑜𝑏𝑗 fields needed for 

computing objective function at each frequency of interest.

Design environment NGF

Ji

e1 e2
...

Optimization

region

N

e1

e2

... ...

i N

...

eN

NGF

N



Optimization with NGF

⬖ Represent candidate design with diagonal (0, 1)-matrix Pn

⬖ Solve for Cn
-1 to find the equivalent currents

⬖ Direct binary search optimization: only one tile is changed at once

⬖ Leverage this low-rank update to the system to further accelerate evaluation

Pn

0 0

0 0 0 0

0 0 1 0

1 0 1 0

1Ji

e1 e2
...

e1

e2

... ...

i

...

eN

Cn j = [(I – Pn) + PG] j = Pneinc Optimization
region

1



Example: Switched Beam 5G Antenna Optimization

⬖ 0.5mm thick, 10.5 x 10.5mm Rogers RO3035 (𝜖𝑟 = 3.5) dielectric substrate with metal ground plane.

⬖ 50-ohm lumped port at edge and RF switch on other side for switching antenna beam.

⬖ 21x20 tiles on surface (can either be empty or set to metal).

Inverse Design Goals: 

⬖ Better than -10dB S11 input matching

⬖ 2) When switch is ON:   Maximize gain at 𝜃, 𝜙 = 45𝑜, 270𝑜 and minimize at 𝜃, 𝜙 = 45𝑜, 90𝑜.

⬖ 3) When switch is OFF: Minimize gain at 𝜃,𝜙 = 45𝑜, 270𝑜 and maximize at 𝜃, 𝜙 = 45𝑜, 90𝑜.

Switch

Lumped port

Optimization

region



Results (Switch ON)

29.5GHz 30.8GHz

Switch ON: 1.3GHz impedance bandwidth centered at 

30GHz and 11.4 directional gain at 𝜃,𝜙 = 45𝑜, 270𝑜



Results (Switch OFF)

28.4GHz 30.2GHz

Switch OFF: 2.2GHz impedance bandwidth and 7.2 

directional gain at 𝜃, 𝜙 = 45𝑜, 90𝑜



Experimental Demonstration

⬖ Scaled-up version with center frequency ~5.7 GHz

⬖ Excellent agreement with simulation results

Horn

Antenna
SBA

5.2mm

Via

 190μm

50mm

52.5mm

* Simulated without connector

* Simulated without connector



Experimental Demonstration

Timings

Precomputation: 

From 7.6 hr (FDTD) to 

14 min (Sparse direct 

solver)

Optimization: 

2.1 hr (3s × 2500)

Speedup: 260x

2.417

2.702

83.52



Example: Substrate-Integrated Waveguide Coupler

⬖ 0.5mm thick Rogers RT/duroid 5880 (𝜖𝑟 = 2.2) dielectric substrate with metal ground plane.

⬖ 50-ohm lumped port at microstrip feeds

⬖ 52x13 tiles on each transition, identical

Inverse Design Goals: 

⬖ 1) Maximum -10dB S11 bandwidth

⬖ 2) Maximize S21

Optimization 

regionSIW

Lumped 

port

19.5mm

80mm 4.9mm

1.5mm



Results and Experimental Demonstration

1.5mm

19.5mm

80mm

1mm

Optimization regions

4.9mm

Feed Feed

⬖ Objective Function:

⬖ Multi-frequency optimization: Minimize 𝑓𝑜𝑏𝑗 =
1

σ𝑛=1
𝑁 1

𝑓𝑛

𝑓𝑛 = 1 − 𝑆21,𝑛
2



Results and Experimental Demonstration

⬖ 10dB bandwidth: 7.7 GHz * Simulated without connectors



Experimental Demonstration

Timings

Precomputation: 

From 12.5 hr (FDTD)                 

to 30 min (APF)

Optimization: 

67min (5s × 880)

Speedup: 470x

0.190

6074

12.14

6074



Extension to dielectrics: Nanophotonic Applications

⬖ PNGF can be used just as effectively to represent dielectric materials as 

equivalent polarization densities to accelerate nanophotonic inverse design 

problems:

99.4% efficient 1:2 silicon power splitter

10 seconds to design on laptop computer (3461 flips required to converge)

400x faster than FDFD

Wang, J. and Sideris, C. “Ultra-fast Simulation and Optimization of 

Nanophotonic Devices using Precomputed Numerical Green’s Functions”. 

In preparation.



Extension to dielectrics: Nanophotonic Applications

97.5% transmission broadband symmetric 

directional coupler with 100nm bandwidth

6 minutes to design on laptop computer

(required 10,118 tile flips to converge)

Wang, J. and Sideris, C. “Ultra-fast Simulation and Optimization of Nanophotonic Devices 

using Precomputed Numerical Green’s Functions”. In preparation.



Conclusions and Future Work

⬗Multi-level IFGF for 3D Maxwell: >50x speedup due to O(N log N) vs. O(N2)

⬗Corner Regularized Combined Field Integral Equations (CR-CFIE) for 

achieving high-order convergence for scattering from objects with geometric 

singularities

⬗Generalized PNGF for ultra-fast inverse design of metallic and dielectric 

structures

Next Steps:

⬗Implement multi-level IFGF implementation on GPU to achieve faster 

performance and O(N log N) time complexity.

⬗Extend the CR-CFIE method to 3D Maxwell problems.

⬗Extend the PNGF method for inverse designing 3D nanophotonic devices.
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