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The project includes four distinct topics
1. Frozen mode approach to light amplification, lasing, and control of 

pulse propagation

2. Photonic structures with nonlinear and phase changing components 
for optical and MW limiting, switching, and nonlinear isolation

3. Control of light propagation using spectral singularities in planar 
photonic arrays supporting glide-plane symmetry

4. Nonreciprocal metamaterials with zero net magnetization
providing Faraday rotation in the absence of bias magnetic field 
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1. Frozen mode regime in nonreciprocal, nonlinear, and active media

Latest publications on the subject

- Nonlinear Wavepacket Dynamics in Proximity of a Stationary Inflection Point.
    S. Landers, A. Kurnosov, I. Vitebskiy, and T. Kottos. Phys. Rev. B 109, 024312 (2024)

- Unidirectional amplification in the frozen mode regime enabled by a nonlinear defect.
     S. Landers, W. Tuxbury, I. Vitebskiy, T. Kottos. Optics Lett. 49, 4967 (2024)

- Robust Nonlinear Isolators Based on Frozen Mode Exceptional Point Degeneracies.
    S. Landers, W. Tuxbury, I. Vitebskiy, T. Kottos. To appear in Phys. Rev. Res. (2025)

 - Impact of Fabrication Disorder on Lasing near a Stationary Inflection Point
   N. Furman, A. Herrero-Parareda, I. Vitebskiy, R. Gibson, B. Thompson, R. Bedford, F. Capolino.. Submitted to Phys. Rev. A (2025)
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The question: Given that the energy flux of a single propagating mode is 𝑺𝑺 = 𝑾𝑾 × 𝒗𝒗𝒈𝒈, will the input wave with  
𝜔𝜔 = 𝜔𝜔0 be converted into the slow (frozen) mode inside the periodic medium, or will it be totally reflected? 

The answer essentially depends on the type of the stationary point 𝜔𝜔0 = 𝜔𝜔 𝑘𝑘0  of the Bloch dispersion relation.

A brief reminder of what the frozen regime is
Scattering problem for a semi-infinite periodic structure supporting a 

single propagating mode the group velocity of which vanishes at 𝜔𝜔 = 𝜔𝜔0

Reflected wave

Monochromatic input wave with 𝜔𝜔 = 𝜔𝜔0

Lossless semi-infinite periodic structure supporting a 
single propagating mode with vanishing group velocity

Transmitted wave
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Regular Band Edge 

Stationary Inflection Point

Degenerate Band Edge

Regular Band Edge (RBE)
At ω = ωg , the input wave is reflected back to space (total reflection)

Scattering problem for a semi-infinite periodic array supporting a single propagating mode with 
zero group velocity at a certain frequency. There are three qualitatively different possibilities:  

Degenerate Band Edge (DBE) 
 At ω = ωd , the input wave is reflected back to space (similar to the case of a regular band edge), 
but not before producing a diverging frozen mode inside the structure (similar to the case of a 
stationary inflection point). The energy flux of the frozen mode inside the periodic structure is 
zero in this case, implying total reflection.
(Figotin & Vitebskiy, 2011).

Stationary Inflection Point (SIP)
At ω = ω0 , the input wave is converted into the diverging frozen mode. The energy flux of 
the frozen mode can be close to that of the incident wave, implying little or no reflection.
(Figotin & Vitebskiy, 2011). 
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A SIP is an Exceptional Point of Degeneracy (EPD) where three Bloch eigenmodes 
(one propagating and two evanescent) collapse on each other, forming a set of three 
Floquet eigenmodes:

  Ψ0 𝑧𝑧 ,  Ψ1 𝑧𝑧 ∝ 𝑧𝑧, Ψ2 𝑧𝑧 ∝ 𝑧𝑧2. 
Here Ψ0 𝑧𝑧  is a propagating Bloch mode with zero group velocity 𝑣𝑣𝑔𝑔 = 𝜔𝜔′ 𝑘𝑘 = 0, 
while Ψ1 𝑧𝑧 ∝ 𝑧𝑧  and  Ψ2 𝑧𝑧 ∝ 𝑧𝑧2  are algebraic, spatially diverging Floquet modes. 
(Figotin & Vitebskiy 2011; Li, Vitebskiy, Kottos 2017)

The frozen mode is not just a Bloch wave with zero group velocity.

Incident wave 
with 𝜔𝜔 = 𝜔𝜔0 

Linearly 
diverging 
Floquet 

eigenmode

Incident wave 
with 𝜔𝜔 = 𝜔𝜔0 

Transmitted wave 
with 𝜔𝜔 = 𝜔𝜔0 

Frozen mode regime in a semi-infinite waveguide Frozen mode regime in a finite waveguide

𝜔𝜔(𝑘𝑘)

𝜔𝜔0

k
0

(Nada, et al)



Frozen mode regime vs. Fabri-Perrot resonance in a finite periodic structure
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Input wave Transmitted 
wave 

In either case, the field distribution inside the periodic structure looks 
similar, and the effective quality factor 𝑄𝑄 ∝ 𝑁𝑁3. Yet, there are several 
fundamental differences between the frozen mode regime and a cavity 
resonance.
Unlike a common cavity resonance, the frozen mode regime requires a 
certain degree of complexity of the periodic structure. It  must support at 
least three Bloch eigenmodes (one propagating and two evanescent) with 
the same symmetry to support the EPD. 
On the other hand, the frozen mode regime has some big advantages:

1. The high Q-factor of the frozen mode regime can be achieved without compromising on its bandwidth. 
By contrast, the bandwidth of a cavity resonance reduces sharply with the rise of its Q-factor.

2. The frozen mode regime is much more resilient to losses, structural imperfections, changing boundary 
conditions, other disturbances, compared to common cavity resonances in the same system. 

3. It provides a single-mode operation regardless of the size and shape of the photonic structure, whereas a regular 
resonant cavity with large dimensions supports multiple resonant modes with closely located frequencies.

The above features make the frozen mode regime particularly attractive for the enhancement of various light-matter 
interactions, including all time-cumulative and nonlinear interactions.
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Fast 
mode

ω(k)

ω0

k0

Frozen 
mode

ω(k)

ω0

k0

Frozen 
mode

Frozen 
mode

Frozen mode in spatially asymmetric and/or nonreciprocal structures

Reciprocal and/or spatially symmetric structure: 𝜔𝜔 𝑘𝑘 = 𝜔𝜔(−𝑘𝑘) Nonreciprocal and spatially asymmetric structure: 𝜔𝜔(𝑘𝑘) ≠ 𝜔𝜔(−𝑘𝑘)

Two examples of Bloch dispersion 
relations with SIP at 𝜔𝜔 = 𝜔𝜔0

Effects of nonlinearity on the frozen mode regime

1) Nonlinear Wavepacket Dynamics in Proximity of a Stationary Inflection Point.
    S. Landers, A. Kurnosov, I. Vitebskiy, and T. Kottos. Phys. Rev. B 109, 024312 (2024)

2) Unidirectional amplification in the frozen mode regime enabled by a nonlinear defect.
     S. Landers, W. Tuxbury, I. Vitebskiy, T. Kottos. Optics Lett. 49, 4967 (2024)

3) Robust Nonlinear Isolators Based on Frozen Mode Exceptional Point Degeneracies.
    S. Landers, W. Tuxbury, I. Vitebskiy, T. Kottos. To appear in Phys. Rev. Res. (2025)

The above publications describe three qualitatively different effects of weak nonlinearity on the 
frozen mode regime. Each of them has different potential applications.
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Nonlinear Wavepacket Dynamics in Proximity of a Stationary Inflection Point
Landers, et al, Phys. Rev. B 109, 024312 (2024)

The nonlinearity can result in ballistic propagation of SIP-centered pulses, with the speed and even the direction of propagation 
essentially dependent on the pulse amplitude. This unique feature emerging from the interplay between an SIP and nonlinearity. 
Possible applications include a power router and a non-resonant Q switch, which prevents radiation from leaking from a system 
unless the pulse amplitude exceeds a threshold value. 
In either cases, a combination of the enhanced amplitude of the frozen mode and the enhanced response to nonlinearities in the 
vicinity of an SIP provides great flexibility in achieving desirable threshold values.

Time evolution of a linear pulse centered at a 
SIP. No ballistic propagation 

A stationary value of flow as a function of nonlinearity (blue dots). The 
transition between the SIP and the ballistic regimes occurs when the pulse in 
q space “spills out” of the initial Gaussian peak between χ = 0.1and χ = 0.5.



11

We proposed a design protocol to achieve a robust isolation based on the frozen mode regime in the 
presence of a nonlinear defect and a weak nonreciprocity. The underlying mechanism relies on the sharp 
variation of the group velocity in proximity to the SIP frequency, so that even a weak spectral asymmetry 
will result in a dramatic directional dependence of the nonlinear interaction. This is particularly desirable 
at optical wavelengths where both nonreciprocal and nonlinear effects are usually week.
The proposed protocol maintains the usual practical advantages of the frozen-mode-based approach, such 
as the bandwidth advantage and robustness with respect to structural imperfections. 
Same ideas can be extended to unidirectional amplifiers, Q-switches, cavity-free lasers, and power limiters.

A combination of nonreciprocity 
and spatial asymmetry result in 
asymmetric Bloch dispersion 
relation: 𝜔𝜔(𝑘𝑘) ≠ 𝜔𝜔(−𝑘𝑘). 

Robust Nonlinear Isolators Based on Frozen Mode Exceptional Point Degeneracies
    S. Landers, et al. To appear in Phys. Rev. Res. (2025)
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Practical aspects of realization of the frozen 
mode regime at optical wavelengths

At MW frequencies, the frozen mode regime has been realized on different 
platforms and successfully implemented in practical devices. 
At optical wavelengths, the frozen mode regime has been realized too, but 
there are some issues remaining. Specifically, in the case of coupled optical 
waveguides with 1D periodicity, the practical challenges include
- To avoid radiative losses, we have to work with high-order photonic 

bands. As a consequence, there are a number of photonic band edges in 
close proximity of the frozen mode frequency (see the example).

- Strong interference of equally powerful Fabry-Perrot resonances with 
closely located resonant frequencies. 

𝜔𝜔0

𝜔𝜔(𝑘𝑘)

k

There are several ways to address one or both of the above problems, for instance:
- Switching to 2D arrays can alleviate both problems and provide additional benefits.
- Making reflectionless boundary conditions for at least one of the two interfaces can 

eliminate Fabry-Perrot resonances
- Introducing magneto-optical and/or nonlinear component in a combination with 

structural chirality can also eliminate the backward propagating wave, along with 
Fabry-Perrot resonances.

Example of Bloch dispersion 
relation of a periodic optical 
waveguide. The frozen mode 
frequency is in close proximity of 
several photonic band edges.
(Nada, et al, 2024)
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Impact of Fabrication Disorder on Lasing near a Stationary Inflection Point
N. Furman, A. Herrero-Parareda, I. Vitebskiy, R. Gibson, B. Thompson, R. Bedford, F. Capolino. Submitted to Phys. Rev. A (2025)

Unit cell of the waveguide with glide-plane symmetry

Finite length transfer function resonances. The 
SIP resonance is defined as the closest to the 
SIP frequency (a black circles), with other 
adjacent resonances displayed as grey squares.
The red dashed line represents the distance 
from the resonance to the SIP frequency
and the lines become shorter as 𝑁𝑁 increases.
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OTHER PROJECTS



2. Nonreciprocal metamaterials with zero net magnetization
Joint project with Carl Pfeiffer (AFRL/RY) and Andrey Chabanov (U. of Texas)

The key component of most nonreciprocal devices, such as microwave and optical isolators, circulators, and nonreciprocal 
phase shifters is a magneto-optical material placed in an external magnetic field. This traditional approach involves the use 
of bulky magnets, which can be a major problem, especially in small devices. Alternatively, one can use permanently 
magnetized materials, such as ferrites or ferromagnets with high coercivity. Such materials display nonreciprocal 
electromagnetic properties even in the absence of external bias magnetic field. The magnetized materials, though, create 
their own demagnetization field. 

One common problem with both externally biased and self-biased approach is related to the existence of a relatively strong 
magnetic field inside and outside the magneto-optical component. There are some important applications/devices which 
cannot tolerate even a tiny magnetic field, but they still require nonreciprocal components for optical isolation or other 
nonreciprocal functionalities. In addition, the demagnetization field inside the magnetized material is shape-dependent and 
can be non-uniform, unless the shape of the magnetized component is strictly ellipsoidal. The field non-uniformity inside 
magneto-optical material can compromise the performance of the nonreciprocal device. 

We design nonreciprocal composite structures, with zero net magnetization, providing strong Faraday rotation and/or 
nonreciprocal phase shift even without bias magnetic field. As opposed to the rare-earth-based compensated ferrites, the 
proposed composite structures can maintain zero net magnetization and constant Faraday rotation within a wide temperature 
range.

15
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X-band realization of a nonreciprocal metamaterial, having zero net magnetization and producing strong (45°) Faraday 
rotation without bias magnetic field. This is an array of neodymium magnets (dark blue) incorporated in the YIG disc 
(green) and sandwiched between two impedance-matching layers (violet). The device performance is broadband 
temperature independent (Patent pending, Manuscript in preparation, Carl Pfeiffer, A. Chabanov, et al, 2025)
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Optical limiter based on PT-symmetry breaking of reflectionless modes
L. Salvini, F. Riboli, R. Kononchuk, F. Tommasi, A. Boschetti, S. Suwunnarat, I. Anisimov, I. Vitebskiy, D.Wiersma, S. Cavalieri, 
T. Kottos, A. Chabanov. Proceedings of SPIE, Volume 1314003 (2024)

Compared to existing limiter designs, our optical limiter offers a customizable limiting threshold, high damage threshold, nanosecond 
activation time, and broadband laser protection. Additionally, we have shown a method to achieve an even broader transmission 
spectral bandwidth by implementing this concept in a four-cavity resonator with greater coupling strength using similar materials.

a) Artistic view (bottom), 
schematic (middle), and 
coupled-mode-theory 
(CMT) equivalent system 
(top) of the three-mirror 
resonator composed of 
cryolite (Na3AlF6) and 
zinc sulfide (ZnS) layers. 
b,c,e,f) transmittance vs 
frequency



Our publications on the subject :
E. Makri, H. Ramezani, I. Vitebskiy, and T. Kottos. Concept of a reflective power limiter based on nonlinear localized modes. Phys. Rev. A89, 031802 (2014).

E. Makri, I. Vitebskiy, T. Kottos. Reflective optical limiter based on resonant transmission. Phys. Rev. A91, 043838 (2015).

E. Makri, K. Smith, A. Chabanov, I. Vitebskiy, T. Kottos. Hypersensitive Transport in Photonic Crystals with Accidental Spatial Degeneracies. 
Scientific Reports 6, 22169 (2016)

J. Vella, J. Goldsmith, A. Browning, N. Limberopoulos, I. Vitebskiy, E. Makri, T. Kottos. Experimental realization of a reflective optical limiter. 
Phys. Rev. Appl. 5, 064010 (2016)

U. Kuhl, F. Mortessagne, E. Makri, I. Vitebskiy, T. Kottos. Waveguide Photonic limiters based on topologically protected resonant modes. 
Phys. Rev. B95, 121409(R) (2017). 

R. Thomas, I. Vitebskiy, T. Kottos. Resonant cavities with phase-changing materials. Optics Letters 42, 4784 (2017) 

R. Kononchuk, A. Chabanov, M. Hilario, B. Jawdat, B. Hoff, V. Vasilyev, N. Limberopoulos, I. Vitebskiy. Reflective Photonic Limiter for the W-band. Metamaterials, Marseille (2017) 

R. Thomas, F. M. Ellis, I. Vitebskiy, T. Kottos. Self-Regulated Transport in Photonic Crystals with Phase-Changing Defects. Phys. Rev. A97, 013804 (2018).

A. Sarangan, J. Duran, V. Vasilyev, N. Limberopoulos, I. Vitebskiy, I. Anisimov. A Broadband Reflective Optical Limiter Based on GST Phase Change Material. IEEE Phot 10, 2200409 (2018)

R. Thomas, E. Makri, T. Kottos, B. Shapiro, I. Vitebskiy. Unidirectional photonic circuit with a phase-change Fano resonator. Phys. Rev. A98, 053806 (2018)

R. Thomas, F. Ellis, I. Vitebskiy, T. Kottos. Self-regulated transport in photonic crystals with phase-changing defects. Phys. Rev. A97, 013804 (2018)

N. Antonellis, R. Thomas, M.A. Kats, I. Vitebskiy, and T. Kottos. Nonreciprocity in Photonic Structures with Phase-Change Components. 
Phys. Rev. Appl. 11, 024046 (2019)

R. Thomas, A. A. Chabanov, I. Vitebskiy, T. Kottos. Light-induced optical switching in asymmetric metal-dielectric microcavity with phase-change material. Europhys. Lett. 126, 64003 (2019).

S. Suwunnarat, R. Kononchuk, A. Chabanov, N. I. Limberopoulos, I. Vitebskiy, and T. Kottos. Enhanced Nonlinear Instabilities in Photonic Circuits with Exceptional Point Degeneracies. 
Photonics Research 6, 737 (2020) 

A. Sarangan, G. Ariyawansa, I. Vitebskiy, I. Anisimov. Optical switching performance of thermally oxidized vanadium dioxide with an integrated thin film heater. Optical Materials Express, Vol. 
11, No. 7, p. 2348 (2021) 

W. Tuxbury, L. J. Fernandez-Alcazar, I. Vitebskiy, T. Kottos. Scaling theory of absorption in the frozen mode regime. Optics Letters, Vol. 46, No. 13, 3053 (2021)

A. Parareda, I. Vitebskiy, J. Scheuer, F. Capolino. Frozen mode in asymmetric serpentine optical waveguide. Submitted to: Advance Photonic Research (2021)

Carl Pfeiffer, Igor Anisimov, Ilya Vitebskiy, Andrey Chabanov. "Magnetization Free Faraday rotators based on composite structures". (Patent application, 2021)

R. Kononchuk, S. Suwunnarat, M. Hilario, A. Baros, B. Hoff, V. Vasilyev, I. Vitebskiy, T. Kottos, A. Chabanov. A reflective mm-wave photonic limiter. Science Advances 8, 1827 (2022).
18
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Our publications on the subject (continuation):
- M. Nada, T. Mealy, S. Islam, I. Vitebskiy, R. Gibson, R. Bedford, O. Boyraz, F. Capolino. Design of a Modified Coupled Resonators Optical Waveguide Supporting a 
Frozen Mode. Journal of Lightwave Technology, 3266311 (2023)

- M. Lust, I. Vitebskiy, I. Anisimov, N. Ghalichechian. "Thermo-Optic VO2-Based Silicon Waveguide Mid-Infrared Router with Asymmetric Activation Thresholds and Large 
Bistability" Optics Express, v. 31, 23260 (2023)

- F. Riboli, R. Kononchuk, F. Tommasi, A. Boschetti, S. Suwunnarat, I. Anisimov, I. Vitebskiy, D. Wiersma, S. Cavalieri, T. Kottos, A. Chabanov. Optical limiter based on 
PT-symmetry breaking of reflectionless modes. Optica, 10, 1302 (2023)

- S. Landers, A. Kurnosov, I. Vitebskiy, and T. Kottos. Nonlinear Wavepacket Dynamics in Proximity to a Stationary Inflection Point. 
Phys. Rev. B 109, 024312 (2024)

- S. Landers, W. Tuxbury, I. Vitebskiy, T. Kottos. Unidirectional amplification in the frozen mode regime enabled by a nonlinear defect. 
Optics Lett. 49, 4967 (2024)

- L. Salvini, F. Riboli, R. Kononchuk, F. Tommasi, A. Boschetti, S. Suwunnarat, I. Anisimov, I. Vitebskiy, D.Wiersma, S. Cavalieri, T. Kottos, A. Chabanov. Optical limiter 
based on PT-symmetry breaking of reflectionless modes. 
Proceedings of SPIE, Volume 13140, Advances in Materials and Innovations in Device Applications XVIII; 1314003 (2024)

Submitted Papers

- N. Furman, A. Herrero-Parareda, I. Vitebskiy, R. Gibson, B. Thompson, R. Bedford, F. Capolino. Impact of Fabrication Disorder on Lasing near a Stationary Inflection 
Point. Submitted to Phys. Rev. A (2025)

- S. Landers, W. Tuxbury, I. Vitebskiy, T. Kottos. Robust Nonlinear Isolators Based on Frozen Mode Exceptional Point Degeneracies. 
To appear in Phys. Rev. Res. (2025)

Awarded US Patent

Vitebskiy, N. Limberopoulos, A. Chabanov, I. Anisimov, C. Pfeifer. Layered Sheet Polarizers and Isolators Having Non-Dichroic Layers. 
US patent number 12,092,848. Issued on 09/27/2024

Pending US patent

A. Chabanov (UTSA), C. Pfeiffer (AFRL), I. Anisimov (AFRL), and I. Vitebskiy (AFRL). “Magnetization-Free Faraday Rotators”
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