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Results

In the pursuit to precisely control energy localization via
nonlinearity and dispersion management in two-dimensional
spatially discrete and periodic systems, we derive the following:

1. Existence and numerical construction of families
exponentially-localized, time-periodic solutions–discrete breathers
(DBs)–on 2D nonlinear lattices of current physical interest.

2. Exact expressions for gap solitons to leading-order in a long-wave
and weakly nonlinear asymptotic description of a honeycomb lattice
near a so-called semi-Dirac point in the linear dispersion relation.

3. Construction of dynamically stable and strongly nonlinear gap DBs
and exact expressions for compactly-supported DBs on a lattice
containing a strictly flat phonon band.

4. A powerful connection between opposing asymptotic descriptions of
DBs–near the molecular and continuum limits–and a route to
control localization in gapped lattices.
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Lattice Geometries and Dispersion Relations

▶ We consider nonlinear Hamiltonian mechanical lattices with the
following 2D geometries:

(i) Honeycomb Lattice (ii) Kagome Lattice
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Universal Behavior of Lattices Near the Continuum Limit

1. Nonlinear Schrödinger (NLS) equation:

i∂tΨ+∆Ψ+ |Ψ|2αΨ = 0

Stationary states:

Ψ(t, x) = ψ(x , ω)e−iωt , ω < 0, ψ(·, ω) ∈ H1(R2).

The NLS equation is invariant under dilation:

Ψ(t, x) 7→ λ1/αΨ(λ2t, λx).

This implies by uniqueness that

ψ(x , ω) = |ω|1/2αψ(|ω|1/2x ,−1)

and so
∥ψ(·, ω)∥2L2(R2) = |ω|(1/α)−1∥ψ(·,−1)∥2L2(R2).
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Universal Behavior of Lattices Near the Continuum Limit

2. Nonlinear Dirac (ND) equation:

i∂tΨ+ (iσ · ∇+mσ3)Ψ + |Ψ|2αΨ = 0,

where σ = (σ1, σ2) and σ3 are Pauli matrices.

Stationary states:

Ψ(t, x) = ψ(x , ω)e−iωt , −m < ω < m, ψ(·, ω) ∈ H1/2(R2,C2).

The massless ND equation has the scaling invariance:

Ψ(t, x) 7→ λ1/2αΨ(λt, λx),

and so

∥ψ(·, ω)∥2L2(R2,C2) = |ω|(1/2α)−1∥ψ(·, 0)∥2L2(R2,C2).
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Nonlinear Honeycomb Lattice With Dimer Couplings
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▶ We consider a honeycomb lattice with an on-site (unit-cell)
nonlinearity and dimerized linear couplings with equations of motion:

ẍAn,m = −V ′(xAn,m) + γxBn,m + λ
[
xBn,m−1 + xBn+1,m−1

]
ẍBn,m = −V ′(xBn,m) + γxAn,m + λ

[
xAn,m+1 + xAn−1,m+1

]
▶ The potential is given by

V (z) = ω2
0z

2/2 + g |z |2αz2/(2α+ 2)

where α ≥ 1 and g = ±1 for a hardening (softening) nonlinearity.
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Nonlinear Honeycomb Lattice With Dimer Couplings
▶ One can show that as λ ↑ γ/2, the phonon band-gap closes about

ω0 at quasi-momentum M. We show the dispersion relation below,
setting parameters γ = 1 and ω0 = 2:

y-direction: x-direction:
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The Continuum Regime
▶ Near the continuum limit, centered at the quasi-momenta M, we

formally derive the asymptotic solutions to leading-order in
ϵ := γ − 2λ, for 0 < ϵ≪ 1 (α = 1):(
xAn,m(t)
xBn.m(t)

)
∼ 2ϵ1/2 (−1)m

(
U(

√
ϵn, ϵm; ν)

V (
√
ϵn, ϵm; ν)

)
cos

([
ω0 +

ϵν

2ω0

]
t

)
,

where the parameter −1 < ν < 1 modulates the frequency inside
the bandgap of width 2|ϵ|.

▶ After some scaling, the stationary states are determined by the PDE
system:{

2iω0∂TU + V + ∂ZV − ∂2YV − g
(
|U|2 + |V |2

)
U = 0

2iω0∂TV + U − ∂ZU − ∂2YU − g
(
|U|2 + |V |2

)
V = 0,

where we have assumed the Manakov-form of nonlinearity. T , Z ,
and Y are long independent spatiotemporal variables.

▶ We refer to the PDEs above as the semi-Dirac system.
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The Semi-Dirac System in Condensed Matter

▶ The linear semi-Dirac system was theorized in 2008 and implies a
peculiar class of fermions that are massless in one direction and
massive in the perpendicular direction.1

▶ The tight-binding model considered in [1], and its resulting
disperion relation, is exactly the one we consider here in our toy
model of coupled mechanical oscillators on a honeycomb lattice in
the linear limit.

▶ These highly exotic quasiparticles - the semi-Dirac fermions - were
experimentally observed in the topological metal ZrSiS this past
December.2

1
P. Dietl, F. Piechon, and G. Montambaux,“New magnetic field dependence of landau levels in a graphenelike

structure,” PRL (2008).
2
Y. Shao, et. al.“Semi-Dirac fermions in a topological metal,” PRX (2024).
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Properties of the Semi-Dirac System

▶ Looking for solutions of the form Ψ(Z ,Y )e−iνT/2ω0 , we define the
linearized operator:

L : D(L) := H1
ZH

2
Y (R2,C2) 7→ L2(R2,C2),

L := iσ2∂Z + σ1(1− ∂2Y ).

▶ One can show that L’s spectrum is given by

σ(L) = σe(L) = (−∞,−1] ∪ [1,∞),

for instance by constructing a Weyl singular sequence of
approximate eigenfunctions in D(L).

▶ Localized weak solutions to the nonlinear system may be obtained
by looking for critical points of the nonlinear functional:

Iν :=

∫
R2

(
1

2

〈
LΨ,Ψ

〉
+
ν

2
|Ψ|2 + g

4
|Ψ|4

)
dx .
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Gap Solitons in the Semi-Dirac System

▶ Consider the related system of PDEs:(
σ1 + iσ3∂Z + σ0(ν − ∂2Y )

)
Ψ = g |Ψ|2Ψ (⋆)

▶ Making the ansatz, Ψν = [Uν(Z ),U
∗
ν (Z )]

⊤
, in the above system

leads to the scalar equation

i∂ZUν + νUν + U∗
ν − 2g |Uν |2Uν = 0.

▶ This equation has the explicit exponentially localized “line-soliton”
solutions for ν ∈ (−1, 1):

Uν =

√
(1− ν2)

[√
1− ν cosh

(√
1− ν2Z

)
− i

√
1 + ν sinh

(√
1− ν2Z

)]
cosh

(
2
√
1− ν2Z

)
− ν
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Gap Solitons in the Semi-Dirac System

▶ Now consider the general nonlinear system

i∂TΨ = HLΨ+HNL[Ψ].

▶ For constant unitary transformation, U ∈ SU(2), if we have

UHNL[Ψ] = HNL[UΨ],

then if Ψ is a solution of the above system, Ψ̃ := UΨ is a solution to

i∂T Ψ̃ = UHLU†Ψ̃ +HNL[Ψ̃].

▶ Take Ψν to be a solution to (⋆), then choosing

U∗ =
1√
2

(
1 −i
−i 1

)
gives a line-soliton solution, Ψ̃ν , to the semi-Dirac system for every
−1 < ν < 1.
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Gap Solitons in the Semi-Dirac System

Theorem

By explicit construction, the semi-Dirac system admits a family of
smooth exponentially localized line solitons for −1 < ν < 1.
Furthermore, for g = ±1 we have that:

1. lim
ν→−1

Ψ̃±ν = [0, 0]⊤

2. Ψ̃0 =
1− i√

2
sech (2Z )

[
eZ , e−Z

]⊤
3. lim

ν→+1
Ψ̃±ν =

1− i

1 + 4Z 2
[1 + 2Z , 1− 2Z ]⊤ e∓iT/2ω0
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Existence of DBs Near the Molecular Limit

▶ Mapping Between Function Spaces: Define the mapping

F (Xλ(t), λ) : H2
Tb

× R → H0
Tb

by

F (X , λ) =

{(
ẍAn,m + V ′(xAn,m)− γxBn,m
ẍBn,m + V ′(xBn,m)− γxAn,m

)
+ λ

[
R

(
xA

xB

)]
n,m

}
n,m∈Z

▶ For λ = 0, say we have obtained a Tb− periodic solution, satisfying
F (X∗(t), 0) = 0

X∗(t) =
{
· · · , 0, 0,

(
xA∗ (t)
xB∗ (t)

)
, 0, 0, · · ·

}
.

▶ Our goal is to construct a mapping λ 7→ Xλ(t), defined for all real
λ ̸= 0 and sufficiently small in a Banach space of Tb− periodic in
time, spatially decaying sequences, such that

F (Xλ, λ) = 0.
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Existence of DBs Near the Molecular Limit

▶ Consider the following hypotheses:

(a) Non-resonance:

(nωb)
2 ̸= V ′′(0)± γ, for all n ∈ Z.

(b) Non-degeneracy: The nullspace of the linearized operator

L∗ =

 d2

dt2
+ V ′′(xA

∗ (t)) 0

0
d2

dt2
+ V ′′(xB

∗ (t))

− γ

(
0 1
1 0

)

acting in the space H2
Tb

is empty.

▶ Assuming hypotheses (a) and (b) hold, there exists λb > 0 and C 1

curve λ ∈ [0, λb) 7→ Xλ ∈ H2
Tb

such that X 0 = X∗ and

F (Xλ, λ) = 0 for all 0 ≤ λ < λb.
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Numerical Continuation away from the Molecular Limit

(a) (b)

▶ Given X∗(t) ∈ H2
Tb
, and assuming the conditions of non-resonance

and non-degeneracy hold, we numerically construct discrete
breathers for λ ̸= 0 by iteratively solving for the Fourier coefficients
of Xλ(t) in F (Xλ, λ) = 0 using a Newton scheme to a prescribed
tolerance.
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Bifurcation and Stability of Band-Edge Plane Waves

▶ One expects that the band-edge plane waves, and their nonlinear
continuations, play an important role in determining the localization
properties of nearby discrete breathers.

▶ Utilizing a spatial discrete Fourier transform on the honeycomb
lattice, we obtain the following system for the nonlinear band-edge
plane waves at quasi-momenta M:

¨̂xAM = −V ′ (x̂AM)+ (γ − 2λ) x̂BM
¨̂xBM = −V ′ (x̂BM)+ (γ − 2λ) x̂AM,

where the Fourier components at all other quasi-momenta, k, are
zero. We denote the solutions PA,B(t).

▶ To determine the dynamical stability of these spatially extended
states, we linearize about them and obtain(
ÿA
k

ÿB
k

)
=

(
−V ′′(PA(t)) γ + λe ik·a2(1 + e−ik·a1)

γ + λe−ik·a2(1 + e ik·a1) −V ′′(PB(t))

)(
yA
k

yB
k

)
.
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Bifurcation and Stability of Band-Edge Plane Waves

▶ For a hardening nonlinearity (g = 1), a plane wave bifurcates from
the lower band-edge with increasing frequency (and amplitude) into
the gap. These periodic states can be solved for analytically at any
nonlinearity strength in terms of elliptic functions.

▶ Writing the above linearization problem as a first-order system:

Ẏ = A(t; k , ϵ)Y ,

where A(t; k, ϵ) is Tb-periodic. By Floquet theory, stability is given
by the eigenvalues, {µj} (Floquet multipliers), of the principal
fundamental matrix solution, Y(Tb; k , ϵ), to the above system.

▶ A tangent bifurcation occurs when two Floquet multipliers collide at
+1 on the unit circle in the complex plane and generate parameter
regions of instability.

19



Numerical Continuation of Midgap Breather

(a) amplitude (blue) and energy (red) norms (b) Floquet instability (ε=0.05) (c) breather DFT (ε=0.05) (d) Floquet instability (ε=0.002)
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Band-Edge Stability and Small-Amplitude DBs
▶ The occurence of a tangent bifurcation at the quasi-momenta M (or

lack thereof) appears to determine the existence (or non-existence)
of small-amplitude DBs as ωb → ωband-edge.

▶ Here, in the case g = 1 and for a fixed ϵ > 0, numerics suggest
small-amplitude DBs exist in the lower half of the band-gap, but not
in the upper-half.

2

3
M. Kastner,“Energy Thresholds for Discrete Breathers,” PRL (2004).

4
M.I. Weinstein“Excitation Thresholds for Nonlinear Localized Modes on Lattices,” Nonlinearity (1999).
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Nonlinear Breathing Kagome (BK) Lattice
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▶ We consider a breathing Kagome lattice with on-site nonlinearity
and equations of motion:

ẍAn,m = −V ′(xAn,m) + γ
[
xBn,m + xCn,m

]
+ λ

[
xBn,m−1 + xCn−1,m

]
ẍBn,m = −V ′(xBn,m) + γ

[
xAn,m + xCn,m

]
+ λ

[
xAn,m+1 + xCn−1,m+1

]
ẍCn,m = −V ′(xCn,m) + γ

[
xAn,m + xBn,m

]
+ λ

[
xAn+1,m + xBn+1,m−1

]
▶ The even potential is given by

V (z) = ω2
0z

2/2 + g |z |2αz2/(2α+ 2)

where α ≥ 1 and g = ±1 for a hardening (softening) nonlinearity.
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The Molecular Limit of the BK Lattice

▶ Here, we seed the continuation scheme with either of the following
solution types on an isolated unit cell using the initial condtions
|xA,B,C

0,0 (0)| = a∗ or 0 and ẋA,B,C
0,0 (0) = 0. In the first case

C3-symmetry is preserved and in the latter it is broken.

(II) Symmetry-Broken Anti-Continuum Solution

+

_

o

(I) Symmetric Anti-Continuum Solution

++

+

g=1

g=-1

g=1

g=-1

ω0
2

ω0
2
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Shaping DBs on the BK Lattice

▶ We consider DBs having a fixed frequency near three different
points relative to the phonon spectrum: (A) inside the band-gap;
(B) below the acoustic band ; and (C) above the optic flat band.

(A) (B)

(C)
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(A) Symmetric and Symmetry-Broken DBs in the Gap

A-sites B-sites C-sites

λ∗

λ∗

(a)
(b) (c)

λ=0.8

λ=0.8
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(B) Leading-Order Asymptotic Description of DBs

▶ A multiple-scales analysis in ϵ := γ/2− λ gives at leading-order:

− 2iω−∂TR − gCα|R|2αR − 2R +
2

3
γ∆R = 0.

for the slowly-varying envelope R(T ,Z ,H).

▶ We seek solutions of the form

R(T ,Z ,H) = S(Z ,H; ν)e iνT/2ω−

which gives the asymptotic solutions on the BK lattice:xAn,m(t)
xBn,m(t)
xCn,m(t)

 ∼ 2ϵ1/2αS(
√
ϵn,

√
ϵm; ν)

1
1
1

 cos

([
ω− +

νϵ

2ω−

]
t

)
.

▶ We have the general asymptotic scalings of the breather’s norms as
ϵ→ 0:

∥{xJn,m(0)}{(n,m)∈Z2,J∈(A,B,C)}∥ℓ∞ ∼ 2ϵ1/2α∥S∥L∞(R2)

∥{xJn,m(0)}{(n,m)∈Z2,J∈(A,B,C)}∥2ℓ2 ∼ 2
√
3ϵ(1−α)/α∥S∥2L2(R2).
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(B) Connecting the Molecular and Continuum Limits

Symmetric breathers just below the parabolic band-edge:

A-sites B-sites C-sites

λ∗λ∗

(a)

(b) α=1 (c) α=2
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(C) Compactly Localized Discrete Breathers

▶ The nonlinear BK lattice has the exact spatially compact,
time-periodic solution:

Xc(t, λ) :=


xA0,0 = xC−1,1 = xB−1,0 = z (II )(t),

xB0,0 = xA−1,1 = xC−1,0 = −z (II )(t),

xJn,m ≡ 0 for all other (n,m) ∈ Z2,

where z (II )(t) is a Tb-periodic solution to the scalar initial value
problem

z̈ = −V ′(z)− (γ + λ)z , z(0) = a∗, ż(0) = 0.

▶ Let β := ω2
0 + λ+ γ, the exact solution is given by the even Jacobi

elliptic function

z (II )(t) = a∗cn

(√
β + ga2∗t,

√
ga2∗

2(β + ga2∗)

)
.
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(C) Compactly Localized Discrete Breathers
▶ The period of the compact solution is

Tb =
4√

β + ga2∗
K

(√
ga2∗

2 (β + ga2∗)

)
,

where K is the complete elliptic integral of the first kind.

▶ This compact DB is equivalent to three symmetry-broken states in
the molecular limit, arranged as follows, restoring C3-symmetry

 Compact Localized States

_

o

+

(I) Symmetric Anti-Continuum Solution

+ +

+

+

_ +

_

o o

▶ These compact DBs exist even with frequencies intersecting the two
lower dispersive phonon bands, however in this case they are
dynamically unstable.
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(C) Symmetric and Symmetry-Broken DBs Above the Flat
Band

A-sites B-sites C-sites

λ∗

λ∗

(a)
(b) (c)

λ=0.9

λ=0.9
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Conclusion and Future Directions

▶ We have developed a general method to shape and analyze
instrinsically localized modes (asymptotically and numerically) on
periodic 2D nonlinear lattices.

DBs near molecular limit =⇒ gap solitons =⇒ band-edge bifurcations

▶ A study of DBs in multilayered (twisted) 2D lattices is a path for
further research.
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