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Szalal Lab Overview

Past... current... and future.
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Basharin et al Phys. Rev. B,
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Detect catalytically active Improve interspin distance Push sensitivity limits of
regions of nanostructured measurements in induction-detection EPR
solid-liquid interfaces bionanomaterials spectroscopy
Extend super-resolution Implement new nanoscale Fabricate customizable
fluorescence and scanning architectures alongside metamaterial microresonators for
electrochemical-atomic force instrumentation to improve volume-limited samples (thin-film
microscopy to catalysts sensitivity and applicability interfaces, biological samples)
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|. Bilomacromolecular structure determination of quadruplex
DNA nanomaterials using pulsed EPR spectroscopy

Il. Design, capability and future of Szalai Lab EPR
Instrumentation
This talk is dedicated to Alan H. Band (1959 — 4/10/2018):
friend, colleague, and electrical engineer extraordinaire.
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Distance scales of biological systems
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http://nano.cancer.gov/learn/understanding/
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DNA nanotechnology is duplex-centric

=DNA strand association is controllable and predictable
= Molecular-level structure of duplex DNA is known
=Duplex DNA is stiff; single-strands are flexible
sSynthesis and modification of DNA is facile
=DNA is biocompatible

Rothemund Nature 2006 440 296
Zhang et al. J. Am. Chem. Soc. 2014 ASAP

Non-canonical nucleic acid structures are uncommon in DNA nanotechnology
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Stacks of guanine quartets make G-quadruplexes

= Guanine quadruplexes (GQs) form with K*, Na*, or NH,*
= Tracts of contiguous guanines are required for GQ formation
= G-rich DNA sequences have been identified in the human genome
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GQs contain variable numbers of G quartets and have helical pitch

http://www.gquadruplex.org/
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http://commons.wikimedia.org/wiki/User:Splette

GQ building blocks can be systematically varied

= Start with small, tetramolecular GQs XRD tetramolecular GQ

Sequence

T,GGGGT,
T,GGGGGGT,
T,GGGGGGGGT,
T,GGGGGGGGGGT,

Phillips et al. J. Mol. Biol. 1997 273 171

* Add a ligand with a unique measurement “handle”

\@ NG 4

Donohue & Szalai Phys. Chem. Chem. Phys 2016 18 15447
Sabharwal et al. FEBS J. 2014 281 1726
Mendez & Szalai, Nanoscale Res. Lett. 2013 8 210
=1 nm Mendez & Szalai Biopolymers 2009 91 841
Evans et al. J. Biol. Inorg. Chem. 2007 12 1235
Keating & Szalai Biochemistry 2004, 43, 15891
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Our GQ:CuTMPyP4 samples are well-characterized

= Tetramolecular GQs of increasing length bind CuTMpyP4

» GQs with or without CuTMpyP4 fold properly

» GQs with CuTMpyP4 can be purified
* GQs bind 2 CuTMpyP4

Where do the 2 CuTMpyP4 molecules bind? Figure by M. bonohue

- We hypothesize that CuTMpyP4 binds above and
below G quartet stacks in our constructs.

= Predict that as GQ length increases, Cu-Cu
distance should increase. 1.7 nm

Test this hypothesis by measuring the inter-Cu(ll)
distance using pulsed Electron Paramagnetic
Resonance (EPR) spectroscopy.

0 A

2.4 nm

NIST & CNST
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Electron paramagnetic spectroscopy uses microwaves

THE ELECTROMAGNETIC SPECTRUM

Penetrates E P R
erh [ v [
Atmosphere?
waviﬂg;; Radio Microwave. Infrared Visible Ultraviolet X-ray Gamma Ray
103 102 105 5x10° 108 10°10 10°12
About the size of... \/\/\/\/\/W\/V\/VVW
Buildings Humpans HoneyBed Pinpoint Protozoans  Molecules Atoms  Atomic Nuclei
Frequency
(Hz)
104 108 1012 1015 10'6 10'8 1020

http://www.ilibrarian.net/science/electromagnetic_spectrum.jpg
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Electron energy levels split in a magnetic field

Paramagnets can be probed by electron paramagnetic resonance (EPR)
spectroscopy to reveal their properties in solids, liquids, and gases.
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EPR spectroscopy flips electron spins (absorption of microwave energy) in
an applied magnetic field
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The scope of inductively-detected EPR Is broad

Pulsed EPR spectroscopy reveals details of Cu?*

Materials

Polymers

Semiconductors
Glasses/ceramics
Magnetic materials
Pharmaceuticals

Gunderson et al.
J. Am. Chem. Soc. 2012
134 18330

Information

Dopant identity O"ygw% Hair J\f
Point defects COffee__/\r_ Bagu\/'

Oxidation state/electronic config.

Tea Toothpaste
Site symmetry N — M —
Exchange and dipolar interactions  viamnc J\/\r d Vitaminb%ﬂ

Concentration/identity of radicals

https://www.cif.iastate.edu/sites/default/files/uploads/EPR/ModernEPRapps.pdf
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We use the EPR analog of FRET to measure distances

Pulsed ELectron-electron DOuble Resonance (PELDOR) also known as

Double Electron-Electron Resonance (DEER)

Biomolecule with two spin probes Distance between spins

Fintra

'

PELDOR/DEER

——)

P(r)

http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3224804/ E.I_'J . '.3:[! 1 -'-‘iﬂ E:D

Distance (A)

Measurement information:

NIST & CNST

Accessible distance range is 2.0 nm to 8.0 nm

Uses two identical probes (FRET requires two different probes)

Detects conformational changes of biomacromolecules — e.g. motor proteins
Ideal for difficult to characterize biomacromolecules - e.g. membrane proteins
Requires about the same amount of material as FRET measurements

Carried out in solid state (frozen samples)

Section | 13



PELDOR (aka DEER) is a pump-probe experiment

= |nduce & monitor spin echo from A spins Molecule with two
nitroxide spin labels , , B

= Modulate echo intensity of A spins by
inverting B spins

SIGNAL
observe Local field Inverted local

. AN field

pump

Jeschke, Annu. Rev. Phys. Chem 2012 63 419

Modulation of the echo intensity requires inverting as many B spins as possible
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Spins with narrow spectral extent are easy to probe

Molecule with two L oo PELDOR Trace
nitroxide spin labels p Apply PELDOR z
i pulse sequence éo.go
2
. 0.80

0.0 0.5 1.0 15 2.0
Time (ps)

Resonance
curve \a

Our systems have resonance
curves like this

Adapted from Tsvetkov & Grishin Pribory i
Vo Vg Tekhnika Eksperimenta 2009 5 5

Spins with large spectral extent require wider excitation bandwidth

Section | 15
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Shaped pulses increase excitation bandwidth

Spindler et al. Angew. Chem. Int. Ed. 2013 52 3425

Rectangular
1
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20 ns ‘ ‘
Shaped /\/-\/\
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A

For narrow lineshapes, pulse shaping improves the PELDOR measurement
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Our modulation depth improves with shaped pulses

Matt’s data
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Fitting algorithm: Stein et al. Methods in Enzym. 2015 563 531

Shaped (sech/tanh) pump pulse improves PELDOR measurements for our system
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Cu-Cu distance increases as GQ length increases

Hypothesis: As GQ length increases the Cu-Cu distance should increase if a
CuTMpyP4 molecule binds at each end of the G quartet stacks.

DA 291+0.59
T 335+054
ER 3.96+£0.48
4.30 % 0.65

Predicted distances based on:

G-G=0.36 nm
Phillips et al. J. Mol. Biol. 1997 273 171

G-TMpyP4 =0.42 nm
Phan et al. Nat. Chem. Biol. 2005 1 167-173

Measured Cu2*-Cu?* distance (nm)

50 - GlﬁO
45 G8 R2=0.987

' I} 0.22 nm
4.0 - G6
35 G4 0.60 nm'
3.0 1 0.71 nm
2.5 1 0.99 nm

1 B Observed
2.0 ' ® Predicted

2.0 2.5 3.0 3.5 4.0

Stretching the entire quadruplex—ligand structure

is most physically realistic.

It also does not invoke an enthalpic penalty due to

increasing the ligand-GQ distance.

Predicted Cu?*-Cu?* Distance (nm)

Donohue & Szalai Phys. Chem. Chem. Phys 2016 18 15447
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3éummary of GQs as a measurement platform

= Shaped pump pulse improves DEER of CuTMpyP4
» Cu-Cu distances support end-stacking of CuTMpyP4 on GQs

» Helical expansion/compression likely at play in this system

PELDOR

(Nd

Donohue & Szalai Phys. Chem. Chem. Phys 2016 18 15447
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|.  Biomacromolecular structure determination of quadruplex
DNA nanomaterials using pulsed EPR spectroscopy

Il. Design, capability and future of Szalai lab EPR
Instrumentation

Spectral resolution increases at higher frequencies

9 GHz 35 GHz
H=3S-9-B,+S-D-S+S-A-I Jt
\ ' J \ ' J P
Field Field ﬂ‘r W
dependent independent
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Our 34 GHz EPR spectrometer system Is versatile

Pulse Components

(4) 4.6 GS/s, ‘ (11) External 150 W
12-bit AWG TWT Amplifier [ {15) 1/Q Analog Demodulator ]
3
& A *
[ (8) Frequency counter
(1) Control PC running ¥ —— Magnet ——
Specman4EPR b /" (9) CW/Pulsed Microwave bridge . % (16) Gaussmeter ]
o
(5)vco 0.5 GHzto 1GHz _ Tx @ 33.2 GHz to 5
‘ l 292 GHz 35.3 GHz g
(2) NIST-built digital 3.5 to o
output module o GHz = v
l - . ® Resonator }+
@ | 0.5GHzto 1GHz Rx ( .
(17) Oscilloscope
(3) NIST-built signal % 3
module e I 4-[ (10) Log detector ]— J
S - Input -i
Modulation in [ (6) RE generator ] nput (12) LCO-C!( in | .
Sine out Amplifier Mc_>du|atnon
AFC out [ (7) NIST-built | (13) Modulation | 7~ coilcurrent —»
CW Components AFC electronics Input Amplifier monitor

Features:

e Compatible with off-the-shelf excitation sources (AWG, RF generator, VCO).

e Compatible with commercially-available detection devices (high speed digitizer,
external demodulator, RF envelope detector)

e Single shot echo S/N values above 30

“Integration of a Versatile Bridge Concept in a 34 GHz Pulsed/CW EPR Spectrometer”
A. Band, M. Donohue, B. Epel, S. Madhu, V. Szalai J. Magn. Reson. 2018 288 28-36
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NIST 34 GHz spectrometer cuts acquisition time

Ensemble
interspin distance

PolyA_9,22 Raw data

1.0 -

0.9 A

= <r>=257+0.24
\:; . 34 GHz rectangular <r>=258+0.26
z <r>=2.45+0.23
£ 071 34 GHz shaped f
o
2 06 -

1 9 GHz rectangular

00 05 10 15 20 20 25 30 35 40
t (Us) r (nm)
S/N improvement @ Q-band All distances within error

Our 34 GHz spectrometer increases S/N & cuts data acquisition time by 20-fold

Integration of a Versatile Bridge Concept in a 34 GHz Pulsed/CW EPR Spectrometer
A. Band, M. Donohue, B. Epel, S. Madhu, V. Szalai J. Magn. Reson. 2018 288 28-36
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Conventional inductive-detection EPR has limitations

Bulk samples are no problem, but... some samples are volume-limited.

Thin-film
superlattices

Biomacromolecules

TE,,, cavity

Active volume = 10 pL to 100 pL Sample volume <1 L

Resonator sensitivity depends on

, 4
Fill factor = =ample

active

Conventional cavity resonators are not suitable for volume-limited samples
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Microresonators can help solve the sensitivity problem

3.5mm
Resonator performance \l q
depends on - H-tierd
e active volume 150 pm
e fill factor [ |
e Q-factor -
Narcowicz et al J. Magn. Reson
2005 175 275
Detectable spins 101 /\/Hz 108 /VHz 10’ / VHz
Concentration sensitivity nM uM sub-uM
Active Volume 10,0000 nL 1 nL <1nL
Fill factor < 0.0001 Approaches 1 Approaches 1
Q-factor 103 <50 10% - 103
P-to-B, conversion (G/VW) 1 15 100

*Calculated on the basis of simulations
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The take away messages...

i
1. EPR spectroscopy uses paramagnetic ot
centers to provide information on a wide strudbirar gt la
variety of (bio)nanomaterial systems. Vz/‘,f;ﬂ
.

Donohue & Szalai Phys. Chem. Chem. Phys
2016 18 15447

2. NIST EPR spectrometers implement
pulse shaping that improves distance e T of
measurements in soft nanomaterials and NoveltEtE s Sroe
diversifies spin probe choice. -

|l

Band, Donohué, I, Madhu & Szalai J.

Magn. Reson. 2017 revisions submitted

3. Our current instrumentation development
is focused on achieving higher sensitivity A .

with smaller sample volumes for our New measurement capabilities

Abhyankar, Agrawal, McMichael & Szalai

2017 and beiond.



Thanks to those who do the work!

» GQ assembly & characterization measurements:

= UMBC: Dr. Loryn Keating, Dr. Sarah Evans, Dr. Kevin Turner, Dr.
Daniele Fabris (SUNY-Albany), Dr. Miguel A. Mendez

= EPR spectroscopy:

= Dr. Matthew Donohue
Salubris Biotherapeutics

= Alan Band
Dr. Boris Epel (University of Chicago)

—

) Dr. Matthew Donohue

Steve Blankenship

= Dr. Nandita Abhyankar “Inverse” anapole

= Dr. Robert McMichael

= Dr. Amit Agrawal —

= Dr. Jan Obrzut

= Dr. Caglar Emiroglu B ¥ i NIST lelii

Dr. Nandita Abhyankar

My cyberEPR experts: NIST SURF program
Andrei A. @ U of AZ George C. & EdR. @ UMD/CNST Cooperative Agreement
Alexey S. @ PSU Mulheim an der Ruhr NSF CAREER (CHE-0346066, UMBC)

Raanan C. @ Technion Peter D. @ Northwestern

ResCorp Research Innovation Award (UMBC)
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Thank you!
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