
DISTRIBUTION STATEMENT A.  Approved for public release; distribution is unlimited. 1

Computational Analysis of
Bonded Material Diodes and

THz Transistor Plasma Oscillations

Matt  Grupen
AFRL/RYDD

AFOSR Nonl inear  Opt ics  Program Review
5 March  2025



DISTRIBUTION STATEMENT A.  Approved for public release; distribution is unlimited. 2

• Semiconductor heterojunctions essential for high performance devices
– high power, high speed transistors, e.g. HEMTs, HBTs
– LEDs and laser diodes
– superlattices for radiation sources and detectors

• Traditionally produced with epitaxial techniques
– requires materials with similar crystal structures, lattice spacing
– thermally and chemically compatible
– interfaces can be compromised by interdiffusion, chemical interactions
– could limit device design options

• Bonding may broaden design space
– explore mismatched materials, e.g. GaAs/GaN, GaAs/InP, Ga2O3/GaN, GaN/Si
– wafer bonding

o thick wafers encounter mechanical stresses
o wafer curvature
o thermal mismatch

– thin material membrane bonding 
o circumvents some fabrication difficulties
o enables new material combinations

• AFOSR supports research on van der Waals lift-off and bonding of GaN membranes
– LRIR 24RYCOR011: “Engineered mixed dimensional heterostructures and interfaces”
– PO: Dr. Kenneth Goretta
– PI: Dr. Michael Snure
– solicited computational support from this LRIR

Bonded Materials to Broaden Design Space



DISTRIBUTION STATEMENT A.  Approved for public release; distribution is unlimited. 3

Initial Snure & Blanton Bonded Si/Al2O3/GaN p-n Diode

Si 300µm

GaN ~500nm

Ti/Ni contact ~5mm separation In dot
~1mm diameterGaN diode

100µm diameter

• Bonded p-n diodes successfully fabricated and 
characterized
– p+ silicon substrate
– 1 nm Al2O3 layer
– 0.5 µm n-type GaN

• Investigate possible defects
– suspected in GaN bonded layer
– potential relationship between defects and ideality 

factor of I-V characteristic
– ideality factor from semi-log plot of I-V in forward 

biased sub-threshold region
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defect-assisted
Shockley-Read-Hall 

recombination

Poisson’s equation 𝛻𝛻 ⋅ 𝜀𝜀𝛻𝛻Φ + 𝑞𝑞 𝑁𝑁𝐷𝐷+ − 𝑁𝑁𝐴𝐴− + 𝑝𝑝 − 𝑛𝑛 = 0

𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕 + 𝛻𝛻 ⋅ 𝐽𝐽𝑛𝑛 + 𝑈𝑈𝑆𝑆𝑆𝑆𝑆𝑆 = 0electron & hole 

continuity 𝜕𝜕𝑝𝑝
𝜕𝜕𝜕𝜕 + 𝛻𝛻 ⋅ 𝐽𝐽𝑝𝑝 + 𝑈𝑈𝑆𝑆𝑆𝑆𝑆𝑆 = 0

𝑈𝑈𝑆𝑆𝑆𝑆𝑆𝑆 =
𝑛𝑛𝑛𝑛 − 𝑛𝑛𝑇𝑇𝑝𝑝𝑇𝑇

𝜏𝜏𝑝𝑝 𝑛𝑛 + 𝑛𝑛𝑇𝑇 + 𝜏𝜏𝑛𝑛 𝑝𝑝 + 𝑝𝑝𝑇𝑇

𝑛𝑛𝑇𝑇 = �
𝐸𝐸𝐶𝐶

∞
𝑔𝑔𝑛𝑛 1 − 𝑓𝑓𝑛𝑛 exp

𝐸𝐸𝑇𝑇 − 𝐸𝐸
𝑘𝑘𝑇𝑇𝐿𝐿

𝑑𝑑𝑑𝑑

𝑝𝑝𝑇𝑇 = �
−∞

𝐸𝐸𝑉𝑉
𝑔𝑔𝑝𝑝 1− 𝑓𝑓𝑝𝑝 exp

𝐸𝐸 − 𝐸𝐸𝑇𝑇
𝑘𝑘𝑇𝑇𝐿𝐿

𝑑𝑑𝑑𝑑

Bonded Diode Device Equations
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Bonded Si/Al2O3/GaN p-n Diode Simulations
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Fm+
thermionic
emission

field
emission

2 V band diagram under
Schottky anode
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• Key differences in simulated structure
‒ ideal ohmic contacts
‒ constant Si and GaN dopants
‒ no interface sheet charges to induce depletion

• Principal differences in device physics
‒ carrier dynamics dominated by GaN defects 

within 60 Å of SiO2/GaN interface
‒ Si holes tunneling through SiO2 barrier interact 

with GaN electrons via the GaN defects.

New Bonded Si/GaN Diodes

0.4 µm
1018 cm-3 

n-GaN

2 nm SiO2

cathode

anode

35 µm

5065 µm

4 x 1019 cm-3

p+ Si

300 µm

ideality
factor
𝑛𝑛 ≈ 1.5
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psrh

nsrh

SRH Electron & Hole Voltage Dependence

• Device currents dominated by SRH generation/recombination
• Ideality factor largely determined by GaN electron density

‒ as forward bias increases, Fermi level EF moves closer to GaN conduction band 
edge EC

‒ electron density near interface (in Si/GaN transition material) increases exponentially
‒ when EF approaches EC for 𝑞𝑞𝑞𝑞/𝑘𝑘𝑘𝑘 ≳ 30, exponential electron density growth slows

• This may be analogous to the ‘high injection’ condition in conventional pn 
diode

• Possible hybrid material at interface
‒ GaN conduction band properties
‒ Si valence band properties
‒ large defect-assisted electron-hole recombination rate

• Ideality factor may serve as interface quality metric

𝑈𝑈𝑆𝑆𝑆𝑆𝑆𝑆 =
𝑛𝑛𝑛𝑛 − 𝑛𝑛𝑇𝑇𝑝𝑝𝑇𝑇

𝜏𝜏𝑝𝑝 𝑛𝑛 + 𝑛𝑛𝑇𝑇 + 𝜏𝜏𝑛𝑛 𝑝𝑝 + 𝑝𝑝𝑇𝑇

Shockley-Read-Hall
recombination rate
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Continued Computational Work on THz Plasma Oscillation

• Imaging and sensing technologies
‒ higher resolution imagining, e.g. radar
‒ improved antenna cSWaP, array density
‒ selective transmission/penetration for public space security
‒ important absorption lines for chem/bio detection, radio astronomy

• High bandwidth communications
‒ higher information density than lower frequencies
‒ THz electronics currently under development for 6G

o data rates 50 times faster than 5G
o only 10% of 5G latency

‒ significantly enhance performance of communications 
technologies, e.g. teleconferencing, wi-fi, satellite and cellular

• Sensing plus communications for further performance 
improvements, e.g. electronic warfare, autonomous vehicles

• Scarcity of compact sub-MMW/THz sources & components
‒ many are larger scale

o free electron laser
o optical down conversion in nonlinear crystals

‒ micro-electronic & opto-electronic devices required for integrated 
systems
o generally require deep submicron scaling
o nanoscale device feature sizes
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W. Knap, J. Lusakowsi, T. Parenty, S. Bollaert, A. Cappy, V.V. Popov, and M.S. Shur, 
“Terahertz emission by plasma waves in 60 nm gate high electron mobility transistors,” 
Appl. Phys. Lett., vol. 84, no. 13, pp. 2231-2233, March 2004.

• THz radiation from HEMTs seem to exceed relaxation limits
– short 60 nm gate length
– bias into saturation
– channel current oscillations at certain dc voltages

• Theoretically predicted instabilities
– channel electrons vary with channel voltage
– ballistic transport

o negligible phonon and impurity scattering
o significant electron-electron collisions
o charge gas velocity with ̅𝜏𝜏 = ∞
o Euler equation of hydrodynamics

– constant source voltage and constant drain current
– small signal instability for some channel currents & electron densities

• Simulations show DVSI/FKT currently contains required physics 
including quasi-ballistic hot electrons

M. Dyakonov and M. Shur, “Shallow water 
analogy for a ballistic field effect transistor: New 
mechanism of plasma wave generation in dc 
current,” Phys. Rev. Lett., vol. 71, no. 15, pp. 
2465-2469, Oct. 1993.
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Short Gate FETs as Compact THz Sources
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Fermi Kinetics Transport & Delaunay/Voronoi EM

Lattice energy 
conservation 

(Joule)
𝜌𝜌𝐶𝐶𝑝𝑝

𝜕𝜕𝑇𝑇𝐿𝐿
𝜕𝜕𝜕𝜕 + 𝛻𝛻 ⋅ 𝜅𝜅𝛻𝛻𝑇𝑇𝐿𝐿 + 𝐶𝐶𝐸𝐸 = 0

Scattering 
(Fermi)

𝐶𝐶𝑛𝑛 = �
𝐸𝐸𝑖𝑖

�
𝑘𝑘𝑖𝑖
𝜌𝜌𝑘𝑘 𝐸𝐸 �

𝑘𝑘𝑓𝑓
𝑊𝑊𝑘𝑘,𝑘𝑘′𝜌𝜌𝑘𝑘′ 𝐸𝐸 − ℏ𝜔𝜔 𝑑𝑑𝑘𝑘′𝑑𝑑𝑘𝑘

× 𝑛𝑛𝑞𝑞 + 1 𝑓𝑓𝑖𝑖 1 − 𝑓𝑓𝑓𝑓 − 𝑛𝑛𝑞𝑞𝑓𝑓𝑓𝑓 1 − 𝑓𝑓𝑖𝑖 𝑑𝑑𝑑𝑑

Full-wave 
electromagnetics 

(Maxwell)

𝛻𝛻 ⋅ 𝜀𝜀𝛻𝛻𝛻 + 𝑞𝑞 𝑁𝑁𝐷𝐷+ − 𝑛𝑛 = 0

𝜇𝜇0
𝜕𝜕𝐻𝐻
𝜕𝜕𝜕𝜕 + 𝛻𝛻 × Erot = 0

𝜀𝜀
𝑑𝑑
𝑑𝑑𝑑𝑑 Erot − 𝛻𝛻𝛻 + 𝐽𝐽 − 𝛻𝛻 × 𝐻𝐻 = 0

𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕 + 𝛻𝛻 ⋅ 𝐽𝐽𝑛𝑛 + 𝐶𝐶𝑛𝑛 = 0

𝜕𝜕𝐸𝐸𝑛𝑛
𝜕𝜕𝜕𝜕 + 𝛻𝛻 ⋅ 𝑆𝑆𝑛𝑛 + 𝑞𝑞E ⋅ 𝐽𝐽𝑛𝑛 + 𝐶𝐶𝐸𝐸 = 0

Energy transport 
(Boltzmann)



DISTRIBUTION STATEMENT A.  Approved for public release; distribution is unlimited. 12

Fermi Gas Semi-classical Transport

𝜕𝜕𝑓𝑓
𝜕𝜕𝑡𝑡

= 𝑞𝑞𝑬𝑬 ⋅
1
ℏ
𝛻𝛻𝒌𝒌𝑓𝑓 − 𝒗𝒗 ⋅ 𝛻𝛻𝑓𝑓 +

𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕 coll

Boltzmann equation

accelerating
in 𝒌𝒌-space

moving
in 𝒓𝒓-space

randomizing
in 𝒌𝒌-space

odd in
𝒌𝒌-space

𝑓𝑓 = 𝑓𝑓1 + 𝑓𝑓0
even in
𝒌𝒌-space

relaxation lifetime approximation
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕 coll

≈ −
𝑓𝑓 − 𝑓𝑓0
𝜏𝜏𝒌𝒌

1st moment

1
4𝜋𝜋3 �𝒗𝒗 𝑓𝑓1 + 𝜏𝜏𝒌𝒌

𝜕𝜕𝑓𝑓1
𝜕𝜕𝜕𝜕 = 𝜏𝜏𝒌𝒌 𝑞𝑞𝑬𝑬 ⋅

1
ℏ𝛻𝛻𝒌𝒌𝑓𝑓0 − 𝒗𝒗 ⋅ 𝛻𝛻𝑓𝑓0 𝑑𝑑𝒌𝒌

𝑱𝑱 + ̅𝜏𝜏
𝑑𝑑𝑱𝑱
𝑑𝑑𝑑𝑑 =

1
4𝜋𝜋3 �𝜏𝜏𝒌𝒌𝒗𝒗 𝑞𝑞𝑬𝑬 ⋅

1
ℏ𝛻𝛻𝒌𝒌𝑓𝑓0 − 𝒗𝒗 ⋅ 𝛻𝛻𝑓𝑓0 𝑑𝑑𝒌𝒌

electron flux approximated by integral over even distribution function

• Boltzmann conservation equation
‒ continuity in real space
‒ continuity in momentum space

o acceleration
o scattering/momentum randomization

• Distribution function as sum of odd and even, 𝑓𝑓1 and 𝑓𝑓0
‒ momentum randomization drives 𝑓𝑓 towards even 𝑓𝑓0
‒ approximate randomization with momentum relaxation 𝜏𝜏𝒌𝒌 

• Particle flux from 1st moment
‒ multiply by 𝒗𝒗 
‒ integrate over all 𝒌𝒌
‒ terms (products) odd in 𝒌𝒌 integrate to zero
‒ by definition 𝐉𝐉 ≡  ∫𝒗𝒗𝑓𝑓1𝑑𝑑𝒌𝒌

• Long range electron/electron Coulomb interaction
‒ for small Δ𝐸𝐸 and Δ𝒌𝒌, scattering rate can be very large
‒ for electrons occupying a continuum of states, approximate 𝑓𝑓 

as symmetric in 𝒌𝒌-space, i.e. ideal gas
• Piece-wise Fermi-Dirac ideal gases

‒ drastically reduces dimensionality of computation
‒ exploits well established thermodynamics of ideal gases
‒ ensures non-equilibrium dynamics of heated Fermi gases 

obey 2nd law

𝑓𝑓0 =
1

exp 𝐸𝐸 − 𝐹𝐹𝑛𝑛
𝑘𝑘𝑇𝑇𝑛𝑛

+ 1
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Scattering: Phonon Deformation Potential Approximation
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Electron Drift Velocity vs. Electric Field

3 Fermi Gases: Γ1 (0 < E < 92 meV; E > 92 meV) and Γ3

𝜏̅𝜏𝑖𝑖 =
∫𝐸𝐸𝑖𝑖 ∫𝒌𝒌𝑖𝑖 𝑣𝑣𝑥𝑥

2𝜏𝜏𝒌𝒌𝜌𝜌𝒌𝒌𝑑𝑑𝒌𝒌
𝑑𝑑𝑓𝑓𝑖𝑖
𝑑𝑑𝑑𝑑 𝑑𝑑𝑑𝑑

∫𝐸𝐸𝑖𝑖 ∫𝒌𝒌𝑖𝑖 𝑣𝑣𝑥𝑥
2𝜌𝜌𝒌𝒌𝑑𝑑𝒌𝒌

𝑑𝑑𝑓𝑓𝑖𝑖
𝑑𝑑𝑑𝑑 𝑑𝑑𝑑𝑑

• B. Benbakhti et al., IEEE Transaction of Electron Devices, 2011.
• M. Wraback et al., Physica Status Solidi (b), 2002.
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Critical Role of Momentum Relaxation Term �𝝉𝝉𝒅𝒅𝒅𝒅/𝒅𝒅𝒅𝒅

1000 µm

100 µm

100 µm

Vin

Zsheet = 50 Ω/

insulating or
conducting

perfect conductor

perfect conductor

• Dielectric is perfectly insulating
– peak when voltage reaches output
– subsequent ringing
– EM energy gradually dissipated by 50 Ω termination

• Perfectly lossy dielectric
– 4 x 1013 cm-3 doping, σ = 25 S/m
– electron randomize instantly
– conductivity dispersionless
– damped oscillations, slowly decaying component

• Realistic dielectrics with finite relaxation
– responses between ideal conductor & perfect insulator
– ̅𝜏𝜏 < 1 ps accurate to 100 GHz
– transistor change from active nonlinear amplifying 

signal  to passive linear element above 100 GHz

fundamental change
in device behavior

𝑱𝑱 + ̅𝜏𝜏
𝑑𝑑𝑱𝑱
𝑑𝑑𝑑𝑑

=
1

4𝜋𝜋3�𝜏𝜏𝒌𝒌𝒗𝒗 𝑞𝑞𝑬𝑬 ⋅
1
ℏ
𝛻𝛻𝒌𝒌𝑓𝑓0 − 𝒗𝒗 ⋅ 𝛻𝛻𝑓𝑓0 𝑑𝑑𝒌𝒌

ideal transmission line

consistent with Drude model

𝑑𝑑𝒑𝒑
𝑑𝑑𝑑𝑑

= −𝑒𝑒𝑬𝑬 −
𝒑𝒑
𝜏𝜏

𝜎𝜎 𝜔𝜔 =
𝜎𝜎0

1 + 𝜔𝜔2𝜏𝜏2 (1 + 𝑖𝑖𝑖𝑖𝑖𝑖)
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Zload < Z0Zload > Z0 Zload = Z0

Transmission Line Load and Reflection

Vin

Zload

• Fields plotted through space & time 
as signal propagates

• Load matching prevents reflection
• Electric (magnetic) field space/time 

gradient at interface
‒ positive (negative) if load too high
‒ negative (positive) if load too low
‒ zero when load matched

• Provides simple approximation for 
absorbing BC
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EM Field External Boundary Conditions

Neumann Absorbing

∇𝐸𝐸abs ⋅ 𝒄𝒄𝛿𝛿𝛿𝛿 +
𝜕𝜕𝐸𝐸abs
𝜕𝜕𝜕𝜕

𝛿𝛿𝛿𝛿 = 0

𝐻𝐻abs

absorbing surface triangles
& dual edges

radiating
dipoleexternal

BC
external

BC

external BC

external BC

𝛿𝛿𝒓𝒓

∇𝐸𝐸abs ≈
𝐸𝐸abs − 𝐸𝐸int

𝛿𝛿𝒓𝒓 2 𝛿𝛿𝒓𝒓

𝐸𝐸abs𝐸𝐸int

𝐻𝐻int
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0.1 µm

AlGaN

GaN buffer

x

z SiC

air

source drain

static ID vs. VDS for different VGS

quiescent
bias

Simulated Test GaN/AlGaN HEMT Structure

• T. Palacios et al., IEEE Electron Dev. Lett., 2006
• 13 nm Al0.32Ga0.68N barrier, GaN channel, SiC substrate
• 100 nm gate length
• Quiescent bias VGS = 0, VDS = 6 V
• Channel electron perturbation

‒ fs laser pulse modulates gate field, Kondo et al.
‒ VDS pulses, Dyakonova et al., El Fatimy et al.
‒ thermal noise, Knap et al., Otsuji et al.
‒ simulated THz oscillations

o nV Gaussian VGS pulse
o continuous background thermal noise ∆VGS

𝑡𝑡 → ∞
thermal noise
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Perturbation-Induced Plasma Oscillations

• Oscillating drain currents, channel 
electron densities & temperatures, 
channel fields

• Delayed (𝑡𝑡 > 30 ps) onset of 
oscillations

• Hot near-ballistic electrons near drain 
edge of gate
‒ collide with cold, dense drain access 

electrons
‒ low heat capacity degenerate electrons 

can’t absorb near-ballistic electron energy
‒ hot electrons reverse direction, oscillate

• Channel fields & electron temperatures
‒ oscillations out of phase
‒ energy flows back and forth between 

channel fields and mobile charges
• Field/charge resonance produces 

growth in oscillating (THz) 
electromagnetic fields

• Oscillation amplitudes initially ‘ring’ 
before approaching CW condition
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Quantum Well Laser Diode

1018 cm-3

p-type
Al0.6Ga0.2As

5x1017 cm-3

n-type
Al0.6Ga0.2As

intrinsic
Al0.2Ga0.8As

Ohmic
contact

grounded
substrate

1 µm

1.25 µm

0.3 µm

1 µm

5 µm

scaled to
300 µm

GaAs
80 Å QW

electron

vacancy
(hole)

-

+

single QW ridge waveguide laser closeup of QW region

𝑅𝑅spon = 𝐵𝐵𝜈𝜈𝜌𝜌red 𝐸𝐸𝑖𝑖 − 𝐸𝐸𝑓𝑓 𝑓𝑓𝑖𝑖 1 − 𝑓𝑓𝑓𝑓 𝜌𝜌𝜈𝜈

𝑅𝑅stim = 𝐵𝐵𝜈𝜈𝜌𝜌red 𝐸𝐸𝑖𝑖 − 𝐸𝐸𝑓𝑓 𝑓𝑓𝑖𝑖 − 𝑓𝑓𝑓𝑓 𝑆𝑆𝜈𝜈

𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑 =

𝐼𝐼
𝑒𝑒𝑒𝑒 − 𝑈𝑈spon − 𝐺𝐺stimΓ𝑃𝑃phot

𝑑𝑑𝑃𝑃phot
𝑑𝑑𝑑𝑑 = 𝛽𝛽𝛽𝛽spon + 𝐺𝐺stimΓ −

1
𝜏𝜏phot

𝑃𝑃phot
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THz FET Ringing Has Different Cause

0.1 µm

AlGaN

GaN buffer

x

z SiC

air

source drain

𝑱𝑱𝑛𝑛 = 𝜎𝜎𝑬𝑬 = −𝑞𝑞𝑞𝑞𝒗𝒗

𝑚𝑚∗ 𝑑𝑑𝒗𝒗
𝑑𝑑𝑑𝑑

= ℏ
𝑑𝑑𝒌𝒌
𝑑𝑑𝑑𝑑

= −𝑒𝑒𝑬𝑬 = −𝑒𝑒𝑬𝑬ac cos 𝜔𝜔𝜔𝜔

• Channel AC fields and currents out of phase
‒ electrons flowing with the field instead of against it
‒ AC electric fields are reversing electron momentum

• AC channel fields randomizing electron momentum
‒ real space momentum relaxation
‒ affecting 𝜏𝜏𝒌𝒌 like momentum space scattering events
‒ randomization rate proportional to field strength

• Affects the ̅𝜏𝜏 determining near-ballistic transport
‒ increased 𝑬𝑬ac  decreases ̅𝜏𝜏 
‒ transport less ballistic, more lossy
‒ damping produces Δ𝐼𝐼𝐷𝐷 ringing and enables CW

• ̅𝜏𝜏( 𝑬𝑬ac ) may be fundamental limit of THz power density 

𝒌𝒌
𝜏𝜏𝒌𝒌

=
𝑒𝑒𝑬𝑬ac
ℏ𝜔𝜔

4
𝑇𝑇

𝑱𝑱 + ̅𝜏𝜏( 𝑬𝑬ac )
𝑑𝑑𝑱𝑱
𝑑𝑑𝑑𝑑

=
1

4𝜋𝜋3
� 𝜏𝜏𝒌𝒌𝒗𝒗 𝑞𝑞𝑬𝑬 ⋅

1
ℏ
𝛻𝛻𝒌𝒌𝑓𝑓0 − 𝒗𝒗 ⋅ 𝛻𝛻𝑓𝑓0 𝑑𝑑𝒌𝒌
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Oscillating Channel Currents Radiate Poorly

drain

source

air

GaN
buffer

gate

• CW oscillations
• THz electric fields

‒ less like photons in a resonant cavity
‒ waves propagating along channel towards 

drain
‒ localized near pinch-off region of channel

• Oscillating transistor is a poor antenna

0.1 µm

AlGaN

GaN buffer

x

zSiC

air

source drain
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Radiating Dipole Length

radiating
dipoleabsorbing

BC
absorbing

BC

absorbing BC

absorbing BC

radiated power vs. length

• Integrate terms of Poynting’s theorem
‒ ∫ 𝑬𝑬 ⋅ 𝑑𝑑𝑫𝑫/𝑑𝑑𝑑𝑑 + 𝑯𝑯 ⋅ 𝑑𝑑𝑩𝑩/𝑑𝑑𝑑𝑑 𝑑𝑑𝑑𝑑
‒ ∫𝑬𝑬 ⋅ 𝑱𝑱𝑑𝑑𝑑𝑑
‒ ∫𝑬𝑬 × 𝑯𝑯 ⋅ 𝑑𝑑𝑨𝑨 over surface of absorbing BCs

• Normalize radiated power ∫𝑬𝑬 × 𝑯𝑯 ⋅ 𝑑𝑑𝑨𝑨 with 
maximum power dipole provides to the fields 
∫−𝑬𝑬 ⋅ 𝑱𝑱𝑑𝑑𝑑𝑑

• Radiation efficiency declines when dipole is too short 

6 periods of 1 THz dipole current
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Channel Length on Order of λ/2

0.1 µm

AlGaN

GaN

SiC

300 µm

x

z

• Device still exhibits plasma oscillations
• Consider some device cross-sections

‒ different x-coordinates
• Integrate mobile charge currents over 

cross-sectional area ∫ 𝐽𝐽𝑥𝑥𝑑𝑑𝑑𝑑
• Oscillating channel currents occur 

over region much shorter than THz 
wavelength

• Have ∆ID instead drive a separate THz 
antenna

t = 20 ps
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Summary & Continued Research
• Inter-LRIR collaboration

‒ PI: Dr. Michael Snure
‒ PO: Dr. Kenneth Goretta
‒ bonded materials to expand device design space
‒ simulation support

o uncovered contact problem in fabrication process
o bonded diode behavior dominated by carrier recombination in hybrid GaN-Si material at interface

• Simulated THz plasma oscillations in HEMTs
‒ oscillation onset exhibits ‘ringing’ analogous to more conventional laser diode
‒ oscillations settle into CW condition
‒ balance between growing field oscillations and increasing momentum randomization of 

channel electrons
‒ possible intrinsic limit to potential power density
‒ THz emission

o transistor radiates poorly 
o particle current oscillations confined to region much shorter than radiation wavelength

• Continued research
‒ consider using oscillating transistor to drive a more effective antenna
‒ incorporate more physically realistic ̅𝜏𝜏

o higher mobility material systems, e.g. InGaAs
o cryogenic temperatures
o alternative device geometries combining short gate with reduced leakage, e.g. nanosheet FET
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QUESTIONS?
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