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Motivation
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Electric field measurements

across membrane
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Mechanism?

assisted membrane discharge (?) |- need more \

Yaeamemaiize e s ments and models!

RS Son, KC Smith, TR Gowrishankar,
PT Vernier, and JC Weaver. J. Membr.

- a 2-step process:

Biol. 247:1209-1228 (2014).

- “foot-in-the-door” occlusion of transient pores |- need experiments (GUV?)

- oxidation (or some chemistry), then long-lasting permeabilization) - need experiments T




Motivation

Develop advanced optical tools for non-invasive assessment of electrical
potentials and mechanical properties (elasticity and viscosity).

Raman spectroscopy Brillouin spectroscopy Other spectroscopies

B850 nm
J O 1
Oip, l o ®
=t
N

L
@
@
425 nm
Molecular vibrations carry True electro-optic effect(s)
information about Acoustic oscillations carry G) ooV
. EQw)=%xY2w;0,0,0 0
structure and chemical information about Ca)=xe0:.0.0)50 )50 0)
composition longitudinal modulus

AHM

[ J

099
o000
200
r»e @
»o @
X X
do o
'o'
R XY
000
p0@
a®

SHG
and viscosity




Long-tem goals

e Gain fundamental understanding of structure /
property relationship on a nano/micro-scale and
dynamical processes involved in nsPEF
Interaction with lipid membranes

Develop new biophysical tools and instruments,
which push sensitivity, molecular and structural
specificity and spatial/temporal resolution

Educate and train students and research
personnel in a broad area of biophysics and
bioengineering for DoD mission

T




Relationship to other tasks

Optical microscopy
Dynamics
Non-invasive imaging

Electroporation expertise
ns./ps.e-pulse technologies
MD of membrane dynamics




Relationship to other tasks

Optical microscopy
Non-invasive imaging

Viability assessment Optical microscopy

Non-invasive imaging
Viability assessment

AFR .




Relationship to other tasks
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Experimental
validation




Relationship to other tasks

Students’ training
Joint experiments
New technology
developments

Students’ support
Joint experiments
Biology expertise
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Relationship to other MURI
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Impact

Major scientific impact:

(1) Developed instrument which allows microscopic mechanical assessment of
living cells and tissues

(2) Developed instrument which allows non-invasive measurements of electric
potential across the membrane

(3) Developed instrument which allows 1000x more accurate instrument to
assess local chemical / structural composition

25 journal publications (+2 under review)
65 conference proceedings
34 conference presentations. including 1 Keynote, 1 Plenary, and 6 Invited

3 PhD students have graduated and are working for DoD
7 graduate students were involved in different aspects of the work
10 undergraduate students were involved
8 students worked as interns at AFRL
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Advancements and Challenges

Challenges and setbacks

Successes and advancements

State of the art instrument for
broadband coherent Raman
imaging: unprecedented sensitivity
to structure / chemical changes

State of the art instrument Brillouin
Imaging: unprecedented sensitivity
to mechanical properties

Achieved the desired sensitivity of
electric field imaging

Strong collaborative effort with the
Air Force Research Laboratory

Imaging electrical fields potentials
was found to be more challenging
than it was thought at the time of
proposal submission

Unexpected laser malfunction (now
fixed) forced to explore some
alternative strategies and technigues

Initial hypothesis of signal significant
enhancement via overtone resonant
excitation only partially worked out:
20x signal enhancement, but the line-

shapes were significantly distorted
AHM




Electrical potential measurements
via vibrational Stark effect
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Johanes Stark (Nobel Prize 1913)

e Shifting and splitting emission lines in the

presence of external electrical field.

Considered one of the first verifications of

guantum mechanics.

Vibrational Stark effect (quantum effect):
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Structure of biological membrane

Phospholipids
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Model system: giant unilamellar vesicle (GUV)

Biophysical Journal Volume 88 February 2005 1143-1155

Electro-Deformation and Poration of Giant Vesicles Viewed with High

Temporal Resolution

Karin A. Riske and Rumiana Dimova
Max Planck Institute of Colloids and Interfaces, 14476 Golm, Germany

Pakhomov et al

GUV provides a common motive for cellular
membrane; it is simpler to model and is
easier for interpretation, there are less
unknown parameters; controllable shape,
size and environment. It is also provides
stable model for instrumentation validation.
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Raman signal

Raman spectroscopy of GUV’s
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Signal difference

Raman vs CARS:
Stark spectroscopy

Nor only CARS spectroscopy produces stronger signal, but it is also
stronger affected by the frequency shift of vibrational transition
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Improved CARS/ SRS spectrometer
Spectrometer M No moving parts:

wavelength selection is

Lock-in amphﬁer/\D (® done through continuously

Photodiode o h1e tunat_)l_e AQTF, and light is
ﬁ @0 amplified using OPA to

7/\& 5 ps, 200 kHz ﬁ provide sufficient intensity

1064 nm | and stability at the sample.

Broadband B SHG The wavelengths of both

~1110 - 1500 nm
SM Fiber @ / OPA pump and Stokes beams
c2m RRIIIESS 3 _— —|7/ are derived from from
\ . .
o AOTF O highly stabilized laser

(b) sources

o e e 0 G CW Ballmann, Gl Petrov, VV Yakovlev,

532 1064 Opt Lett 42(1), 89-92 (2017); AJ
1064 AoTF 1064 OPA_ - Filters 1064 sample 1064 Traverso et al Light Sci Appl 6(5),
| | lil, Combiners | Ji 1| e16262 (2017).
A

_ L Y
“Signal”“Idler” CARS SRL SRG

Z Meng, GI Petrov, VV Yakovlev, Sci Rep 6, 20017 (2016) AI‘M

Gl Petrov, Z Meng, VV Yakovlev, Opt Express 23(19), 24669-24674 (2015)
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CARS Stark spectroscopy

| 100-ms acquisition
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Mechanical assessment

Vol. 90, Mo. 2, 1979 BIOCHEMICAL AND BIOPHYSICAL RESEARCH COMMUMNICATIONS
Septembar 27, 1979 Pages 656-662

POTENTIAL DEPENDENT RIGIDITY CHANGES IN LIPID MEMBRANE VESICLES r|g|d|ty (St]f‘fness) Of membranes

Peter I. Lelkes

Department of Membrane Research, The Weizmann Institute of Science,
Rehovot, Israel

In this communication we present experimental evidence for a

straightforward relationship between the transmembrane electrical potential

T T LA S T T
ﬁ &) 107 and the membrane structure, expressed here as its rigidity. The biological

B1 implications of our results are significant and of general interest. A

N
number of events on the cellular level are known to be initiated and/or

accompanied by changes in the membrane potential, like ion-transport,hormonal
action, enzyme-regulation, cell differentiation and proliferation, as well as
cell growth and in some cases independently concomitant modifications in the

membrane structure have been observed (25,26). Vertical translocations of

proteins, and availability of receptor sites in biological membranes, which

can be modulated by changes in the membrane fluidity (27), as well as by

St 6 0@
tmv1 . . R . A
¥ electrical fields across the membrane (28), underline the interrelation
Figure 1 : The relative change in membrane rigidity am‘n_ in dependence
of the transmembrane potential ¢y, measured in phosphatidylcholine (PC) . .
and phosphatidylserine (PS) vesicles. The different symbols represent between membrane structure and transmembrane potential and its general occur-
independent experiments. For detalls, see text.

rence in biological systems,

A|M




Brillouin microscopy: viscoelastic
assessment
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Viscoelastic modulus is the function of frequency of acoustic
wave, and, in Brillouin spectroscopy, we are assessing GHz
waves. For nsPEF, those are the important ones. AHM




Mechanical assessment
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Z. Coker et al, Opt. Express
f 26(3), 2400-2409 (2018)

A. Traverso et al, Anal Chem 87
(15), 7519-7523 (2015)

Zh. Meng, et al, Adv. Opt. Phot. 8(2), 300- 327 (2016). A‘I‘M




Mechanical assessment: BISTRO
measurements
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Brillouin Imaging/Sensing via
Time-Resolved Optical
(BISTRO) Measurements

Shorter acquisition times (down to 1us)
More accurate measurements
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Mechanical assessment of nsPEF
effects
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Comparison with theory
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Pores, N(t)
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summary

Multiscale multimodal extension
Electric field imaging Temperature sensing

Chemical s RPN Mechanical
assessment e SR g N assessment
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Sensitive Optical Fields’ Imaging

Pockels effect: possible at short time scales NP: “smart" substrate allows
Provides with EF distribution real-time temperature and
Tomographic imaging makes E(X,y,z) possible magnetic field (due to

CARS: first
experimental
demonstration of
Stark effect in model
system of GUVs

CARS: system is
optimized for high
SNR measurements,
So it is possible to
start looking for small
variations due to
oxidation,
electroporation, etc.

electrical currents) sensing

Electric field imaging Temperature sensing

Diamonds NV:
imaging
electrical

currents and
magnetic field

Chemical .L Mechanical (Wlth Phil
assessment e BUaRnP AR o, e Hemmer)

Brillouin: sensitivity and signal strength

are sufficient to look for dynamic @
changes immediately after nsPEF .




Future work
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Task 4: Novel bio-electro-mechanical tools

Develop broadband Raman imaging system ...........
Develop coherent Brillouin imaging system ...........
NsSPEF experiments .........

Nascent set of tools has been developed: non-invasive microscopic
assessment of electro-mechanical interactions in biological systems is
now possible. State-of-the-art of sensitivity and accuracy measurements.

Fast kinetics imaging: pressing needs of nsPEF effects assessment.
How fast is membrane discharge?
What are the structure/chemistry changes associated with nsPEF?
Are those changes permanent of transient?
Are mechanical effects important?
Theory vs Experiment. Can we connect those on molecular level?

Any new physics? ﬁ
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