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Promise of multiphoton microscopy:

Autofluorescence in-vivo imaging inside the body



Multiphoton microscopy
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Pulse train (80 MHz) from

femtosecond oscillator

Cw UV laser

(confocal microscopy)

• Up to 0.5 mm penetration depth into scattering tissue

• Well suited for in-vivo investigation of interfaces (skin, lung, intestine)
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Multiphoton excitation is not far away from plasma formation

• High irradiance is needed for multiphoton excitation 

• This implies a certain probability for multiphoton ionization

• That probability increases rapidly  Ik (k = order of multiphoton process)
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Example: Intestinal mucosa

Large surface (400-500 m2)

due to hierarchy of folds

5-6 m

Circular folds with villi
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adaptive immune system
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Movement of intraepithelial lymphocytes (within 13 min)

The body‘s immune patrol in action
Orzekowsky-Schroeder et al. (2014) 

Biomed. Opt. Expr. 10: 3521-3540



Twice as much light  photodamage

Repeated (7x) scanning at 38 mW, 730 nm, NA = 1.2 (in total 7500 pulses/pixel)

(2 x the power used for autofluorescence imaging)

• Hyperfluorescence increases rapidly once started

• Onset of hyperfluorescence goes along with villus retraction

Orzekowsky-Schroeder et al. (2011) J. Biomed. Opt. 16: 116025, 1-13;   König et al. (1996) J. Microsc. 183:197-2014

Hyperfluorescence

sets in at laser powers 

1.5-1.6 times larger 

than used for imaging

Bubble formation

follows (dark spots in 

hyperfluorescent regions)



Femtosecond pulse series

Single-pulse effects

• Evolution of „hyperfluorescence“  

in different tissue types

• Is it hyperfluorescence – or plasma luminescence? 

• Quantification of molecular disintegration 

via tracking of gas bubble formation

Outline

Imaging

Manipulation



Nonlinear photochemistry @700-800 nm
may introduce fluorescence changes

Laser-induced molecular changes may result in changes of 

fluorescence intensity and life time (detectable via FLIM). 

König (2006) in: Handbook of Biological Confocal Microscopy, 3rd ed., Chapter 38, pp. 680-680

Amino acids

2-3 photon absorption 

NAD(P) H Flavins Porphyrins

H2O2
Reactive oxygen 

species (ROS)

Functional damage,  apoptosis,  or necrosis

Hydroxyl 
radicals

Photoproducts with new fluorescence and 
nonlinear absorption properties



Free-electron formation   plasma luminescence

• Conduction band (CB) electrons with energies of a few eV emit visible 
Bremsstrahlung. It becomes detectable when a burst of 80-MHz fs pulses is applied.

• Recombination radiation would be in the UV range (Egap = 9.5 eV), 
and in water recombination is, moreover, largely non-radiative.

• Blackbody radiation is emitted from hot, thermalized plasma. 
However, the T-rise during multiphoton imaging is negligible. 
Bremsstrahlung is emitted before electron energies are thermalized.
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Adapted from 

Petrov, Palastro & Peñano (2017) Bremsstrahlung from the interaction of short laser pulses with dielectrics, Phys. Rev. E 95, 053209, 1-10

Bremsstrahlung from the interaction of short laser pulses with dielectrics (SiO2) 

near breakdown threshold



Photodamage pathway suggested by the time evolution of 
fluorescence/luminescence and by FLIM
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Accelerated photochemistry and plasma formation

Intermediate photoproducts 
with new fluorescence and nonlinear absorption properties

Molecular disintegration and gas bubble formation
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Kinetics of gas bubble formation 

by single spot irradiation 

with fs laser pulse series



Free-electron-induced molecular disintegration

Dissociative electron attachment

in resonant electron–molecule scattering

• Free-electron mediated bond breaking → molecular fragmentation

• Cumulative molecular fragmentation during fs pulse series 

produces long-lived bubbles containing non-condensable gas

(different from vapor bubble produced by a single laser pulse)

Boudaiffa et.al. (2000) Science, 287:1658-1660

Vogel et al. (2005) Appl. Phys. B 81:1015–1047

Molecular fragmentation
and gas bubble formation

Vibrational excitation 



• A bubble is formed, when the focal temperature exceeds 
the superheat threshold (spinodal limit)  phase explosion.

• After the phase explosion, the bubble expands beyond equilibrium 
and initially oscillates. 

• Oscillations are damped, and an equilibrium between 
plasma-mediated vaporization and condensation evolves.

• The bubble disappears immediately at the end of the pulse series 

• Gas bubbles in tissue are formed by cumulative molecular disintegration.

• The gas bubble threshold in cells is much lower than the vapor bubble 
threshold in water. It is closely linked to biomolecular changes.

• The gas bubble grows continuously during the pulse series and vanishes via 
dissolution of the gas content  long bubble life time.

• Quantification of gas formation bears info on molecular disintegration rates.

Vapor bubbles in water  gas bubbles in tissue

Vapor bubble formation in water

Gas bubble formation in cells & tissue



Measuring temporal evolution of bubbles from pulse series 
by combined interferometry and high-speed photography

High-speed video 
at 100,000 frames/s

• Bubble size evolution R(t) provides 

information on the rates at which 

biomolecules disintegrate into 

volatile products 

 Investigate R(t) for pulse series at 

various  pulse energies as a function 

of wavelength

• High-speed photography provides a grid of reliable benchmark values for R

• Interferometry provides precise info on the radius change dR/dt

dtRRtR etryInterferomPhoto  )(
One benchmark photo 
every 800 laser pulses 

in a 80 MHz train
Radius evolution



Evaluation of the mass of altered material in the bubble 
from the bubble volume 

• Equilibrium between internal gas pressure and external pressure is assumed

(This simplification is valid for small growth rates). 

• Internal pressure = gas pressure from molecular disintegration.

• External pressure = hydrostatic pressure + p(surface tension) + 

p(restoring force of cellular matrix).

• Mechanical properties of biological medium must be considered.

• Interferometry and modeling tools for single-shot-produced 

micro- and nano-bubbles (Rmax  0) have already been developed 

(talk at last review meeting).



Vapor bubble formation 

by single-pulse irradiation: 

Ith ()



Optical breakdown threshold spectra for single pulses in water
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N. Linz et al. (2016) Phys. Rev. B 94: 024113N. Linz et al. (2015) Phys. Rev. B 91:134114, 1-10

• Steps indicate multi-photon initiation

• Separation of the peaks proves the
existance of an intermediate energy
state Eini at the solvated electron level
that can be directly addressed from
the valence band

• Decrease of Ith with increasing 
indicates dominant role of 
avalanche ionization

• Breakdown model provides good fit 
for 1 fs effective Drude collision time



Interferometry and modeling for single-shot produced bubbles

• Spatial resolution: < 5 nm

Fringe max to min: 70 nm

• Temporal resolution: 160 ps

• Maximum detectable 

bubble wall velocity: 440 m/s

Interferometry signal R(t) curve
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Conclusions



Pathways of nonlinear photo-modification
of biomolecules in aqueous media 

Modified version of a scheme in Debarre et al. PLoS ONE 9, e104250 (2014)

Fluorescence

Transient 
cavitation

Gas bubbles

Plasma 
luminescence

Hypo- & Hyper-
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Functional 
damage & 
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Free-electron-mediated modifications

Free electrons are relevant as part of various damage mechanisms

and can also be employed for useful modifications

Nonlinear 

microscopy

Low-density 

plasmas

Cell surgery, 

Optoporation

DamagePhotodamage

Manipulation Radiation therapy Manipulation

Radiation damage



Conclusion

• We have collected more pieces of the puzzle describing 

modifications of biomolecules by nonlinear photochemistry 

and low-density plasma produced by MHz fs pulse series.

• A coherent picture of molecular interaction mechanisms will

support optimum use of the photon budget in nonlinear microscopy,

and establish new opportunities for the manipulation of biomolecules.
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